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A bed nucleus of stria terminalis microcircuit
regulating inflammation-associated modulation
of feeding

Yong Wang® "2, JungMin Kim® ', Matthew B. Schmit!3, Tiffany S. Cho', Caohui Fang' & Haijiang Cai® '*

Loss of appetite or anorexia associated with inflammation impairs quality of life and increases
morbidity in many diseases. However, the exact neural mechanism that mediates
inflammation-associated anorexia is still poorly understood. Here we identified a population
of neurons, marked by the expression of protein kinase C-delta, in the oval region of the bed
nucleus of the stria terminalis (BNST), which are activated by various inflammatory signals.
Silencing of these neurons attenuates the anorexia caused by these inflammatory signals. Our
results demonstrate that these neurons mediate bidirectional control of general feeding
behaviors. These neurons inhibit the lateral hypothalamus-projecting neurons in the ven-
trolateral part of BNST to regulate feeding, receive inputs from the canonical feeding regions
of arcuate nucleus and parabrachial nucleus. Our data therefore define a BNST microcircuit
that might coordinate canonical feeding centers to regulate food intake, which could offer
therapeutic targets for feeding-related diseases such as anorexia and obesity.
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nflammation-associated loss of appetite or anorexia during

acute diseases may help maintain body integrity and modify

immunocompetence  for  pathogen elimination, but
inflammation-associated anorexia during chronic diseases such as
cancer and HIV-infection has a negative impact on recovery and
treatment success, decreases the quality of life and increases
morbidity!=3. This type of anorexia has been well modeled in
animal studies in which feeding suppression was induced by
peripheral administration of pro-inflammatory cytokines such as
interleukin-1p (IL-1p) and stimulants of the release of cytokines
such as lipopolysaccharide (LPS) (for example, refs. 4-8). Prior
studies suggested that the central nervous system is the major
target and mediator of the pro-inflammatory cytokines’ anorexic
effect during the infection or tissue damage that accompany
diseases>*8. However, the exact brain regions and the underlying
neural mechanisms that regulate inflammation-associated anor-
exia remain to be determined.

Peripheral administration of IL-1B, LPS, or other pro-
inflammatory cytokines induces c-Fos expression, a cellular
marker widely used to indicate neural excitation, in various brain
regions especially the arcuate nucleus (ARC), lateral parabrachial
nucleus (LPB), central nucleus of amygdala (CEA), and bed
nucleus of stria terminalis (BNST)?-13, many of which have been
classically associated with the regulation of food intake. However,
except neurons in LPB which have been suggested to play a mild
role in rescuing anorexia induced by LPS!4, neurons in ARC and
CEA tested so far have no effect in regulating inflammation-
associated anorexia. For example, activation of the ARC Agouti-
related protein (AGRP) neurons potently promote feeding but
cannot restore LPS-induced anorexial®. Instead, LPS completely
suppresses AGRP neuron-induced food intake!®. Silencing a
specific subset of CEA neurons blocks anorexia induced by
diverse anorexigenic signals but cannot rescue the anorexia
induced by LPS!7.

Compared to the neurons in ARC, LPB, and CEA, the role of
BNST neurons in feeding is relatively unexplored. Several recent
studies suggested that BNST neurons might play a role in reg-
ulating feeding. Activation of the inhibitory y-aminobutyric acid-
releasing (GABAergic) nerve terminals in BNST projected from
ARC AGRP neurons or somatostatin neurons in the tuberal
nucleus (TN) increases food intake!®-20, In contrast, optogenetic
activation of the pathway from the BNST neurons labeled by
vesicular GABA transporter (VGAT) to the lateral hypothalamus
(LH), a crucial neural substrate for feeding, also induces food
intake?!. Additionally, pharmacological studies which infused
drugs in BNST, as well as anatomical studies also suggested that
neurons in BNST subregions might play specific roles in feeding
regulation during stress or other conditions?2-24, However, which
type of BNST neurons and whether neurons in BNST really
regulate feeding or play a role in inflammation-associated anor-
exia is unknown.

To dissect the BNST neural circuits and identify the BNST
neurons that regulate feeding, we searched the Allen Brain Atlas
(http://mouse.brain-map.org)>> for genetic markers enriched in
subnuclei of BNST. We found that protein kinase C-delta (PKC-
0) is a marker that labels neurons exclusively in the oval region of
BNST (ovBNST), which is a region previously demonstrated to
include neurons activated by LPS or IL-1%10, Here we show that
ovBNST PKC-6 neurons are activated by peripheral administra-
tion of IL-1p and LPS, and chemogenetic silencing of these
neurons can effectively attenuate the inflammation-associated
anorexia. Importantly, our results demonstrate that, besides
inflammation-associated anorexia, these neurons mediate bidir-
ectional control of general feeding. Our experiments also reveal
that these neurons inhibit LH-projecting neurons in ventrolateral
BNST, which antagonize the anorexic effect of activating ovBNST

PKC-§ neurons. Moreover, these neurons receive inputs from the
canonical ARC, LPB, and CEA brain regions of feeding. Thus, our
study identifies a unique BNST microcircuit that might function
as a central hub in integrating the distributed feeding circuits into
a hierarchy of brain structure for feeding regulation.

Results

ovBNST PKC-§ neurons regulate anorexia of IL-1p or LPS.
Firstly, we tested if inflammatory signals could activate specific
type of neurons in BNST by double immunostaining for Fos and
neuronal markers after intraperitoneal (IP) injection of IL-1P or
LPS. Both IL-1p and LPS induced Fos expression preferentially in
the ovBNST PKC-8 positive neurons (Fig. la-d and Supple-
mentary Fig. 1). Notably, the majority (~80%) of the Fos™ neu-
rons activated by IL-1p or LPS in ovBNST are positive for PKC-8
staining (Fig. 1d). We also found that the ovBNST PKC-§ neu-
rons are preferentially activated by IP injection of another
inflammatory cytokine tumor necrosis factor alpha (TNFa), but
not the satiety peptide cholecystokinin (CCK) (Supplementary
Fig. 2). We next investigated whether the activation of ovBNST
PKC-§ neurons is required for inflammation-associated anorexia
induced by IL-1p or LPS. To do this, we stereotaxically injected
Cre-recombinase dependent adeno-associated virus (AAV)
encoding inhibitory (hM4Di) designer receptors exclusively
activated by designer drugs (DREADDs)20 into the ovBNST of
PKC-8-Cre mice?’ bilaterally. After ~4 weeks to allow for virus
expression and mice recovery, we injected the hM4Di ligand
clozapine-N-oxide to silence the ovBNST PKC-§ neurons. 40 min
after CNO or drug injection, we then measured the amount of
food intake in a 20-min feeding session in mice fasted for 24 h
(Fig. le). Sex and IP injection of CNO in animals expressing
mCherry did not affect the amount of food intake in mice when
normalized to their body weight (Supplementary Fig. 3). Brain
slice electrophysiology recordings validated that firing of the
ovBNST PKC-8 neurons expressing hM4Di can be silenced by
CNO (Fig. 1f). We found that chemogenetic silencing of the
ovBNST PKC-§ neurons significantly attenuates the anorexia
induced by IL-1p or LPS (Fig. 1g). These results demonstrate that
ovBNST PKC-8 neurons play an important role in mediating
inflammation-associated anorexia.

