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Topological analysis reveals state transitions in human gut and
marine bacterial communities
William K. Chang1, David VanInsberghe2 and Libusha Kelly 1,3✉

Microbiome dynamics influence the health and functioning of human physiology and the environment and are driven in part by
interactions between large numbers of microbial taxa, making large-scale prediction and modeling a challenge. Here, using
topological data analysis, we identify states and dynamical features relevant to macroscopic processes. We show that gut disease
processes and marine geochemical events are associated with transitions between community states, defined as topological
features of the data density. We find a reproducible two-state succession during recovery from cholera in the gut microbiomes of
multiple patients, evidence of dynamic stability in the gut microbiome of a healthy human after experiencing diarrhea during
travel, and periodic state transitions in a marine Prochlorococcus community driven by water column cycling. Our approach bridges
small-scale fluctuations in microbiome composition and large-scale changes in phenotype without details of underlying
mechanisms, and provides an assessment of microbiome stability and its relation to human and environmental health.
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INTRODUCTION
Complex microbial ecosystems (‘microbiomes’) inhabit a diversity
of environments in the biosphere, including the global ocean1,
soil2, and the human gut3. Large-scale alterations in the
composition of microbiomes is often associated, whether as
driver or consequence, with environmental processes such as
seasonal geological cycling and nutrient fluctuations4; physiologi-
cal processes such as menstrual cycles5; and clinical phenotypes
such as irritable bowel syndrome6. Analysis and prediction of the
large-scale dynamics of microbiome composition is thus a
pressing issue in multiple fields of study.
As with many biological systems, understanding of the

dynamics of microbiomes is complicated by their high dimension-
ality. Numerous variables define the state of a microbiome; these
include frequencies of microbial taxa and their genetic alleles,
which are decoupled due to genomic plasticity and horizontal
gene transfer7,8, and environmental conditions such as tempera-
ture, pH, and biochemical concentrations. A microbiome thus has
a vast number of potential configurations in which it may, in
principle, fluctuate on a short time scale. By contrast, systemic
phenotypes, such as human gut infections or aquatic algal
blooms, persist for much longer than bacterial generation time,
and community compositions may be diverse within a pheno-
type4. Furthermore, due to the diverse biology of microbiomes
across habitats, it may be desirable to have a quantitative
framework that can be generalized across biological systems.
One approach to analyzing microbiome dynamics has been to

infer the network of underlying pairwise interactions between taxa
by calculating the inverse covariance matrix from time series data,
often as a basis for modeling population dynamics using
Lotka–Volterra equations9–11. Such approaches are useful for
predicting fine-grained taxon-taxon interactions of importance,
and are challenged by the compositional nature of microbiome
data12 and the possible role of higher-order interactions13.
Notably, it is impossible to fit Lotka–Volterra models to

compositional data without information regarding the total
population size14. A complementary coarse-grained approach is
to cluster samples according to compositional similarity, and
conceptualize dynamics as stochastic transitions between clus-
ters15,16. Such approaches can be used to identify large-scale shifts
in compositional state, with the implicit assumption that each
temporal sample can be assigned to one of a finite number of
discrete categories.
In our approach to microbiome dynamics, we were motivated

by the concept of potential landscapes in physics. The potential
landscape formalism considers a high-dimensional phase space, in
which coordinates represent system states, and system dynamics
correspond to trajectories through phase space. The dynamics are
envisioned as being influenced by features of a landscape in
phase space, the height of which corresponds to the value of a
potential energy function: for example, local minima of the
potential may represent stable states, and valleys probable
dynamics of the system. In biology, the potential landscape and
related concepts have proved useful in theoretical and experi-
mental studies of ecological dynamics17–19; cell phenotypes in
differentiating stem cells20,21 and cancer cells22,23; and states of
brain activity24.
In principle, potential landscapes predict an inverse relationship

between the value of the potential and the probability of
observing the corresponding system state, and thus between
the potential in a region of phase space and the density of
observations in that region. In reality, certain landscape features
and dynamics may lead to the persistence of transient states and
the illusion of stability25,26, and strong external perturbations may
cause the dynamics to deviate from those predicted by the
potential landscape, in particular in biological applications. For
example, perturbations to the gene expression of a differentiating
stem cell may cause it to lose or fail to attain a differentiated
phenotype27. While the potential landscape formalism may not be
directly applicable to microbiomes due to the open nature of the
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system and rapid turnover relative to currently-practical sampling
frequency, we speculated that creating a representation of the
density of data points in the compositional phase space of
microbial ecosystems could lead to useful insights for analyzing,
and eventually predicting, microbiome dynamics. Specifically, we
hypothesized that local maxima of the data density could form a
basis by which to infer characteristic metastable states of
microbiome composition, allowing the association of observations
with states and the representation of dynamics as metastable
state transitions while retaining the continuity of the underlying
phase space.
To characterize features of the microbial phase space, we used

