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On TCR binding predictors
failing to generalize to
unseen peptides
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Israa Alqassem1, Timothy J. O’Donnell3

and Martin Renqiang Min2*

1Biomedical AI Group, NEC Laboratories Europe, Heidelberg, Germany, 2Machine Learning
Department, NEC Laboratories America, Princeton, NJ, United States, 3Division of Hematology and
Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
Several recent studies investigate TCR-peptide/-pMHC binding prediction

using machine learning or deep learning approaches. Many of these methods

achieve impressive results on test sets, which include peptide sequences that

are also included in the training set. In this work, we investigate how state-of-

the-art deep learning models for TCR-peptide/-pMHC binding prediction

generalize to unseen peptides. We create a dataset including positive

samples from IEDB, VDJdb, McPAS-TCR, and the MIRA set, as well as

negative samples from both randomization and 10X Genomics assays. We

name this collection of samples TChard. We propose the hard split, a simple

heuristic for training/test split, which ensures that test samples exclusively

present peptides that do not belong to the training set. We investigate the effect

of different training/test splitting techniques on the models’ test performance,

as well as the effect of training and testing the models using mismatched

negative samples generated randomly, in addition to the negative samples

derived from assays. Our results show that modern deep learning methods fail

to generalize to unseen peptides. We provide an explanation why this happens

and verify our hypothesis on the TChard dataset. We then conclude that robust

prediction of TCR recognition is still far for being solved.

KEYWORDS

tcr, peptide, MHC, binding prediction, interaction prediction, machine learning, TCR -
T cell receptor
1 Introduction

Studying T-cell receptors (TCRs) has become an integral part of cancer

immunotherapy and human infectious disease research (1–4). TCRs are able to

identify intracellular processed peptides originating from infected or aberrant cells.

TCRs are heterodimers consisting of an a- and a b-chain, which bind to peptides
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presented on the cell surface by either major histocompatibility

complex (MHC) class I or class II molecules, depending on the

cell type (5–7). The binding of the TCR to the peptide-MHC

(pMHC) complex occurs primarily (but not exclusively) at the

complementarity-determining region 3 (CDR3). The CDR3a
consists of alleles from the V and J genes; for the CDR3b, the D
gene is additionally involved (8, 9). These alleles can be

recombined unboundedly, which results in a high TCR

repertoire diversity, essential for a broad T cell-based immune

response (10). When a naive TCR is exposed to an antigen and

activated for the first time, a memory T-cell population with this

TCR may develop, which enables a long-lasting immune

response (11, 12).

Numerous recent studies investigate TCR-peptide/-pMHC

binding prediction by applying different machine or deep

learning methods (13–24). Many of these studies use data

from the Immune Epitope Database (IEDB) (25), VDJdb (26),

and McPAS-TCR (27), which mainly contain CDR3b data and

lack information on CDR3a. Such methods achieve high test

performance when evaluated on test sets that belong to the same

source as the training set. However, we show that these methods

exhibit weak cross-dataset generalization, i.e., the models suffer

from severe performance degradation when tested on a different

dataset. For example, as shown in Figure S1, several machine

learning models trained on McPAS-TCR perform poorly

on VDJdb.

In this work, in order to evaluate the relevance of the

available data for deep-learning-based TCR-peptide/-pMHC

binding prediction, we aggregate binding samples obtained

from IEDB, VDJdb, and McPAS-TCR. Non-binding data

points are collected from IEDB, as well as from the 10X

Genomics samples provided in the NetTCR-2.0 repository

(22). We additionally consider a set of samples from (28, 29),

which are included in the NetTCR-2.0 GitHub repository; we

refer to it as the MIRA set. A simple analysis of the class

distribution (binding versus non-binding) of the resulting data

points reveals that all TCR sequences exclusively appear in either

binding or non-binding TCR-peptide/-pMHC pairs; no CDR3

sequence is observed in both positive and negative samples (see

Figure 1C). Machine learning models trained naively on data

with this class distribution are prone to learning undesirable

inductive biases. In fact, our results in Section 4.1 suggests that

they tend to classify samples only as a function of the CDR3

sequences, which could be memorized.

For unbiased evaluation, we perform experiments on a

dataset derived from the integration of the aforementioned

samples. We name the resulting collection of samples TChard.

To the best of our knowledge, this dataset constitutes the largest
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set of TCR-peptide/-pMHC samples available at the time this

work is being written.