Particular physiological properties of BNST neurons give rise
to distinctive discharge patterns and might play important roles
during behavior28-30, We therefore examined the electrophysio-
logical properties of the ovBNST PKC-6 neurons in brain slices.
BNST neurons have been classified into four different types based
on their firing pattern in response to current injections
(Supplementary Fig. 1])?$2°. While all four types of cells are
observed, type III cells with a characteristic delay of firing in
response to suprathreshold depolarizations are most abundant in
ovBNST PKC-§ population (Supplementary Fig. 1K).

Activation of ovBNST PKC-8 neurons suppresses feeding. We
next asked the question whether the ovBNST PKC-§ neurons
regulate general feeding behaviors. To do this, we stereotaxically
injected Cre-dependent AAV encoding ChR23! into the ovBNST
of PKC-6-Cre mice and implanted ferrule fibers above the
ovBNST bilaterally. Photo-stimulation with brief light pulses
reliably induced action potentials in ovBNST PKC-8 neurons at
multiple frequencies (Fig. 2a, b). After a recovery and virus
expression period of ~4 weeks, we coupled the ferrule fibers with
a blue laser (473 nm) and optogenetically activated the ovBNST
PKC-8 neurons of fed mice. We found that optogenetic activation
of the ovBNST PKC-§ neurons strongly suppressed the total
amount of food intake (Fig. 2c and Supplementary Fig. 4a). The
strong feeding inhibition was also observed in mice fasted for 24 h
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Fig. 1 ovBNST PKC-8 neurons regulate the anorexia induced by IL-1p or LPS. a-d Representative histology (a) and quantification (b-d) of Fos-like
immunoreactivity in each ovBNST brain section after IP injection of saline, IL-1B, or LPS. One-way ANOVA with post-hoc Bonferroni t-test (F515 =59.2, p<
0.001, b), unpaired t-test (IL-1p, t;o = 6.74, p<0.001; LPS, t;=7.28, p=0.002, €), n=10 animals injected with saline, 6 animals injected with IL-1p, 3
animals injected with LPS. e Experiment procedure for feeding test after chemogenetic silencing of ovBNST PKC-8 neurons. f Expression of hM4Di in
ovBNST PKC-8 neurons was achieved by stereotaxic injection of AAV-EF1a-FLEX-hM4Di-mCherry in ovBNST (up). Brain slice electrophysiological
recording showed that the firing of ovBNST PKC-8 neurons expressing hM4Di-mCherry can be silenced by CNO (10 pM) (bottom). ac anterior
commissure. g Food intake normalized to the body weight (% BW) in 24-h fasted animals after IP injection of different agents. Two-way ANOVA with
post-hoc Bonferroni t-test showed a significant effect after CNO silencing of the ovBNST PKC-8 neurons. F¢; 30y = 6.34 (IL-1B), Fq18y = 7.11 (LPS), n=4-13
animals (indicated below each group). Data are mean £ s.e.m. Scale bars, 100 um. *p < 0.05, **p < 0.01, ***p < 0.001. Source data are provided as a

separate file

(Fig. 2d and Supplementary Fig. 4b, d). The level of feeding
suppression was dependent on the frequency of the stimulation
(Fig. 2d). Light activation of the ovBNST PKC-§ neurons
increased the latency to approach the food (defined as the time at
which the animal’s nose touches the food and starts eating) and

decreased the number of feeding bouts and the total amount of
time spent on feeding (Fig. 2e-g). Photo-stimulation of ovBNST
PKC-0§ neurons strongly suppressed food intake in both male and
female animals, and we did not observe any significant difference
between male and female animals after virus expression or light
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Fig. 2 Optogenetic activation of ovBNST PKC-8 neurons suppresses feeding. a Stereotaxic injection of Cre-dependent AAV to express ChR2-EYFP or EYFP
in ovBNST PKC-8 neurons. b Brain slice electrophysiological recordings show that ovBNST PKC-8 neurons expressing ChR2 can be activated by light pulses
at different frequencies. Blue dots indicate 2-ms light pulses. ¢, d Food intake was suppressed in both fed (¢) and fasted (d) animals when ovBNST PKC-5
neurons were light activated. Unpaired t-tests, t(12) = 6.74 (¢), t(17) =3.71 (d, 5 Hz), t(18) = 4.63 (d, 10 Hz), t(28) = 6.14, (d, 15 Hz), n =7 (¢) and n =10,
10, and 15 animals for 5 Hz, 10 Hz, and 15 Hz, respectively, in EYFP and ChR2 group (d). e-g The latency to eat (e), bout number (f), and the total feeding
time (g) in fasted animals. Unpaired t-tests, t(18) = 4.47 (e), t(18) =2.23 (f), t(18) = 2.18 (g), n=10 animals in each group. h-j Feeding behavior was
suppressed when mice were in their home cages. Raster plots (i) show that feeding bout duration was decreased in mice expressing ChR2 (green) but not
in mice expressing EYFP (gray) in response to 15 Hz light stimulation (blue). Unpaired t-test, t(33) = 6.40 (j), n=10 and 25 for EYFP and ChR2,
respectively. Data are mean £s.e.m. Scale bars, 200 um. *p < 0.05, **p <0.01, ***p < 0.001. Source data are provided as a separate file

stimulation (Supplementary Fig. 4c). Surprisingly, we did not
observe any significant change in the anxiety levels after light
activation of the ovBNST PKC-6 neurons (Supplementary Fig. 5a,
b). The mobility, determined by the velocity and total distance
traveled, was not affected by the optogenetic activation of the
ovBNST PKC-§ neurons (Supplementary Fig. 5a, b). Light acti-
vation did not produce any conditioned place aversion either
(Supplementary Fig. 5c¢), suggesting activation does not cause
significant discomfort or unpleasantness. We also expressed
hM3Dq in ovBNST PKC-6 neurons and injected CNO to activate
these neurons over an extended time. We found that chemoge-
netic activation of ovBNST PKC-8 neurons also suppresses food
intake in a 2-h feeding session (Supplementary Fig. 4e).