topological data analysis (TDA), specifically the Mapper algo-
rithm28,29, which has recently found application in microbiome
research30. TDA is a class of methods for inferring properties of
data, represented as a point cloud, in high-dimensional phase-
space, that seeks to be robust to factors such as scale and
resolution. Briefly, Mapper represents the underlying distribution
of data in a metric space as an undirected graph, where each
vertex comprises a non-exclusive subset of data points spanning a
patch of phase space. An edge is drawn between each two
vertices that share at least one data point (Fig. 1a), representing
connectivity between patches. We complement Mapper with a
graph-theoretical analysis using k-nearest neighbor (kNN) distance
to estimate the density of data points over each patch of phase
space represented by a vertex, determine local maxima, and
define metastable community states (Fig. 1b). In contrast to
established methods such as hierarchical clustering, our method
preserves the notion of a continuous underlying density distribu-
tion, with the states representing a discrete coarse-graining, and
recognizes low-density regions of phase space unassociated with
any metastable state. In addition, it is possible for a data point to
be associated with more than one vertex in the Mapper graph and
thus with more than one state, allowing identification of samples
that fall between or are in transition between metastable states.
We used our method to infer the density and associated

topological features of the point clouds for three published
microbial time series data sets, two human gut microbiomes—one
of stool samples collected from seven cholera patients from

disease through recovery31, one from two mostly healthy adult
males32—and one of marine Prochlorococcus communities span-
ning multiple depths collected from one site in the Atlantic Ocean
(BATS) and one in the Pacific (HOT)33. (For details on the sampling
frequency and duration for each data set analyzed, see
Supplementary Table 1). We selected these data sets in part to
test our method by recapitulating biology known from the original
studies, and in part to discover features not addressed by prior
methods. In both human gut and marine systems, we find that
significant physiological and environmental events, including
recovery from infection and geochemical cycling, correspond to
recurrent successions of state transitions. We show that these
successions are an informative coarse-grained view of microbiome
dynamics, with implications for the assessment of ecological
resilience.

RESULTS
Dynamics of human gut microbiome recovery from cholera
infection
We found the cholera phase space to be partitioned by clinical
phenotype, i.e., diarrhea or recovery (Fig. 2a). Division of the phase
space into states found that vertices within a state tended to
consist of either samples from the diarrhea phase or from the
recovery phase, rather than a mixture of both (Supplementary
Information Fig. 1). Taxonomic compositions of the states can be
found in the Supplementary Data File cholera-state-
compositions.txt. The original study31 recognized phases
of progression according to equal-time divisions of the diarrhea
and recovery periods, respectively, of each patient. Our identifica-
tion of disease substates, in contrast, is based on community
composition and integrated across data from all patients. We
found the diarrhea region was further subdivided into two states,
2 and 7 (Fig. 2b). Patients C, E, and G occupied state 7 for
prolonged durations immediately before clinical recovery; patients
A, B, and F stably occupied state 7 for ~20 h, but switched to other
states for the last few time points before clinical recovery (Fig. 2c).
In the case of patient A, the final few time points were associated
with state 5, which represented an intermediate region of the
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Fig. 1 Using Mapper to characterize the microbial phase space. a Cartoon of use of the Mapper algorithm to infer the probability density of
a toy ecosystem. The mutually antagonistic interaction between species X and Y leads to denser sampling of the phase space where either X
or Y is abundant and the other is rare than in other regions; configurations in which X and Y are similar in abundance are unstable, as small
uncertainties in numerical advantage will eventually lead to the dominance of one species over the other. Mapper infers a `skeleton' of density
from the data represented as a point cloud. This representation preserves major features of the density such as the two densely-sampled
clusters separated by a sparsely-sampled region. Size of vertices indicates number of data points aggregated in each vertex. b Identification of
local maxima and metastable states in the Mapper graph shown in (a). Data density for each vertex is estimated by the inverse of the mean
kNN distance (see “Methods”) for samples associated with that vertex. Shading indicates mean kNN distance over all data points included in a
vertex. The graph is converted to a directed graph, with each edge pointing in the direction of increasing estimated density. A local
maximum, highlighted in pink, is defined as a vertex that has higher density than all its neighbors. Finally, the state associated with a local
maximum is defined as the set of vertices that have uniquely shortest directed graph distance to that maximum. Non-maxima vertices with
equal graph distances to multiple local maxima are unassociated with any state (gray).
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phase space between the diarrhea- and recovery-associated
neighborhoods. These results suggest that state 2 constituted a
universal ‘early’ diarrhea state, and state 7 a universal ‘late’
diarrhea state, with distinct community compositions. The original
study noted taxa which consistently changed in abundance
between the start and end of the diarrhea phase, for example,
Streptococcus and Fusobacterium31, here we show that these
compositional shifts are observable on the whole-community
scale.
Generally, patients occupied state 7 for longer than they did