We perform deep learning experiments using two state-of-

the-art models for TCR-peptide/-pMHC interaction prediction:

ERGO II (23) and NetTCR-2.0 (22). ERGO II is a deep learning

approach that adopts long short-term memory (LSTM) networks

and autoencoders to compute representations of peptides and

CDR3s. It can also handle additional input modalities, i.e., V and J

genes, MHC, and T-cell type. NetTCR-2.0 employs a simple 1D

CNN-based model, integrating peptide and CDR3 sequence

information for the prediction of TCR-peptide specificity. Both

models input peptide and CDR3s representations in the form of

amino acid sequences. The selection of these two models is

motivated by the intention to analyze two of the most successful

classes of deep learning models: feed-forward convolutional

networks (e.g., NetTCR-2.0) and recurrent neural networks (e.g.,

ERGO II, which includes an LSTM encoder). For this analysis, we

do not consider methods that rely on external source of

information, e.g., TITAN [24], which performs pre-training on

BindingDB (30).

We perform experiments on TChard and investigate the effect of

different training/test splitting strategies. In contrast to previous

works (22, 23), we place special emphasis on testing the models

on unseen peptides. We propose the hard split, a splitting heuristic

meant to create test sets that only contain unseen peptides, i.e., not

included in the training set. In the context of neoantigen-based

cancer vaccines development, neoepitopes exhibit enormous

variability in their amino acids sequences; employing TCR binding

predictors for this application requires robust generalization to

unseen peptides. In accordance with recent findings (17), we show

that evaluating the models’ performance on unseen peptides leads to

poor generalization. In the Supplementary Material, we describe the

training/test splitting strategies adopted by Montemurro et al. (22)

and Springer et al. (23).
2 The TChard dataset

In this section, we describe the creation of the TChard

dataset. All samples in TChard include a peptide and a CDR3b
sequence, associated with a binary binding label. A subset of

these samples may additionally have (i) CDR3a sequence

information, and/or (ii) allele information of the MHC (class I

or II) in complex with peptides. A sample consists therefore of a

tuple of molecules (from 2 to 4). When available, the V and J

alleles for the a-chain and the V, D, and J alleles for the b-chain
are also included. We refer to the binding tuples as positive and

to the non-binding ones as negative.
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2.1. Dataset creation

First, we collect positive assays from the IEDB, VDJdb1, and

McPAS-TCR databases. Additionally, we include the binding

samples from the MIRA set (28, 29), which are publicly available

in the NetTCR-2.0 repository
2.

Second, we include negative assays, i.e., non-binding tuples

of molecules extracted from IEDB. Additionally, a set of negative

samples extracted from the NetTCR-2.0 repository is
1 As we aim at creating the largest possible collection of samples, we do

not perform any filtration on the quality score of the VDJdb samples, at

the cost of introducing noise.

2 https://github.com/mnielLab/NetTCR-2.0/tree/main/data.
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considered; this is derived from 10X Genomics assays

described by Montemurro et al. (22). In this work, we refer to

the negative tuples derived from negative assays as the NA set.

Third, we operate a filtration over the length of the amino

acid sequences, and we only keep samples with peptide sequence

length smaller than 16, CDR3a sequence length between 7 and

21, and CDR3b sequence length between 9 and 23. These

filtration steps are meant to exclude a small portion of data

points that present consistently longer amino acid sequences.

Including them in the dataset would imply extending the

magnitude of the padding required by NetTCR-2.0 by a large

margin, making computation more expensive.

Fourth, we generate negative samples via random

recombination of the sequences found in the positive tuples.

Building from the positive samples, we associate the peptides or

pMHC complexes (when MHC allele information is available)

with CDR3a and CDR3b sequences randomly sampled from the
A B C

FIGURE 1

Separate class distributions for unique peptides (first row), CDR3b (second row), and CDR3a (third row) sequences in all (peptide, CDR3b,
CDR3a) samples. A point on the x-axis represents one unique sequence of amino acids. The y-axis represents how frequently a given peptide,
CDR3b, or CDR3a sequence appears in the considered samples. Sequences are sorted by count. (A) Negative samples only include randomized
data points (i.e., no negative assays). (B) Negative samples include negative assays and randomized negative samples. (C) Negative samples only
include negative assays.
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dataset, as operated in previous studies (23). We sample twice as

many mismatched negative samples as there are positive ones.