We also tested the feeding when mice were in their home cages,
in which the mice were less anxious. Light was delivered within a
few seconds following the onset of feeding bout. Our results
showed that light activation significantly shortened the average
duration of the feeding bouts in mice expressing ChR2 in
ovBNST PKC-8 neurons, indicating the feeding was also
suppressed in home cages (Fig. 2h-j). Interestingly, although

the feeding behaviors are interrupted by light activation, the
animal goes back to feeding quickly after the light is off,
suggesting brief activation of the ovBNST PKC-§ neurons impairs
neither the feeling of hunger nor the motivation to eat beyond the
period of stimulation.

Silencing of ovBNST PKC-8 neurons increases feeding. To
further determine the role of the ovBNST PKC-§ neurons in
feeding, we performed chemogenetic silencing of these neurons in
PKC-8-Cre mice without IL-1P or LPS treatment. We bilaterally
injected Cre-dependent AAV encoding hM4Di-mCherry into the
ovBNST of PKC-8-Cre mice for silencing while injected Cre-
dependent AAV-mCherry as control. Food intake was measured
~40 min after injecting CNO or saline. We found that chemo-
genetic silencing of the ovBNST PKC-§ neurons significantly
increased the total amount of food intake in both fed and fasted
mice (Fig. 3a, b and Supplementary Fig. 6b). Interestingly, che-
mogenetic silencing of ovBNST PKC-8 neurons significantly
increased the bout duration and the total feeding time but not the
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Fig. 3 Chemogenetic silencing of ovBNST PKC-8 neurons increases feeding. a, b Food intake was increased when ovBNST PKC-8 neurons were
chemogenetically silenced in fed (a) and fasted (b) animals. Two-way ANOVA with post-hoc Bonferroni's t test, F 5y =9.49, n= 8, 12, 16, and 16 animals
for mCherry-Saline, mCherry-CNO, hM4Di-saline, and hM4Di-CNO, respectively. c-f The latency to eat (¢), bout duration (d), bout number (e), and total
time that the animals spent in feeding (f). Unpaired t-test, t(30) = 0.48 (¢), t(30) =3.35 (d), t(30) = 0.71 (e), t(30) = 3.24 (f, total feeding time). n=16
in each group. Data are mean +s.e.m. **p <0.01, ***p < 0.001. Source data are provided as a separate file

bout number (Fig. 3c-f). Silencing ovBNST PKC-8§ neurons
increased the amount of food intake in both male and female
mice, and we did not observe any significant difference between
male and female animals (Supplementary Fig. 6a). Chemogenetic
silencing of the ovBNST PKC-6 neurons did not affect the level of
anxiety or mobility significantly (Supplementary Fig. 7).

Collectively, these results after activation or silencing of
ovBNST PKC-8 neurons suggest that these neurons can not only
mediate inflammation-associated anorexia but also bidirectionally
modulate feeding behaviors in general.

ovBNST PKC-8 neurons inhibit neurons in vIBNST. To
understand how the ovBNST PKC-§ neurons regulate feeding, we
searched for their downstream targets. After expressing EYFP in
ovBNST PKC-0 neurons, the strongest fluorescent nerve term-
inals were all in BNST subregions, including the anterior lateral
BNST and part of anterior medial BNST, both dorsal and ventral
to the anterior commissure, and the fusiform BNST (Fig. 4a),
neurons in which are mostly GABAergic inhibitory neurons3%33.
Because all these regions are ventral to the ovBNST and mostly in
the lateral part of BNST, we use vIBNST to describe these BNST
subregions that are innervated by ovBNST PKC-8 neurons. To
test whether neurons in these vIBNST regions receive mono-
synaptic inputs from ovBNST PKC-§ neurons, we expressed
ChR2-EYFP in ovBNST PKC-§ neurons and performed whole-
cell patch clamp recordings on vIBNST neurons in brain slices
(Fig. 4b; inset). We found that neurons in the vVIBNST region with
EYFP fluorescent nerve terminals displayed robust inhibitory
postsynaptic currents (IPSCs) in response to light activation of

the ovBNST PKC-8 neurons. The IPSCs can be blocked by the
GABA, receptor antagonist picrotoxin (Fig. 4b). The latency of
the IPSC is less than 5ms (Fig. 4c and Supplementary Fig. 8),
suggesting that the connection is monosynaptic. There is no
significant difference of the IPSC latency and amplitude between
male and female animals (Supplementary Fig. 8b, ¢). We did not
observe any excitatory postsynaptic current (EPSC) in vIBNST
neurons when ovBNST PKC-0 neurons were light activated,
which is consistent with previous studies showing that almost all
the neurons in the anterior BNST are GABAergic inhibitory
neurons32-33, Interestingly, whereas the TPSC latency recorded in
the region dorsal to anterior commissure was not different from
that in the region ventral to anterior commissure, the IPSC
amplitude recorded in the region ventral to anterior commissure
is significantly larger than that in the region dorsal to anterior
commissure (Fig. 4c), suggesting the ovBNST PKC-§ neurons
have a stronger inhibition on the VIBNST neurons in the region
ventral to anterior commissure. The firing of vIBNST neurons
induced by current injection can be suppressed by light activation
of the ovBNST PKC-§ neurons, and the suppression can be
blocked by picrotoxin (Fig. 4d). Accordingly, these results
demonstrated that ovBNST PKC-8 neurons send monosynaptic
inhibition to vIBNST neurons.