state 2, suggesting that the stability of the late state in a given
patient influences disease duration. To quantify stability, we
calculated a temporal correlation function for each state-patient
pair during the diarrhea phase (see “Methods”). Monotonically
decreasing correlation functions indicate metastability, showing
that the system transiently occupies a state before transitioning to
a different state; slopes become more negative with decreasing
stability. While this analysis revealed that all patients transiently
occupied state 2, with the greatest persistence in patient C,

patients A, C, and E had non-monotonic correlation functions for
state 7, coinciding with prolonged times to recovery compared to
the rest of the cohort, with patients B and F exhibiting the
expected monotonic decrease (Fig. 2d). This indicated that
patients A, C, and E repeatedly entered and exited state 7,
suggesting that prolonged diarrhea in these three patients may
have been additionally influenced by the instability or inaccessi-
bility of alternative, healthy, states and that (re-)assembly of the
healthy microbial community constitutes a non-trivial step in
recovery.

Dynamics of two healthy adult microbiomes with transient
diarrhea
In contrast to the cholera data set, the two healthy adult gut
microbiome time series from David et al.32 were separated by
subject (Fig. 3a). Despite being clinically healthy for most of the
observation period, both subjects’ microbiomes experienced
perturbations: subject A traveled from his residence in the United
States to southeast Asia, twice experiencing traveller’s diarrhea;

0.00

0.25

0.50

0.75

1.00

fraction
diarrhea

a state

2

3

4

5

6

7

9

11

NA

b
A

B
C

D
E

F
G

0 30 60 90
hour

0.00 0.25 0.50 0.75 1.00
fraction samples

c

E F G

A B C D

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0 25 50 75 100
0.0

0.5

1.0

0.0

0.5

1.0

interval (hours)

co
rr

el
at

io
n

d

Fig. 2 The phase space of the cholera gut microbiome. a Mapper representation of the combined cholera data reveals disease- and healthy-
associated neighborhoods of the phase space. Color: fraction of samples in each vertex associated with diarrhea. Connected components of
the Mapper graph representing only one sample are not shown. Disjoint regions of phase space are represented as separate connected
components. b Partitioning of the phase space into metastable states. Vertices unassigned to any state are colored in gray. c Left: progression
of subject compositions during the diarrhea phase by state, showing persistence of states over time. Y axis and color indicate state index, with
color indexing as in (b). Where a sample was associated with multiple states, all were included. Right: frequency of samples associated with
each state during the diarrhea phase for each subject with colors as in (b). d Temporal correlation function for the diarrhea phase of each
subject. Dots: raw values of f 0x for pairs of samples (see “Methods”). Lines: smoothed empirical mean of f 0x . Ribbons: standard error of the mean.
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and subject B, also based in the US, suffered an acute infection by
Salmonella. Previous studies32,34 noted that, while the microbiome
of A returned to its original state after travel, recovery from
Salmonella left the microbiome of B in an alternative state.
Confirming this, we found that subject A occupied the same
regions of phase space before and after travel, while subject B
occupied disjoint regions before and after infection. We further
found that the post-Salmonella samples of subject B distributed
over several connected components, showing that the gut
microbiome of subject B remained in flux across several distinct
compositional substates even after being clinically marked as
having recovered (Fig 3b). Division of the phase space into states
found that vertices within a state tended to be dominated by
samples from a single subject (Supplementary Information Fig. 2).
Taxonomic compositions of the states can be found in Supple-
mentary Data File david-state-compositions.txt.
The large connected components representing the pre- and

post-travel healthy samples of subject A and the pre-Salmonella
healthy samples of subject B were each divided into several states
(Supplementary Fig. 3), suggesting that the clinical ‘healthy’
phenotype of an individual is a probability over multiple
compositionally distinct states. The existence of states in
microbiome phase space proposes a metric for microbiome
resilience: comparing the distribution of samples across states
between time windows. Subject A occupied states with identical
probability before and after travel, exhibiting resilience; in
contrast, subject B post-infection did not restore the pre-
infection probability across states, despite some samples sharing
states with pre-infection healthy samples (Fig. 4a). Thus, the
restoration of the microbial community to a ‘healthy’ state cannot
be confirmed with a single time point.
Temporal correlation functions further showed that subject A,

as well as subject B before infection, repeatedly visited the same
set of states; in contrast, subject B after infection transiently
occupied several states without repetition (Fig. 4b). This shows
that not only did the microbiome of subject B enter an alternative
state, or probability across states, post-infection, but that this
alternative state was not fully stabilized. It is possible that the pre-
infection probability across states was restored in subject B after
the end of the observational period.

