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The complexes formed by BCL10, MALT1 and members of the family of CARMA proteins have
recently been the focus of much attention because they represent a key mechanism for regulating
activation of the transcription factor NF-jB. Here, we report the functional characterization of a
novel isoform of BCL10 in the trout Oncorhynchus mykiss, which we named tBCL10. tBCL10
dimerizes, binds to components of the CBM complex and forms cytoplasmic filaments.
Functionally, tBCL10 activates NF-jB transcription factor and is inhibited by the deubiquitinating
enzyme A20. Finally, depletion experiments indicate that tBCL10 can functionally replace the human
protein. This work demonstrates the evolutionary conservation of the mechanism of NF-jB
activation through the CBM complex, and indicates that the rainbow trout O. mykiss can serve as
a model organism to study this pathway.
� 2015 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The NF-jB family of transcription factors is a group of evolutio-
narily conserved proteins that are important regulators of the
immune system function, controlling the expression of numerous
proteins involved in innate and adaptive immunity [1,2]. NF-jB
also transcribes genes that exert a positive effect on cell survival
and proliferation, and disregulation of the mechanisms controlling
its activation often results in immunoproliferative, inflammatory
and autoimmune phenotypes [1,2].

The human Caspase recruiting domain (CARD)-containing pro-
tein BCL10 is a 233 amino acids protein originally identified as a
target of translocation in a subset of mucosa-associated lymphoid
tissue (MALT) lymphoma cells [3–5]. As a consequence of a trans-
location, BCL10 is overexpressed, and that results in a constitutive
NF-|B activation which is eventually responsible for the neoplastic
transformation [3–5]. Gene targeting of the BCL10 locus in murine
strains results in immunodeficiency, having BCL10�/� mice severe
defects in humoral and cellular immune responses and antigen-
induced proliferation, due to impaired NF-|B activation following
stimulation in both T and B cells [6]. Thus, BCL10 is indispensable
for NF-|B activation following antigen receptor stimulation on B
and T lymphocytes [6].

The biological function of BCL10 is explicated through partic-
ipation at the CBM complex, a molecular complex that includes
one of three members of the family of CARMA proteins and
MALT1 [7]. The three CARMA proteins, CARMA1, 2 and 3, constitute
a family of proteins conserved across many species and are
characterized by the presence of different functional domains
shared by all members of the family [8]. Functionally, all three
CARMA proteins are able to associate BCL10 through an homophilic
interaction between the corresponding CARD domains, and to coop-
erate with it in inducing the transcriptional activity of NF-jB [8].

Compared to mammalian NF-jB, very little is known about pis-
cine regulators of this transcription factor. Recently, extensive
analysis of fish genomes have reported the presence of several
CARD domain containing proteins encoded by the genome of fish
such as zebrafish and the rainbow trout Oncorhynchus mykiss
[9–12]. In particular, because of multiple whole-genome duplica-
tions occurred in salmonid species [13], for the rainbow trout gen-
ome have been annotated four different genes encoding for
putative proteins that share aminoacidic similarity with human
BCL10. However, it is not established whether any of these genes
is actually expressed, and no functional data is available regarding
any of these proteins. In this work, we report on the functional
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Table 1
Loci encoding for proteins similar to human BCL10 in the rainbow trout genome.

Name Accession
number

Length Predicted
MW

Similarity to
human BCL10

BCL10a isoform 1 CAF31504 203 22,567 40%
BCL10a isoform 3 CDQ87110 199 22,126 38%
BCL10b isoform 1 CDQ56929 270 29,611 46%
BCL10b isoform 2 CDQ91425 262 28,612 44%

BCL10-like proteins encoded by the genome of Oncorhynchus mykiss and their
similarity to the human protein.

Table 2
Loci encoding for proteins similar to human BCL10 in the rainbow trout genome.

Species Protein Length Identities Positives

Oncorhynchus
mykiss

BCL10a isoform 2
(tBCL10)

207 83/207
(40%)

169/207
(79%)

Homo sapiens BCL10 233
Oncorhynchus

mykiss
tBCL10 CARD (6–116) 111 59/111

(53%)
97/111
(79%)

Homo sapiens BCL10 CARD (8–115) 108

Amino acidic similarity between hBCL10 and tBCL10 in the entire protein and in the
CARD domains.
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characterization of a rainbow trout O. mykiss BCL10 ortholog,
herein defined tBCL10.