Activation of the neurons in VIBNST increases food intake. If
ovBNST PKC-§ neurons regulate feeding through their inhibitory
connections on VIBNST neurons, activation of vVIBNST neurons
should increase feeding, an effect opposite to the activation of
ovBNST PKC-8 neurons. Because vIBNST is close to the ovBNST
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t(10) = 3.68 (g), t(10) = 2.53 (h). n = 6 animals in each group. Data are mean  s.e.m. Scale bars, 200 um. *p < 0.05, **p < 0.01. Source data are provided

as a separate file

region, we used a Cre-out strategy to express ChR2 in vIBNST
neurons while excluding ovBNST PKC-§ neurons. We co-injected
AAV-Flp and AAV-FlpON/CreOFF_.ChR234 into the VIBNST of
PKC-8-Cre mice bilaterally (Fig. 4e) to express ChR2 in neurons
that are in the presence of Flp recombinase and in the absence of
Cre. We found no PKC-8 neuron in ovBNST expressing ChR2-
EYFP (Fig. 4f). Interestingly, even EYFP positive fibers were
rarely observed in ovBNST when ChR2-EYFP was expressed in
vIBNST, suggesting that vVIBNST neurons send very few projec-
tions back to the ovBNST. Optogenetic activation of the vIBNST
neurons significantly increased the amount of food intake in both
fed and fasted mice (Fig. 4g, h), an opposite effect to the acti-
vation of ovBNST PKC-6 neurons. Thus, these results support the
idea that ovBNST PKC-§ neurons might regulate feeding through
their inhibitory connections with vVIBNST neurons.

VIBNST neurons project to LH to promote feeding. When we
expressed EYFP in vIBNST PKC-0~ neurons, we observed
strong fluorescent terminals in LH (Supplementary Fig. 9). To
test whether the vIBNST neurons project to LH to regulate food
intake, we expressed ChR2 in vIBNST neurons using the same
Cre-out strategy and implanted ferrule fibers above LH bilat-
erally (Fig. 5a). Optogenetic activation of the vVIBNST neuron
projections in LH significantly increased food intake in both fed
and fasted mice (Fig. 5b, c). The level of increase in food intake
is dependent on the amount of the light delivered, probably due
to the fact that light from the small ferrule fiber (200 um dia-
meter) cannot effectively cover the large area of the nerve
terminals in LH (larger than 1 mm in diameter, Supplementary
Fig. 9). We did not observe any significant change in anxiety
levels in elevated plus maze or open field tests but a slight
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increase in the velocity and distance traveled in the open field
test upon photoactivation of the vIBNST-LH pathway (Sup-
plementary Fig. 10). Furthermore, chemogenetic silencing of
the LH-projecting vIBNST neurons suppresses food intake
(Supplementary Fig. 11). These results are consistent with the
previous study that showed BNST VGAT neurons project to LH
to regulate feeding?!.

ovBNST PKC-8 neurons innervate LH-projecting vIBNST
neurons. To determine whether ovBNST PKC-8 neurons inhibit
LH-projecting vIBNST neurons, we injected retrograde cholera
toxin subunit B (CTB, conjugated with Alexa-555) in LH and
Cre-dependent ChR2 in ovBNST of the PKC-§-Cre mice. Then
we performed whole-cell patch clamp recording on these CTB
back-labeled vIBNST neurons (Supplementary Fig. 12). We found
these cells also show monosynaptic IPSCs in response to light
activation of the ovBNST PKC-6 neurons (Supplementary
Fig. 12¢).

To further determine if ovBNST PKC-8 neurons send
monosynaptic inputs to LH-projecting vIBNST neurons, we used
a Cre-dependent monosynaptic retrograde rabies virus
system®>3° to label the neurons that are upstream to LH-
projecting vVIBNST neurons. We injected AAVretro-Cre3” in LH
and Cre-dependent AAV-hSyn-FLEX-TVA-P2A-eGFP-2A-0G3¢
into the vIBNST of wild-type mice unilaterally (Fig. 5d, e), thus
vIBNST neurons that project to LH would be labeled by eGFP and
expressing TVA, the receptor for rabies virus. Then we injected
G-deleted rabies virus encoding dsRed in vIBNST. In this way,
neurons that send monosynaptic inputs to LH-projecting vVIBNST
neurons would be labeled by dsRed. We found that the LH-
projecting BNST neurons (expressing eGFP) were mostly located
in vIBNST (both dorsal and ventral to ac), but very few (4.8 +
0.5%, mean ts.e.m.) were in ovBNST and positive for PKC-8
staining (Fig. 5f). Approximately 40% of the PKC-§ neurons were
expressing dsRed and ~80% of the dsRed neurons in ovBNST
were positive for PKC-§ staining (Fig. 5g), suggesting the LH-
projecting vIBNST neurons receive inputs predominantly from
ovBNST PKC-6 neurons. These findings further confirmed that
ovBNST PKC-0 neurons send monosynaptic inputs to LH-
projecting VIBNST neurons.

LH-projecting vVIBNST neurons antagonize ovBNST PKC-§
neurons. The connection from ovBNST PKC-§ neurons to
vIBNST neurons, and subsequent projection of vIBNST neurons
to LH suggest that these two circuits might function in a row in
feeding regulation. We therefore tested whether the LH-
projecting vIBNST neurons can antagonize the feeding suppres-
sion induced by ovBNST PKC-§ neuron activation. We bilaterally
injected AAVretro-Cre in LH and Cre-dependent AAV-ChR2 in
both vIBNST and ovBNST regions of the PKC-8-Cre mice
(Fig. 5h), and implanted ferrule fibers above ovBNST. Thus, both
ovBNST PKC-8 neurons and LH-projecting vIBNST neurons
would express ChR2 and be light activated. In the control group,
the mice were injected with AAVretro-tdTomato in LH and Cre-
dependent ChR2 in ovBNST and vIBNST. Hence, only ovBNST
PKC-6 neurons would express ChR2 and be light activated in the
control group animals. Compared to the food intake in the
control group, co-activation of the ovBNST PKC-§ neurons and
LH-projecting VIBNST neurons strongly increased the amount of
food intake in both fed and fasted animals (Fig. 5i, j). These
results demonstrated that the LH-projecting vVIBNST neurons are
downstream to the ovBNST PKC-8 neurons and can overcome
the feeding suppression induced by ovBNST PKC-§ neuron
activation.