Recurrent seasonal dynamics of Prochlorococcus communities in
the Pacific and Atlantic
Compared to the phase spaces of human gut microbiomes, which
may be discretized by individual or phenotype, the Prochlorococ-
cus phase space was organized by gradients of depth (Fig. 5a) and

temperature (Supplementary Fig. 4), indicating that, in these
environments, small changes to environmental conditions result
in small changes to community structure. In contrast to the two
human gut microbiome data sets, division of the Prochlorococcus
phase space into states found the mean depth per vertex in each
state to vary continuously (Supplementary Fig. 5). The phase space
possessed multiple states (Fig. 5b), with state 4 largely represent-
ing shallow fractions of the water column ≤100m; states 2, 3, and
6 deeper fractions; and state 1 intermediate depths. Ecotype
composition of the states can be found in Supplementary Data
File prochlorococcus-state-compositions.txt. State 5
represented an infrequently-occupied region sampled only by the
140m fraction at BATS on January 27, 2004, and by the 125m
fraction at HOT on January 31, 2008 (Fig. 5c). As such, state 5
possibly constitutes an alternative state for deep water fractions in
mid-winter. Communities differing in depth rarely shared compo-
sitions, and transitioned between states, in many cases periodi-
cally across calendar years (Fig. 5c), showing that some
communities experienced abrupt periodic shifts in environmental
conditions due to geochemical events.
Despite the graduated variation of composition with depth and

temperature, the range of compositional dissimilarity across the
range of environmental conditions is sufficient to constrain given
depth fractions to a neighborhood of phase space, such that
shallow- and deep-fraction Prochlorococcus communities rarely
occupy the same compositional states over time (Fig. 5c).
However, it is known that the BATS water column undergoes an
annual late winter upwelling33, intermixing communities that
otherwise inhabit different depths, and homogenizing environ-
mental conditions across depths. We predicted that mixing would
drive communities at all depths at BATS to converge on a
common state, while no convergence would be observed at HOT.
Accordingly, we observed a transition to state 1 by all depths at
BATS in January of each year. After June, depths 1–20m and
120–200m relax toward states characteristic of shallow and deep
depth fractions, respectively, while state 1 persists longer in
intermediate depths 40–100m. By contrast, no such upwelling
occurs at HOT, and the probability of a given depth fraction
occupying any state remains uniform over the calendar year; the
distribution is especially stationary for shallow depths (Fig. 5c).
This periodicity was also evident in periodic correlation functions
for BATS, and non-periodic for HOT (Fig. 5d).

Robustness of phase space characterization
Given that the data sets analyzed here are among the largest
longitudinal microbiome data sets currently available, we asked
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Fig. 3 The phase space of two healthy adult male gut microbiomes. a Mapper representation of the combined daily time series of two
healthy adult human gut microbiomes. Connected components of the Mapper graph representing only one sample are not shown. b Regions
of phase space occupied by each subject before and after perturbation.
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whether the biological hypotheses could have been obtained
from sparser data sets. We focused on our finding that
microbiome phase spaces are structured by latent variables
representing host phenotypes or environmental conditions, and
examined whether this structuring was robust to data rarefaction.
We found that the partitioning of the phase space by clinical
phenotype in the case of the cholera patients, by subject in the
case of the two healthy adult humans, and the gradation by depth
in the case of Prochlorococcus communities, are robust to all
rarefaction tests performed. In the case of cholera patients, nodes
remained divided into those representing mostly samples from
the diarrhea phase and those representing the recovery phase,
with edges being more dense between nodes of the same
phenotype than those of different phenotypes (Supplementary
Fig. 6). In the case of the two healthy adult humans, nodes were
consistently dominated by samples from one subject, with edges
being more dense between nodes representing the same subject
than those representing different subjects (Supplementary Fig. 7).
For the Prochlorococcus data set, nodes aggregating samples from
similar depth fractions were more densely connected than those
representing disparate depths (Supplementary Fig. 8).