2. Materials and methods

2.1. Ethics

All the procedures involving animals were conducted as indi-
cated in the Italian National Guidelines (D.L. No. 100/2006, and
D.L. No. 116/1992) and in the appropriate European Directives
(EEC Council Directive 86/609, 1.12.1987), adhering to the Guide
for the Care and Use of Laboratory Animals (United States
National Research Council, 1996). All the in vivo experimental
activities were approved by the Animal Ethics Committee (CESA)
of Biogem (Italy).

2.2. RNA extraction and cloning of tBCL10 full-length cDNA

Total RNA was extracted from trout peripheral blood leukocytes
by using Trizol reagent, and 1 lg of total RNA was reverse-
transcribed to generate a first-strand cDNA. Primers used to
amplify tBCL10 were the following: forward 50-ATGGACTCCTGG
TGTATCACTGAC-30 and reverse 50-TCAGACTCTTAAGGTCCCGG
GCTC-30. PCR conditions were as follows: 98 �C for 30 s, 30 cycles
Fig. 1. Alignment and phylogenetic tree of tBCL10. (A) Alignment of tBCL10 sequence with the human BCL10 sequence and the consensus sequences generated by aligning the
BCL10 sequences of Chordata and the CARD domains of three Invertebrata proteins. At the top of the alignment the six alpha helix regions of the CARD are shown. Amino acid
numbering refers to the tBCL10 sequence. The alignment was using ClustalW and the printout from multiple-aligned sequences was done with BOXSHADE. The black
background designates identical amino acids, the gray background conservative substitutions. Colored rectangles indicate amino acids conserved among the sequences
examined. The sequences used for generation of the consensus are available in Supplementary Material. (B) Phylogenetic tree analysis of BCL10 proteins. The phylogenetic
tree was constructed based on the full-length amino acid sequences using the neighbor-joining method within the Mega program. The sequences used for alignment and
generation of the consensus are available in Supplementary Material. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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(98 �C/5 s; 63 �C/22 s; 72 �C/30 s), and then 72 �C for 5 min. The
RT-PCR product of the expected size was gel purified, cloned into
HA- and FLAG-tagged expression vectors using standard
methodologies and confirmed by sequencing. The sequence was
deposited in GenBank with the accession number GenBank:
KP055818.
Fig. 2. tBCL10 expression. (A–B) Immunoblot analysis of lysates from HEK293 cells tran
separation cell lysates were treated with 10 units of calf intestinal phosphatase (CIP) fo
organs probed with anti-hBCL10. Lysates from HEK293T cells transfected with tBCL10 w

Fig. 3. tBCL10 dimerizes and binds to CBM proteins. (A) HEK293 cells were transiently cotra
cell lysates were immunoprecipitated with anti-FLAG mAb. Immunocomplexes were se
anti-HA antisera. The right panel shows controls for immunoprecipitation specificity. (B) L
MALT1; (C) CARMA2sh and (D) CARMA3. (E) Over-exposure of immunoblot experiment
2.3. Sequence analysis and phylogenic analysis of tBCL10

The tBCL10 protein sequences were analyzed by using the
BLAST algorithm at the NCBI web site (http://www.ncbi.nlm.nih.-
gov/blast), and the multiple sequence alignment was created with
ClustalW program (http://www.ebi.ac.uk/clustalw/). Phylogenetic
sfected with the indicated expression vectors. Were indicated, prior to SDS–PAGE
r 30 min at 37 �C. (C) Immunoblot analysis of proteic extracts from rainbow trout
ere used as a positive control (arrow).

nsfected with FLAG-tagged or HA-tagged versions of tBCL10 and hBCL10. 24 h later,
parated by SDS–PAGE and transferred onto membranes subsequently probed with
ysates from HEK293 cells transfected with tBCL10 were analyzed for coprecipitating

s described in (A) shows proteolytic processing of tBCL10.

http://www.ncbi.nlm.nih.gov/blast
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Fig. 4. Subcellular localization of tBCL10. HEK-293 cells were transfected with
mammalian FLAG-tagged vector, empty (vector) or expressing tBCL10. 16 h after
transfection, cells were stained with anti-FLAG mAb, followed by FITC-conjugated
anti-mouse IgG.
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analysis was conducted with MEGA version, using distance
methods and the neighbor-joining algorithm [14].