ovBNST PKC-§ neurons receive inputs from ARC, LPB, and
CEA. To determine the upstream inputs that might regulate
ovBNST PKC-§ neurons for feeding, we used the Cre-dependent
monosynaptic retrograde rabies system to screen for the brain
regions that send inputs to ovBNST PKC-§ neurons (Fig. 6a, b).
Multiple brain regions were identified expressing dsRed, the
marker for the monosynaptic upstream neurons (Fig. 6c).
Importantly, we found dsRed expressed in the ARC, TN, LPB,
and CEA neurons, whose role in feeding regulation have been
well studied®3-4%. Immunostaining with antibodies against AGRP
showed that the dsRed cells in ARC were located in the region
positive for AGRP staining (Fig. 6d). However, since the AGRP
antibody did not stain cell bodies very well, we cannot make a
robust quantification of the percent of dsRed cells in the AGRP
population. Around 70% of the dsRed labeled cells in LPB are
positive for CGRP staining (Fig. 6e, g). We also found that the
dsRed cells in LPB are overlapping with the cells activated by IL-
1B (Supplementary Fig. 13a, b), suggesting that the LPB-BNST
pathway might regulate inflammation-associated anorexia!2. CEA
is a brain region primarily composed of GABAergic inhibitory
neurons*! which also contain PKC-§ neurons that suppress
feeding when activated!”. Interestingly, most of the dsRed cells in
CEA are negative for PKC-0 immuno-staining (Fig. 6f, g). This is
consistent with previous studies that showed silencing of CEA
PKC-8 negative neurons suppresses feeding!” while activation
might increase feeding®2. In consistent with a recent study that
showed TN neurons project to BNST to regulate feeding!$, dsRed
cells were also observed in TN region (Supplementary Fig. 13c).

Altogether, our results demonstrated that ovBNST PKC-6
neurons play an important role in regulating inflammation-
associated anorexia, mediate bidirectional control of general
feeding. Importantly, the microcircuit from ovBNST PKC-8
neurons to LH-projecting VIBNST neurons might play a central
role in feeding regulation by receiving monosynaptic inputs from
ARC neurons, LPB CGRP neurons, CEA PKC-§ negative
neurons, and other brain regions, and then project to LH to
control feeding (Fig. 6h).

Discussion

The BNST is a heterogeneous brain region with complex cell
types and functions, forming diverse connections with many
brain regions including those that regulate feeding and energy
balance®>. However, due to its well-established role in sustained
fear states, studies on the function of BNST neurons are mostly
focused on stress, anxiety, and other emotions**-46. Using a
genetic marker that labels a specific population of the ovBNST
neurons, we discovered a previously undetermined role of BNST
neurons in regulating food intake in general and inflammation-
associated anorexia in particular.

The BNST microcircuit we identified here might play an
important role in coordinating the canonical feeding circuits to
regulate food intake. Feeding is a complex behavior comprised of
a series of steps including food seeking, initiation, consumption,
and termination that are coordinated by neurons distributed
across many distinct brain regions*%47->0, which have been
recently summarized as three pillars centered on the three iso-
lated brain region of ARC, LH, and LPB3%. Although some
connections of these brain regions have been described, for
example, ARC AGRP neurons project to LH and LPB to regulate
feeding38, how neurons in these canonical circuits communicate
with each other and coordinate to regulate the complex feeding
behavior is still poorly understood.

Recent studies using optogenetics showed that activation of the
axon terminals in BNST projected from the GABAergic AGRP
neuron in ARC or somatostatin neurons in TN induces feeding
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but activation of the projections from GABAergic BNST neurons
to LH also promotes feeding!®1%21. These apparently paradoxical
results suggested multiple levels of inhibition/disinhibition in the
BNST microcircuits. Our finding that ovBNST PKC-§ neurons
receive inputs from ARC/TN and inhibit LH-projecting vIBNST
neurons for feeding might explain this paradox. However,

whether the ovBNST PKC-§ neurons mediate the feeding induced
by neurons in ARC or TN need further experiment to determine.

Our finding that ovBNST PKC-6 neurons receive inputs from
LPB CGRP neurons suggests that this pathway might also reg-
ulate feeding in conditions of anorexia, which is consistent with
previous studies that show activation of LPB CGRP neurons
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suppresses feeding!214. It has been demonstrated that LPB CGRP
neurons send excitatory projections to CEA PKC-§ neurons,
which suppress feeding by inhibiting the GABAergic CEA PKC-0
negative neurons!’. This is also consistent with our result that
CEA PKC-8 negative neuron is the dominant subpopulation in
CEA innervating ovBNST PKC-8 neurons.

Thus, the BNST microcircuit we identified here not only
provides a connection between the three pillars, but also suggests
a mechanism that integrates the three pillar circuits for feeding
regulation (Fig. 6h). How the different nodes of this circuits
structure coordinate to regulate feeding and their dynamics
during the complex behaviors of feeding will be exciting areas for
future research. It should be noted that the BNST neural circuits
for feeding might be more complicated than this scheme. Both
ovBNST PKC-§ neurons and vIBNST neurons receive diverse
inputs and project to various brain regions. Whether these
pathways also regulate feeding remains to be determined.
Moreover, BNST and CEA share many similar anatomical con-
nections and functions*3. CEA PKC-8 neurons also suppress food
intake when activated and send inhibitory projections to
vIBNST!7. Future studies will have to determine whether the CEA
PKC-8 neurons and ovBNST PKC-§ neurons are synergistic or
parallel and redundant in feeding regulation.