Comparison with hierarchical clustering and principal component
analysis
To compare our method with standard methodologies, we
performed hierarchical clustering and principal component
analysis (PCA) on the OTU tables for each data set (Supplementary
Methods). We found that, while PCA confirmed the global
partitioning of data by diarrhea or recovery within the cholera
data set, partitioning by subject within the two adult gut

microbiomes data set, and gradation by depth within the
Prochlorococcus data set, reduction to two dimensions using
PCA makes the separation between hierarchical clusters unclear,
as can be seen in the intermingling of points from different
clusters in the cholera and two human gut microbiome data sets.
We observed a strong ‘horseshoe’ effect35 for the Prochlorococcus
data set, supporting the gradation of composition by depth
observed through TDA (Supplementary Fig. 9). This suggests that
our method can identify the continuous change of composition
with environmental and physiological variables with effectiveness
comparable to PCA, while potentially performing better for
discrete associations.

DISCUSSION
We identified unrecognized dynamics governing large-scale
phenotypes in microbial time series data by using TDA to infer
the shape of data density from 16S and ITS ribosomal RNA time
series data. While analyses from the original studies identified
bacterial taxa that were differed in abundance across host
phenotypic or environmental states—for example, the loss of
Firmicutes in subject B post-Salmonella infection32—our method,
by contrast, aims to identify transitions between global composi-
tional states defined across all taxa without reference to metadata.
Our results reveal the role of latent physiological and environ-
mental variables36, such as disease phenotype and phase of
geochemical cycles, in organizing microbiomes over time. We
observed common dynamics across instances of ecological
processes in the two gut and one environmental timeseries data
sets we studied. Using our approach, one can thus begin to infer
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Fig. 4 States and dynamics of two healthy adult male gut microbiomes. a Frequency of states for healthy periods before and after
perturbation. X axis: state index. Y axis: frequency of samples. b Temporal correlation functions for the three most probable states during each
event in the `healthy' phases of each subject. Dots: raw values of f 0x for pairs of samples. Lines: smoothed empirical mean of f 0x . Ribbons:
standard error of the mean.
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general mechanisms that determine large-scale phenotypes of
clinical and environmental importance. The elements of our
method—the definition of a metric phase space using the square
root of the Jensen-Shannon divergence, the representation of the
phase space using TDA, and the characterization of topological
features using the adapted kNN density estimator and shortest
graph distance searches—are specifically advantageous for
analyzing high-dimensional compositional data. Relative abun-
dances provide incomplete information on a system, and a system

may be compositionally stable while remaining dynamic in
absolute abundance37. Our method can be readily adapted to
work with absolute abundance where such data are available.
Compared to representational methods such as PCA, our method
benefits from using all distance information; and compared to
clustering techniques, our method does not require specifying the
number of states, such as required in k-means.
While subjects in both human gut data sets experienced

transient infection by bacterial pathogens, the large-scale

Fig. 5 The combined phase space of two Prochlorococcus communities inhabiting the Atlantic and Pacific Oceans, respectively.
Connected components of the Mapper graph representing only one sample are not shown. a Vertices colored by mean depth in meters of
represented samples. b Partitioning of the phase space into states. c Successions of states for each site-depth fraction combination. Dotted
lines indicate samples during January. Colors indicate states as in (b). d Temporal correlation functions for each state per site-depth fraction
combination. Dots: raw values of f 0x for pairs of samples. Lines: smoothed empirical mean of f 0x . Ribbons: standard error of the mean.
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dynamics differed between the two groups. We found that
multiple cholera patients followed a trajectory of early- to late-
stage disease states. In contrast, the two healthy subjects from the
year-long data set experienced apparently random jumps
between states during Salmonella infection and traveler’s diarrhea,
respectively, that did not result in the stabilization in a
reproducible alternate state during the course of disease. This
discordance between the two human gut microbiome data sets
suggests that microbial infections can potentially be classified into
‘ordered’ and ‘disordered’ types. Ordered infections are character-
ized by a reproducible trajectory through phase space, while
disordered infections are characterized by unpredictable progres-
sion through phase space. The latter case represents a version of
the ‘Anna Karenina principle,’meaning individual microbiomes are
more dissimilar during a particular perturbation than during
health38, while the former represents an inversion of the principle.
Scale is likely important in this distinction: independent of the
deterministic or stochastic nature of the perturbation induced by
an infection, if its magnitude is smaller than ‘baseline’ fluctuations
of the healthy microbiome, variations between individuals will
remain the dominant variable in organizing the phase space. If the
magnitude of the perturbation is larger, it may overwhelm
individual variability and cause the phase space to instead appear
organized by phenotype. Thus, data on the variability of healthy
microbiomes over time between and within individuals will be
crucial to characterizing the impact of a given disease on the
microbiome. We also note that our conclusions are influenced by
sampling frequency: our method cannot capture dynamics on a
shorter time scale than that of sampling, and systems that seem
noisy on a particular time scale may have ordered dynamics on
longer time scales.
Our analysis of the David et al. data set shows that the