2.4. Immunoblot analysis and coprecipitation

Cell lysates were made in lysis buffer (150 mM NaCl, 20 mM
Hepes, pH 7.4, 1% Triton X-100, 10% glycerol, and a mixture of pro-
tease inhibitors). Proteins were separated by SDS–PAGE, trans-
ferred onto nitrocellulose membrane, and incubated with
primary antibodies followed by horseradish peroxidase-conju-
gated secondary antibodies (Amersham Biosciences, Piscataway,
NJ). Blots were developed using the ECL system (Amersham
Biosciences). For co-immunoprecipitation experiments, cells were
lysed in lysis buffer and immunocomplexes were bound to protein
A/G, resolved by SDS–PAGE, and analyzed by immunoblot assay.
Sources of antisera and monoclonal antibodies were the following:
anti-FLAG, anti-b-Actin, Sigma; anti-HA, anti-MALT1, anti-CARMA3
and anti-BCL10 (H-197 SC5611, generated against an epitope
corresponding to amino acids 1–197 of human BCL10), Santa
Cruz Biotechnology. The calf-intestinal alkaline phosphatase was
purchased from Roche.

2.5. Cell culture and transfection

HEK293 cells were maintained in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% FBS.

The expression vectors used in transfection experiments for this
study have been previously described [15–18].

DNA plasmids were transfected by standard calcium-phosphate
method. Short hairpin RNAs targeting hBCL10 were the following:
shBCL10 #3 50-CCTTAAGATCACGTACTGTTTCTCGAGAAACAGTACG
TGATCTTAAGG-30 and shBCL10 #5 50-GTTGAATCTATTCGGCGAGAA
CTCGAGTTCTCGCCGAATAGATTCAAC-30. Retroviral infections were
carried out as previously described [19].

2.6. Rainbow trout tissues immunoblot analysis

6–9 months trouts were euthanized and dissected. Proteic
extracts from selected organs were prepared using Nonidet P-40
lysis buffer (1% (v/v) Nonidet P-40, 150 mm NaCl, 50 mm Hepes,
pH 7.4, 5 mm EDTA, 10% (v/v) glycerol, and complete protease
inhibitor mixture (Roche). After homogenization and
centrifugation (13,000 � g, 15 min, 4 �C), protein concentration of
supernatant was determined by BCA protein assay (Pierce). A
15 lg sample of whole cell extract was separated on SDS–
polyacrylamide gel and transferred to membranes. Filters were
blocked for 2 h in 3% nonfat dry milk in phosphate-buffered saline
(PBS) with 0.3% Tween 20. Western blot analysis was performed
using a rabbit anti-hBCL10 antisera, followed by horseradish-
peroxidase-conjugated mouse anti-rabbit antibody (Amersham
Biosciences). Signal was developed using an enhanced
chemiluminescence method (Amersham Biosciences) according
to the manufacturer’s instructions.

2.7. Luciferase assay

To assess for NF-|B activation, HEK293 were transfected with
plasmidic DNAs together with pNF-jB-luc (Clontech) in 6-well
plates. After transfection and treatments, luciferase activity was
determined with Luciferase Assay System (Promega). A plasmids
expressing b-galactosidase was added to the transfection mixture
in order to normalize for the efficiency of transfection.

2.8. Immunofluorescence

1 � 104 HEK293 were grown and transfected in chamber slides.
Sixteen hours after transfection, cells were fixed in 4%
paraformaldehyde for 15 min at room temperature and then
permeabilized in PBS/0.1% Triton X-100. Cells were incubated for
30 min in 5% FCS–PBS with anti-FLAG antibody (Sigma–Aldrich)
followed by several washes with 5% FCS–PBS, and then incubating
for 30 min with secondary antibody in 5% FCS–PBS. All steps were
done at room temperature.