Although numerous studies have suggested that the neural
circuits for feeding might play a role in regulating inflammation-
associated anorexial =1, the exact brain region and type of
neurons responsible for initiating the anorexia are still unclear.
Intra-4th ventricle delivery of the glucagon-like peptide-1 (GLP-
1) antagonist or metabotropic glutamate antagonist attenuates the
anorexia after LPS treatment®2>3, indicating that neurons in the
brain stem might regulate inflammation-associate anorexia.
Indeed, chemogenetic silencing of LPB CGRP neurons can par-
tially prevent the LPS-induced anorexial# and continuous inac-
tivation of the CGRP neurons prevents cancer-induced anorexia,
a chronic condition associated with inflammatory processes!2.
Disruption of serotonin receptor or inducible nitric oxide syn-
thase by drug infusion also attenuates IL-13 or LPS-induced
anorexia®#~>%, but the exact responsible brain region is unknown.
Peripheral or central administration of IL-13 or LPS induces c-
Fos expression in many brain regions involved in feeding and
energy homeostasis, including brain stem LPB, CEA, BNST, ARC,
and paraventricular hypothalamus (PVN), but reduces c-Fos
expression in LH neurons (for example, refs. 9-13). Surprisingly,
very few of these brain regions have been demonstrated to reg-
ulate inflammation-associated anorexia. Rather, many studies
suggested a negative role of these brain regions. Lesion of the
ARC fails to reverse the anorexia induced by IL-1p!3. Activation
of ARC AGRP neurons potently induces feeding but cannot
restore LPS-induced anorexial®. Instead, LPS completely sup-
presses AGRP neuron-induced food intake!®. Silencing the CEA
PKC-8 neurons restores the feeding suppression induced by
satiety or bitter tastants but has no effect on LPS-induced anor-
exial”. Thus, our finding that ovBNST PKC-§ neurons are pre-
ferentially activated by IL-13 or LPS and silencing of these
neurons significantly attenuates the anorexia induced by IL-1p or
LPS is important in identifying a unique brain region and a
specific population of neurons that can mediate inflammation-
associated anorexia. It should be noted that our c-Fos mapping
shows only ~20% of the PKC-8 neurons are activated by IL-1p or
LPS. This could be due to the low sensitivity of c-Fos expression
in detecting activated neurons, or that some ovBNST PKC-8
neurons may play a different role. However, the diverse brain
regions that we identified to be upstream to the ovBNST PKC-6
neurons and the downstream LH-projecting vIBNST neurons
further offer insights to determine the brain regions responsible
for inflammation-associated anorexia. Future studies to examine

the role of these neurons in inflammation-associated anorexia are
therefore warranted.

Together, our study defines a microcircuit within BNST that
plays an important role in regulating inflammation-associated
anorexia and feeding behaviors in general. Specific neurons and
small neural circuits in the BNST, therefore could serve as
potential therapeutic targets for inflammation-associated anor-
exia and other feeding-related diseases such as eating disorders
and obesity.

Methods

Mice. To ensure that the mice we used in this project have a consistent genetic
background, we crossed the PKC-§-Cre mice with the wild-type C57BL/6 mice
from the Charles River Laboratory (a background used in our previous study'?) for
at least 5-6 generations. The genotype of transgenic PKC-8-Cre mice offspring is
identified by PCR on genomic tail DNA. Both wild-type and PKC-8-Cre offspring
were used in this study. Survival surgery was performed when mice are 2-3 months
old and behavioral tests were performed when mice are 3-5 months old. All mice
were housed on a 12-h light (7 am)/dark (7 pm) cycle with ad libitum access to
water and rodent chow unless placed on a food restriction schedule for fasted
feeding experiments. All behavioral experiments or tissue collection for ex vivo
slice electrophysiology were performed during the light cycle. Because we did not
observe any difference between male and female mice in our experiments (e.g.,
Supplementary Figs. 2, 3, 5, and 7b, ¢), unless indicated, we usually analyzed the
results by combining approximately the same number of male and female mice
throughout the study.

All animal care and experimental procedures complied with all relevant ethical
regulations, were strictly conducted according to the guidelines of US National
Institutes of Health for animal research and were approved by the Institutional
Animal Care and Use Committee (IACUC) at the University of Arizona.

Virus and tracer. AAV2-EF1a-DIO-EYFP-WPRE-pA, AAV2-EFla-DIO-hChR2
(H134R)-EYFP-WPRE-pA, AAV5-EF1a-mCherry-IRES-Flpo-WPRE, and AAV5-
hSyn-CreOFF/FlpON-hChR2(H134R)-EYFP-WPRE were generated by Dr. Karl
Deisseroth’s lab at Stanford University. AAV5-hSyn-DIO-mcherry and AAV5-
hSyn-DIO-hM4Di-mCherry were generated by Dr. Bryan Roth’s lab at the Uni-
versity of North Carolina (UNC). AAV2retro-Cre and AAV2retro-tdTomato were
generated by Dr. Ed Boyden’s lab at MIT. All these viral constructs were deposited
and packaged into viral vectors in the UNC Viral Vector Core or Addgene. All the
AAV and AAV2retro viruses had titers of 1-6 x 1012 genome copies per ml.
Construct validity and correct targeting to the brain nucleus of interest are con-
firmed through post-mortem processing of brain tissue sections in multiple sets of
mice or electrophysiological recordings on live brain slices. Viruses were usually
injected in mice at 2-3 months old. With stereotaxic injection, the viruses were
usually expressed in more than 90% of the ovBNST PKC-8 neurons. Behavioral
experiments were performed 4-8 weeks after virus injection. To minimize variation
in environmental differences across days, mice behaviors, etc., the control virus and
experimental virus surgery were performed in the same time window by the same
investigator.

For rabies virus tracing, AAV1-hSyn-FLEX-TVA-P2A-eGFP-2A-0G virus and
EnvA G-deleted Rabies-dsRed virus were generated by Dr. Edward Callaway’s lab
and produced at the Gene Transfer, Targeting and Therapeutics Facility of the Salk
Institute for Biological Studies in La Jolla. EnvA G-deleted Rabies-dsRed was
injected 3 weeks after the injection of AAV1-hSyn-FLEX-TVA-P2A-eGFP-2A-0G
virus at the same coordinates (see “Surgery” below).

Cholera Toxin Subunit B (CTB 555, Alexa Fluor™ 555 Conjugate, Invitrogen,
c34776) was used as a retrograde tracer to fluorescently label LH-projecting BNST
neurons during ex vivo slice electrophysiology recordings. CTB 555 was diluted to
0.1% (w/v) in sterile phosphate-buffered saline (PBS), aliquoted and stored at
—20 °C before using.