microbiome of a healthy individual transitions between states
over time. While key dominant taxa may persist, no single large-
scale compositional state defines healthy physiology. However, an
individual microbiome may occupy states with the same
probability during two separate ‘healthy’ time windows. Integrat-
ing the information over time for each of the healthy periods, the
physiological phenotype can be inferred to be stable despite the
system state being dynamic. Put differently, if one interprets states
as microstates of the microbiome composition, a systemic clinical
or environmental phenotype could then be regarded as a
macrostate, and a resilient ‘healthy’ microbiome will remain in a
stable macrostate over time.
This notion of resilience as identical probability across states

before and after a perturbation can be generalized to a notion of
dynamic stability, defined as stationary probability across states
over time. Dynamically stable microbiomes do not necessarily
stabilize within a single state, but revisit a given set of states with
fixed probability. Our temporal correlation analysis shows that
dynamically stable microbiomes, such as subject A and subject B
pre-infection from the study in ref. 32, are characterized by non-
monotonic temporal correlation functions, indicating the micro-
biome revisits the same states over time. In contrast, unstable
microbiomes, such as subject B post-infection, exhibit mono-
tonically decaying correlation functions, indicating the micro-
biome transiently occupies compositional states without
recurrence. Dynamical instability can persist after infection even
in the microbiome of an individual clinically marked as having
recovered from infection, as in the case of subject B, revealing
additional nuances to the association between stability and health
in human microbiomes. The ability to assess resilience from data
in the absence of detailed knowledge of the underlying network
of microbe-microbe interactions complements model-based
methods that analytically solve for fixed points and linear
stability39. Alternate means of estimating stability and resilience
may be possible, for example, by quantifying the degree to which

consecutive time points are associated with the same or adjacent
Mapper vertices.
For the two human gut microbiome data sets, we observe some

of the same phenomena as the original studies: for the seven
cholera patients, certain taxa were differentially abundant
throughout the progression of disease31; and for subject B of
the two healthy males, that the pre-Salmonella microbiome
composition was not recovered by the end of the experiment32.
In the first case, we remark that differential abundance of
individual taxa does not necessarily imply the existence of large-
scale compositional states consistent across patients and disease
phases, such as we describe here. In the second case, we
additionally found multiple states in the pre- and post-
perturbation healthy phases of both subjects, and showed that
restoration of a healthy and resilient microbiome is associated
with the recovery not of a specific composition but of a
distribution across compositional states.
We point out several caveats regarding our method. First,

though we defined the phase space using the Jensen-Shannon
distance, other metrics may be used, and the results of analysis
using different metrics for the same data should be compared in
future applications. Second, due to the lack of an established
protocol for selecting Mapper hyperparameters, we used a
heuristic method to choose their values for our analyses. A more
rigorous optimization method is desirable, especially one devel-
oped against synthetic data from de novo simulations where the
‘ground truth’ of the parameters, and thus the shape of the
density, are known a priori. Third, we use Mapper to create a
representation of the density, but question of whether it is
effective to analyze microbiome dynamics via the topology of the
density in a given case is independent of Mapper and TDA, and
other methods may be used. Fourth, we assume the data
accurately represent the compositions of the sampled commu-
nities, when in fact challenges exist with translating sequencing
data into compositions40,41; addressing these challenges is outside
the scope of this manuscript.
In addition to offering a quantitative description of microbiome

states and dynamics, we hope our analysis will, in time, facilitate
predictive modeling of the dynamics and forecasting of major
state transitions in the microbiome. As an example, our approach
to identifying states from microbial time series can be used to
infer state transition probabilities under different conditions, and
thus can serve as a basis for fitting the parameters of Markov chain
models16,42. The concept of the potential landscape that
motivated our study is closely linked to the theory of critical
transition forecasting17,18,43–45: as perturbations destabilize a
system, it ascends the potential gradient and eventually reaches
a tipping point from where it can rapidly enter into an alternative
stable state. Topological analyses, in turn, may eventually facilitate
characterization of the potential landscape based on past
observations, and real-time estimation of its stability and state
transition probability. Both of these approaches allow modeling
and prediction of major dynamical events without detailed
knowledge of underlying mechanisms, and may prove pivotal to
understanding complex, data-rich biological systems not limited
to microbiomes, but also including, for instance, gene regulatory
networks and animal ecosystems.