3. Results and discussion

Because of the multiple genome duplication events occurred in
salmonids [13], the recent sequencing of the genome of the rain-
bow trout O. mykiss has revealed the presence of multiple putative
isoforms of BCL10 in the genome of this specie [12]. For instance, in
the rainbow trout genome have been annotated four loci encoding
for proteins similar to human BCL10 (hBCL10) (Table 1). However,
when we tried to amplify the cDNAs encoding for these BCL10 iso-
forms by RT-PCR from total O. mykiss mRNA, only one of them was
successfully amplified. Sequence analysis showed that the ampli-
fied cDNA encodes for a further isoform of BCL10, probably gener-
ated by an alternative splicing of the same transcript encoding for
BCL10a isoform 1. That sequence was therefore named BCL10a iso-
form 2 (GenBank: KP055818), and hereafter abbreviated as tBCL10.

The tBCL10 cDNA encodes for a protein of 207 amino acids, with
a predicted molecular mass of 23 kDa (Table 2 and Fig. 1A). The
overall amino acidic identity of tBCL10 to hBCL10 is 40%
(Table 2). The major amino acidic differences between the two



Fig. 5. (A–B) tBCL10 activates NF-|B HEK293 cells were transiently cotransfected with expression vectors encoding for the indicated polypeptides, together with pNF-|B-luc
and pRSV-bgal reporter vectors. The total amount of transfected plasmidic DNA was maintained constant by adding empty vector. 16 h after transfection, cell lysates were
prepared and luciferase activity was measured. A fraction of the cell lysates were analyzed by immunoblot to monitor protein expression, shown in the lower panels. Data
shown represents relative luciferase activity normalized on b-galactosidase activity and is representative of six independent experiments done in triplicate.
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proteins are located at the carboxy-terminal of the polypeptides,
whereas the amino-terminal CARD domains of tBCL10 (amino
acids 6–116) and hBCL10 (amino acids 8–115) share 59% identity
(Table 2). Sequence analysis shows that several residues that have
been demonstrated to be necessary for the biological activity of
hBCL10, namely R36, D39, L41, R42, E53 and G78 [4,15,20–23],
are conserved in tBCL10. On the other hand, the residue S141,
which is implicated in attenuation of hBCL10 signaling [24], is
not conserved in tBCL10 (Fig. 1A). A phylogenetic tree was con-
structed by the neighbor-joining method using MEGA [14], and it
shows that the sequences of rainbow trout BCL10a and BCL10b iso-
forms clusterize within the fish BCL10 sequences (Fig. 1B).

When analyzed in immunoblot assay, tBCL10 expressed in
mammalian cells migrates as a 28 kDa protein (Fig. 2A).
Interestingly, a rabbit antisera raised against hBCL10 also recog-
nizes tBCL10 (Fig. 2A, right panel). In these expression experi-
ments, we noticed that while hBCL10 migrates as a doublet on
SDS–PAGE due to phosphorylation of the protein [25,26], tBCL10
occurs as a single band, suggesting that tBCL10 is not target of
phosphorylation events. Indeed, experiments in which lysates
were treated with phosphatase prior to immunoblot analysis con-
firm this possibility (Fig. 2B). Finally, an immunoblot assay carried
out on proteic lysates extracted from various rainbow trout organs
and tissues indicates that a band corresponding to the molecular
weight of tBCL10 is expressed in spleen and, less intensely, in kid-
ney (Fig. 2C). Additional bands with higher molecular weight are
detectable, possibly corresponding to other BCL10 isoforms
encoded by the genome of O. mykiss.

In mammals, BCL10 plays a crucial role in the signal transduc-
tion pathway that leads to activation of the transcription factor
NF-jB [6,7]. hBCL10-mediated activation of NF-jB requires
oligomerization of hBCL10, assembly of the CBM complex and
triggering of unconventional ubiquitination events [7,27], which
eventually result in the recruitment of the IKK complex [28].
Indeed, transfection experiments indicate that tBCL10 is able to
dimerize both with itself and with hBCL10 (Fig. 3A).
Furthermore, tBCL10 associates with human MALT1 (Fig. 3B), with
human CARMA2sh [16] (Fig. 3C) and human CARMA3 (Fig. 3D).
Finally, as activation of the CBM complex includes induction of
the proteolytic activity of MALT1 which processes hBCL10 after
R228 [29], we monitored the possible processing of tBCL10 when
expressed in HEK293 cells. As shown in Fig. 3E, overexposure of
the immunoblot of tBCL10 expressed in the HEK293 clearly shows
the occurrence of a proteolytic processing of tBCL10.