Stereotaxic animal surgery. All mouse survival surgeries were performed using
aseptic techniques. Briefly, mice 2-3 months old were deeply anesthetized with 5%
isoflurane in oxygen and kept at 1-1.5% isoflurane during surgery. Surgery was
performed with a stereotaxic frame (Model 1900 Stereotaxic Alignment System,
Kopf Instruments). An incision was made down the midline of the scalp and a
craniotomy was performed above the target regions. Viruses or the fluorescent
tracer CTB 555 were microinfused through a pulled-glass micropipette with
20-50 um tip outer diameter connected with a Nanoliter Injector (Nanoliter 2010,
World Precision Instruments) at a rate of 20-50 nl min~!. After injection, the
micropipette was left in place for 5min to allow for diffusion of the liquid before
the pipette was slowly withdrawn. Injection volumes into the ovBNST, vIBNST,
and LH were 200, 150, and 150 nl, respectively. Virus or tracer was injected
bilaterally for behavioral studies and slice electrophysiology. Animal for rabies
virus tracing experiments received injections unilaterally. Injection coordinates (in
mm) relative to midline and bregma: ovBNST (+1.10, 4+-0.15, —4.30), VIBNST
(+1.10, +0.15, —4.70), LH (+1.10, —1.40, —4.90). For behavioral tests, optical
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ferrule fibers were implanted bilaterally ~0.5 mm above the injection coordinates.
After ferrule fiber implantation, dental cement (C&B Metabond) was used to
secure the fiber to the skull. For postoperative care, mice were injected intraper-
itoneally with ketoprofen (5 mg/kg) daily for 3 days. At least 4 weeks post surgery
were allowed for mouse recovery and viral expression before the behavioral assays.

Pharmacology. Clozapine-N-oxide (CNO) (Enzo Life Science-Biomol, BML-
NS105-0005) was freshly dissolved in injection saline (0.9% NaCl) to a con-
centration of 1 mg per ml and intraperitoneally injected at 5 mg per kg for hM4Di
silencing. The 1 mg per ml CNO was further dissolved to 0.1 mg per ml and
injected at 0.5 mg per kg for hM3Dq activation. Other compounds used for
intraperitoneal injection were IL-1p (5 pg per kg, recombinant human interleukin-
1B, BD Biosciences, No. 554602), LPS (0.2 mg per kg®°, Sigma, L4516-1MG), TNFa
(100 pg per kg*’, BD Biosciences, No. 554618), CCK (5 pg per kg!”, Tocris, #1166).
IL-1pB, LPS, TNFa, and CCK were freshly dissolved in saline to concentration of
2.5 ug per ml, 0.1 mg per ml, 20 pg per ml, 0.1 pg per ml, respectively. LiCl (150 mg
per kg7, Sigma) was prepared in 150 mM with dH,O. Behavioral tests were usually
performed 40 min after CNO injection and 50-60 min after the injection of IL-1f
or LPS. Saline was injected as vehicle control.

In vivo optogenetics. Blue laser (Shanghai DreamLaser: 473 nm, 100 mW) was
used to deliver light stimulation. An Accupulser Signal Generator (World Precision
Instruments, SYS-A310) was used to control the frequency and pulse width of the
laser light. Light was delivered to the brain through an optic fiber (200 um dia-
meter, NA 0.22, Doric Lenses) connected with the implanted ferrule fiber by a
zirconium sleeve. The light power in the brain regions 0.5 mm below the fiber tip
was calibrated as previously described®®. The calibrated light power density (0.5
mm below the fiber tip) used in light activation experiment was ~5 mW per mm?.
5, 10, 15, and 25 Hz, 10-ms (pulse width) light pulse trains were used in different
optogenetic activation experiments.

Feeding assays. One day before the first feeding test, mice were transferred into an
empty testing cage in the behavioral testing room to habituate for at least 20 min.
For the 24-h fasted feeding test, mice were food-deprived, with water provided ad
libitum, 1 day before test. Before the experiment, mice were briefly anesthetized
with isoflurane and coupled with optic fibers. At least 25 min after recovery in the
same behavioral testing room, mice were introduced into a clean empty testing cage
with a pre-weighed regular food pellet, and allowed to feed for 20 min. The body
weight of the mice before test, weight of food pellet before and after test, including
the food debris left in the cage floor after test, were measured to calculate the net
food intake. For the fed feeding test, mice were not food deprived before testing,
and allowed to feed for 30 min. Unless indicated, all the feeding durations are 20
min for fasted state and 30 min for fed states. For optogenetic experiments, the
light was delivered just after the mice were introduced into the testing cage. After
each test, mice were returned to home cage with ad libitum access to water and
rodent chow. For the home cage feeding test, mice were food deprived for 24 h. A
single food pellet was placed in the home cage at the beginning of the test and the
animal was allowed to eat for 10 min. Activation light (473 nm) was triggered 1-2's
after each feeding behavior began. 15 Hz, 10-ms light pulses were delivered for 10 s
or stopped 1-2 s after the cessation of each feeding bout. The feeding behavior was
videotaped and manually analyzed with a MATLAB based in-house behavioral
annotation script. For pharmacogenetic experiments, CNO or vehicle was injected
40 min before the feeding test. For experiments that require injection of CNO or
vehicle multiple times, CNO or vehicle were counterbalanced and at least 3 days
were allowed between the injections. All feeding tests were performed between
2pm and 7 pm.

Elevated plus maze. A standard elevated plus maze (40 cm above the floor) with
two opposing open arms (30 x 5 x 15 cm) and two opposing closed arms (30 x 5 x
15 cm) was used to measure anxiety level. Mice were placed into the center of the
elevated plus maze and their position was tracked with Ethovision offline. For
optogenetic tests, mice were allowed to explore during a 6-min session. The 6 min
session was divided into three 2-min periods: one without any light stimulation,
one with light stimulation (473 nm, 10 ms pulse, 15 Hz) and a final one without
stimulation. All behaviors were videotaped and analyzed offline with Ethovision
(XT 10.0, Noldus Information Technology).

Open field. A white square box (50 x 50 x 30 cm, a 25 x 25 cm square center was
defined as “center” in analysis) was used as open field box. Mice were placed
individually in the center of the box, and their behavior was tracked for 9 min in
optogenetic tests with 3 min of light stimulation (473 nm, 10 ms pulse, 15 Hz)
applied 3 min after the start. All the behaviors were videotaped and analyzed offline
with Ethovision.