METHODS
Human gut microbiome data and preprocessing
The publicly available data that we re-analyzed here were generated by
David et al.32 accessible on the European Nucleotide Archive (ENA) under
the accession number ERP006059, and by Hsiao et al.31 on the NCBI Short
Read Archive (SRA) under the accession number PRJEB6358. The down-
loaded reads were trimmed with V-xtractor version 2.146 a HMM scan
based method of isolating variable regions from 16S rRNA sequences) to
ensure the amplicon sequences could be aligned across consistent
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fractions of the 16S rRNA variable regions. Trimmed reads were then
clustered into OTUs using usearch v9.2.6447 with a minimum cluster size of
two. Representative sequences from each OTU were classified using
mothur v1.36.148 and the RDP reference 16S rRNA sequences v1649.

Prochlorococcus data
Data from Malstrom et al.33 was obtained from the Biological and Chemical
Oceanography Data Management Office (https://www.bco-dmo.org),
accession number 3381.

Mapper
Conceptually, the Mapper algorithm accepts as input a matrix of distances
or dissimilarities between data, and aims to represent the shape of the
distribution of data points in high-dimensional phase space as an
undirected graph. In this graph, vertices represent neighborhoods of
phase space spanned by subsets of adjacent data points, and edges
represent connectivity between neighborhoods. In brief, it does this by
dividing the data into overlapping subsets that are similar according to the
output of at least one filter function that assigns a scalar value to each data
point, performing local clustering on each subset, and representing the
result as an undirected graph, where each vertex represents a local cluster
of data points, and edges between vertices represent at least one shared
data point between clusters.

Distance matrix. We interpreted microbiome relative abundances to be
probability distributions, and thus used the square root of the Jensen-
Shannon divergence as a metric50. However, it is important to note that
any other metric can be used in place of the Jensen-Shannon distance,
such as the Aitchison distance51, calculated from centered10 or isometric12

log-transformed relative abundances.

Filter functions and binning. For the filter functions used by Mapper to bin
data points, we performed principal coordinate analysis (PCoA, also known
as classical multidimensional scaling) in two dimensions on the pairwise
distance matrix, and used the ranked values of principal coordinates (PCo)
1 and 2 as the first and second filter values for Mapper, following Rizvi
et al.28. PCo ranks are an appropriate filter for our purposes, as it assigns
similar filter values to points that are relatively close together in the
original phase space. We wish to note that while PCoA leads to loss of
information, the following local clustering step is performed using subsets
of distances from the original distance matrix, and is thus not affected. The
data points were then binned by overlapping intervals of the two ranked
principal coordinates. For hyperparameters specifying these bins and their
overlaps, see Table 1.

Local clustering. The algorithm first performs hierarchical clustering from
all pairwise distances between data points within a bin of filter values.
Then, it creates a histogram of branch lengths using a predefined number
of bins, and uses the first empty bin in the histogram as a cutoff value,
separating the hierarchical tree into single-linkage clusters. The algorithm
thus finds a separation of length scales within each neighborhood of phase
space represented by a bin of the filter values. We used the default number
of histogram bins, 10, for each data set (Table 1).

Creating the undirected Mapper graph. The final output is produced by
representing each local cluster of data points as a vertex, and drawing an
edge between each pair of vertices that share at least one data point.
When plotting, the size of each vertex represents the number of data
points therein. Layout and visualization of the Mapper graph may be
performed with any graph layout algorithm; we used the Fruchterman-

Reingold force-directed layout algorithm52. It is important to note that the
visualized shape of the Mapper graph depends on the algorithm used, and
may not be deterministic. When performing a Mapper analysis, one should
rely on the connectivity of the graph rather than the overall shape.

Selection of hyperparameters. The Mapper algorithm is relatively new, and
there are currently no standard protocols to optimize the values of the
hyperparameters. For our purposes, it was important that the algorithm
achieved a sufficiently high resolution in partitioning data, but also
adequately represented connections between regions of phase space. We
thus used the following heuristic to set the number of intervals and
percent overlap for each data set.

1. The largest vertex in the resultant Mapper graph should represent
no more than ≈10% of the total number of data points in the set;

2. the number of connected components representing only one data
point should be minimized.

We acknowledge that a heuristic determination of appropriate
hyperparameter values leaves much to be desired; as such, we recommend
future in-depth theoretical explorations of how the Mapper output
depends on the choice of hyperparameters.