Fluorescence microscopy experiments and structural studies
have shown that the NF-jB-activity produced by hBCL10 is regu-
lated through formation of cytosolic filamentous structures
[21,23]. We therefore verified whether also tBCL10 is able to form
such structures. As shown in Fig. 4, assembly of filamentous
structures is readily visible following expression of tBCL10 in
mammalian cells.

Next, we tested whether tBCL10 is able to activate NF-jB in
mammalian cells using a luciferase-based reporter assay. The
results of these experiments, shown in Fig. 5A, indicate that
tBCL10 is effective in activating NF-jB, even though less efficiently
than hBCL10. As for hBCL10 [30,31], tBCL10-induced NF-jB activa-
tion requires ubiquitination(s) events, since NF-jB activation is
completely abrogated following coexpression of A20 de-ubiq-
uitinase (Fig. 5B).

To exclude the possibility that NF-jB activation mediated by
tBCL10 was due to its interaction and subsequent oligomerization
of hBCL10, we abolished expression of hBCL10 in the human cell
line HEK293 through retrovirus-mediated expression of short
hairpin RNAs (shRNA) targeting hBCL10. As shown in Fig. 6A,



Fig. 6. tBCL10 replaces hBCL10 (A) Cell lysates from HEK293 cells infected with retroviruses encoding for shRNAs targeting hBCL10 were monitored for hBCL10 expression by
immunoblot assay. (B) NF-jB-driven luciferase activity in HEK-293 cells silenced for hBCL10 and stimulated with PMA. (C) NF-jB-driven luciferase activity in HEK-293 cells
silenced for hBCL10 and transfected with tBCL10. Data shown represent relative luciferase activity normalized on b-galactosidase activity and is representative of six
independent experiments done in triplicate.
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introduction of hBCL10sh#3 and hBCL10sh#5 in HEK293 cells
results in a great reduction of BCL10 expression. Depletion of
hBCL10 in these cells abrogates their ability to activate NF-jB fol-
lowing exposure to phorbol-12-myristate-13-acetate (PMA)
(Fig. 6B). However, introduction of tBCL10 in these hBCL10-de-
pleted cells fully recovers their ability to activate NF-jB (Fig. 6C).
Thus, tBCL10 can functionally replace hBCL10.

In the present work here presented we show that the mecha-
nism of NF-jB activation through BCL10 and the CBM complex in
conserved the rainbow trout O. mykiss. Given the importance of
this transcription factor in both normal cell biology and autoim-
mune, immunoproliferative and tumoral disorders, the possibility
of using additional model organism such as the rainbow trout cer-
tainly represents a field to explore further, also considering the
economic value of this organism. However, an additional source
of complication in the study of signal transduction pathways in
the rainbow trout results from various genomic duplication events
that have occurred in the evolutionary history of salmonids
[12,13]. As a result, in the trout genome many mammalian genes
are present in multiple copies, and that also happens for the genes
encoding for the proteins of the CBM complex. On the other hand,
the absence of selective pressure often leads to the functional loss
of supernumerary gene copies, mostly through pseudogenization
[12]. Thus, although the rainbow trout genome contains four pos-
sible homologs of hBCL10, only one of them was successfully iso-
lated from mRNA. Obviously, this negative result does not imply
that other copies of rainbow trout BCL10 can be functional.
Finally, it would be certainly interesting to investigate how this
phenomenon of genomic duplication has affected genes encoding
for ancillary proteins that modulate the activity of the CBM com-
plex in mammals, such as USP9X [32], CKIP-1 [33], Net1 [34],
p62 [35,36], DEPDC7 [37] and various protein kinases and phos-
phatases [38–42], and if these proteins retain a similar function
in rainbow trout.
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