Conditioned place preference test. The conditioned place preference test was
performed with a three-chamber system (40 x 25 x 15 cm), in which the walls of
chamber A and chamber B differ in appearance and texture, while the center
chamber is a neutral enclosure. Mice were allowed to explore all three chambers for

10 min on day 1 for preconditioning. On conditioning trials, mice were restricted
in one side of the chamber for 10 min with continuous light stimulation. Then they
were restricted to the other side for 10 min without light stimulation. Conditioning
trials occurred for 2 days on days 2 and 3. On day 4 mice were allowed to explore
all three chambers for 10 min. Their behavior was recorded and analyzed offline
with Ethovision.

Immunohistochemistry and histology. All mice used for behavioral tests and
anatomical experiments were deeply anesthetized with isoflurane and ketamine/
xylazine, then perfused and checked for virus expression and optical fiber posi-
tioning. For immunofluorescent staining, mice were transcardially perfused with
20-ml PBS followed by 20-ml of 4% paraformaldehyde in PBS. Brains were
removed and post-fixed in 4% paraformaldehyde overnight before being rinsed
twice with PBS. The brains were sectioned with a vibratome (Leica, VT1000S) at
45 pum thickness. Sections were stained with primary antibody at 4 °C overnight, in
a blocking solution containing 5% donkey serum and 0.5% Triton X-100. After 3 x
10 min wash in PBS, standard Alexa Fluor secondary antibodies (Jackson Immuno
Research Inc., 1:500) were added at room temperature for 1-2 h. Sections were then
washed 3 x 10 min in PBS and mounted on glass slides and coverslipped using
Vectashield Fluo Gel (H1500 with DAPI or H1000 without DAPI) and viewed
under a ZEISS AxioZoom V16 Fluorescent Microscope with Apotome 2 Structured
Ilumination Module for optical sectioning. Primary antibodies used: rabbit anti-
PKC-6 (Abcam, ab182126, 1:1000), goat anti-CGRP (Abcam, ab36001, 1:200),
rabbit anti-AGRP (Phoenix Pharmaceuticals, Inc., No. 01765-3, 1:200), and goat
anti-c-Fos (Santa Cruz Biotech, sc-52-G, 1:500).

PKC-8 and c-Fos staining analysis: Mice were perfused 75-90 min after the
injection of IL-1pB or LPS and brains were sectioned, stained with anti-PKC-8 and
anti-c-Fos, and imaged with the procedure described above. Typically, 3-5 brain
sections that include anterior, middle, and posterior ovBNST regions were analyzed
and averaged per animal. The number of brains was indicated in the legends of
individual figures. Florescence-images for colocalization and quantification were
performed with the cell counter plug-in in FIJI (Image]). Cells were scored as either
PKC-8+ only, c-Fos+ only, PKC-8+, and c-Fos+.

EnvA G-deleted-dsRed Rabies cell counting: 21 days after the injection of AAV1-
hSyn-FLEX-TVA-P2A-eGFP-2A-0G and 5-6 days after EnvA G-deleted Rabies-
dsRed injection, mice were perfused, and brains were sectioned, immunostained
and mounted, and imaged as described above. Brain slices were immunostained
with anti-PKC-6 (in BNST and CEA), anti-AGRP (in ARC), and anti-CGRP (in
LPB) antibodies. Each dsRed-+ cell was assigned to a specific anatomical structure
by using the Mouse Brain in Stereotaxic Coordinates (coronal plates 20-80)%°. The
number of fluorescent cells were counted using the cell counter plug-in in FIJI
(ImageJ).

Electrophysiological slice recordings. Mouse brain slice electrophysiology
recording was performed as described!”. In brief, mouse brain coronal sections
were sectioned at 250 um thickness with a vibratome (Leica, VT1000S) on ice,
using the artificial cerebrospinal fluid (ACSF) containing 126 mM NaCl, 1.6 mM
KCl, 1.2 mM NaH,PO,, 1.2 mM MgCl,, 2.4 mM CaCl,, 18 mM NaHCO;, 11 mM
glucose (oxygenated with carbogen (95% O, balanced with CO,) for at least 15 min
before use). The brain sections after cutting were immediately transferred to
NMDG-HEPES recovery solution (93 mM NMDG, 2.5 mM KCl, 1.2 mM
NaH,PO,, 30 mM NaHCOs, 20 mM HEPES, 25 mM Glucose, 5 mM sodium
ascorbate, 2 mM thiourea, 3 mM sodium pyruvate, 10 mM MgSOy, 0.5 mM CaCl,,
300-310 mOsm, titrated with 10 N HCI to adjust pH to 7.3-7.4) for recovery,

15 min at 32-34 °C. Brain slices were then transferred to ACSF at room tem-
perature and recordings were performed 1h later in a rig equipped with a fluor-
escence microscope (Olympus BX51), MultiClamp 700B and Digidata 1550A1
(Molecular Devices). The patch pipettes with a resistance of 5-10 MQ were pulled
with P-97 Sutter micropipette puller and filled with an intracellular solution

(135 mM potassium gluconate, 5 mM EGTA, 0.5 mM CaCl,, 2 mM MgCl,, 10 mM
HEPES, 2 mM MgATP, and 0.1 mM GTP, pH 7.3-7.4, 290-300 mOsm). Recording
data were sampled at 10 kHz, filtered at 3 kHz and analyzed with pCLAMP10.
Classification of BNST neurons based on their firing pattern in response to the
current injections was described as before?®2%. For the optogenetic stimulation,
either a laser (Shanghai DreamLaser, 473 nm, 50 mW) or a Blue LED light source
(Doric Lenses) was used to deliver light pulses (0.1-5mW per mm? at the tip).
2 ms light pulses were used to trigger action potentials in cells expressing ChR2 and
induce IPSC in cells postsynaptic to ChR2-expressing cells. To match the ovBNST
PKC-6 neurons manipulated in the behavioral experiments, the PKC-8 neuron
electrophysiological properties were characterized in ovBNST neurons that show
no-delay action potentials or ChR2-currents in response to light pulses after virus
expression of ChR2.

Quantification and statistical analysis. Data represent mean + s.e.m or median as
indicated. Unpaired Student’s ¢-test was used to compare two groups and one-way
ANOVA with post-hoc Bonferroni’s t-test was used to compare three or more
groups with one variable. Two-way ANOVA was used for data with more than one
independent variables. A p value smaller than 0.05 was considered significant. Data
were analyzed with GraphPad Prism Software.
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Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

The source data for each figure are provided as a Source Data file as indicated in figure
legends. All the data that support the findings of this study are available from the
corresponding author upon reasonable request.
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