Density estimation
We estimated the inverse density for each vertex by calculating the
k-nearest neighbors (kNN) distance53 for each constituent data point i.
We first define the k-neighborhood N(k)i of a point i, to be the set of k

nearest neighbors of i, choosing k equal to 10% of the number of samples
in each data set, rounded to the nearest integer. Then the kNN distance of
point i is defined as:

kNNði; kÞ ¼
P

j2NðkÞi dij
k

(1)

where dij is the distance between points i and j.
For a vertex V representing n points, we define its inverse density as

DinvðVÞ ¼
P

i2VkNNði; kÞ
n2

(2)

The n2 term in the denominator compensates for the differing sizes of
vertices. Finally, we invert the inverse density to obtain the estimated
density:

DðVÞ ¼ 1
Dinv

(3)

State assignment
We then defined states as topological features of the density surrounding
local maxima of D. We designated each vertex with higher D than its
neighbors to be a local maximum of the potential. Connected vertices tied
for maximum D were each assigned to be a local maximum. To
approximate a gradient, we converted the undirected Mapper graph
to a directed graph, with each edge pointing from the vertex with lower D
to the one with higher D. For each non-maximum vertex, we found the
graph distance dg to each local maximum constrained by edge direction.
We defined the state Bx of a maximum Vx as the set of vertices V with
uniquely shortest graph distance to Vx:

V 2 Bx if dgðV; VxÞ<dgðV ; VyÞ (4)

for all y ≠ x and Vy∈M, where M is the set of all local maxima (Fig. 1b).
Vertices equidistant to multiple maxima were defined to be unstable
regions unassigned to any state. Multiple connected maxima were defined
as belonging to the same state. Notably, one data point may be associated
with multiple vertices and states, or an unstable region and at least one
state: we interpreted this to mean that the point is near a saddle point
separating states, and as the ‘true’ coordinates of the saddle point are
unknown, the data point is assigned to all such states and/or an unstable
region with uniform weight.

Calculating the temporal correlation function
Given that a system occupied state Bx at time t, we defined the temporal
correlation to be the probability that it will still (or again) occupy state Bx at

Table 1. Hyperparameters used to generate the Mapper
representation of each data set.

Data set # intervals for (rank
(PCo1), rank(PCo2))

% overlap # bins

Cholera (15, 15) 70 10

Two healthy
adult males

(30, 30) 50 10

Prochlorococcus (20, 20) 60 10
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time t+ τ:

f xðt þ τÞ ¼ 1 if system is associatedwith state Bx at time t þ τ

0 otherwise:

�
(5)

corrxðτÞ ¼ hf xðt þ τÞi (6)

We calculated the correlation function for each state x visited by a subject
during a characteristic period and for all sampled intervals between pairs of
samples of length τ, where the subject was in state Bx in the sample at the
start of the interval. For the cholera data set, we calculated correlation
functions for each state visited by each subject over the disease period. For
the data set of two healthy adult males, we calculated correlation functions for
each state visited by each subject in each healthy period, either before or after
infection. For the Prochlorococcus data set, we calculated correlation functions
for each state at each depth fraction at either site. Where a data point is
associated with multiple states, we weigh the association with each state as
f 0xðtÞ ¼ 1

p f xðtÞ, with p the total number of unique states associated with the
system at time t, with the unassigned/unstable state regarded as a single
distinct state. Notably, this means f 0xðt þ τÞ can have values of 1; 12 ;

1
3 ¼

Rarefaction test
We created random subsets of each data set representing 90%, 50%, and
10% of the original data points, repeating 10 times for each data set and
downsampling ratio. We then created Mapper graphs representing the
rarefied data using the same hyperparameters as for each of the full data
sets. We colored the vertices to indicate the same features as for the full
data sets: for the cholera data set, by fraction of samples belonging to the
diarrhea or recovery phase; for the two healthy adult gut microbiomes
data set, by fraction of samples obtained from each subject; and for the
Prochlorococcus data set, by the mean depth from which samples
originated. We ordered the vertices by feature value and used a
circularized linear layout algorithm, such that vertices with similar feature
values are adjacent. Finally, we used shading to display edge densities.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The main repository for the study can be found on GitHub, at http://github.com/
kellylab/microbial-landscapes. This repository includes all code and data used in this
manuscript.

CODE AVAILABILITY
The GitHub repository referenced above contains all code and data used in this
paper. An open-source implementation of Mapper in R, TDAmapper, was used for
the main analysis and can be found at http://github.com/wkc1986/TDAmapper. This
package was forked from the original implemented by Daniel Müllner which is
maintained by Paul T. Pearson and can be found at https://github.com/paultpearson/
TDAmapper.
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