We discard randomly generated samples that share at least the

same (peptide, CDR3b) with any positive sample. In this work,

we refer to the randomized negative tuples as the RN set.

Additional remarks on invalid residues and CDR3 sequence

homogenization are included in the Supplementary Material.
2.2. Description of the data distributions

The full dataset, i.e., considering negative samples from both

NA and RN, presents the following:
3 E
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• 528,020 unique (peptide, CDR3b) tuples, 385,776 of which
are negative and 142,244 are positive;

• 400,397 unique (peptide, CDR3b, MHC) tuples, 300,168 of

which are negative and 100,229 are positive;

• 111,041 unique (peptide, CDR3b, CDR3a) tuples, 82,631
of which are negative and 28,410 are positive; and

• 110,266 unique (peptide, CDR3b, CDR3a, MHC) tuples,

82,037 of which are negative and 28,229 are positive.
The dataset statistics considering negative samples derived

from either RN or NA are presented in Table S1. Figure 1 depicts

the class distribution for (peptide, CDR3b, CDR3a) samples.

Analogously, Figures S2–S4 depict the class distribution for

(peptide, CDR3b), (peptide, CDR3b, MHC) and (peptide,

CDR3b, CDR3a, MHC) samples, respectively. Figure S5

depicts the length distribution for all sequences.
3 Predicting TCR recognition with
deep learning

We perform experiments on the TChard dataset with two

publicly available state-of-the-art deep learning methods for

TCR-peptide/-pMHC interaction prediction: ERGO II and

NetTCR-2.0
3.

We operate TCR-peptide interaction prediction considering

peptide and CDR3b, as well as TCR-pMHC interaction

prediction considering peptide, CDR3b, CDR3a, and MHC.

NetTCR-2.0 is not explicitly designed to account for MHC

information; we circumvent this shortcoming by concatenating

the MHC pseudo-sequence 4 to the other input amino acid
RGO II: https://github.com/IdoSpringer/ERGO-II; NetTCR-2.0:

://github.com/mnielLab/NetTCR-2.0.

aken from the PUFFIN [31] repository: https://github.com/gifford-

UFFIN/blob/master/data/.
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sequences and perform BLOSUM50 encoding (32). We do not

make distinctions between class I and II MHCs and train a single

model for both types.
3.1. Random and hard training/test splits

For performance evaluation, we investigate two different

strategies for training/test splits.

Random split (RS). Given a training/test ratio (80/20 in this

work), this procedure consists in sampling test samples

uniformly from the dataset without replacement until the

desired budget is filled. The remaining samples constitute the

training set. In this work, we refer to RS(RN), when the negative

tuples only belong to the RN set, to RS(NA), when the negative

tuples only belong to the NA set, and to RS(RN+NA), when all

negative samples are considered.

The nature of TCR recognition is combinatorial. In our

dataset, although a given tuple of molecules is only observed

once, a given peptide can appear multiple times, paired with

different CDR3b, CDR3a, or MHC. Using a random training/

test split ensures that test tuples are not observed at training time.

However, this can lead to testing the model on peptides, MHCs, or

CDR3b and CDR3a sequences that were already observed at

training time in combination with different sequences. Our

results show that this can lead to overoptimistic estimates of

machine learning models’ real-world performance. To enable

neoantigen-based cancer vaccines and T-cell herapy, it is

fundamental to test the model on sequences that were never

observed at training time. Neoantigens display in fact enormous

variability in their amino acids sequence; to identify the most

immunogenic vaccine elements, we need models that generalize to

unseen sequences.

Hard split (HS). We propose a simple heuristic, which we

refer to as hard split. Considering the whole dataset consisting in

a set of tuples, we first select a minimum training/test ratio (85/

15 in this work). Let Pl,u be the set of all peptides that are

observed in at least l tuples but no more than u tuples in our

dataset. We randomly sample a peptide from Pl,u without

replacement. All tuples that include that peptide are assigned

to the test set. If the current number of test samples is smaller

than the budget defined by the training/test ratio, the sampling

from Pl,u is repeated.

This heuristic ensures that the peptides that belong to the

test set are not observed by the model at training time. For the

(peptide, CDR3b) tuples, which present 1,360 different peptides,

we set l and u to 500 and 10,000, respectively. This selects a set of

104 possible test peptides. For the (peptide, CDR3b, CDR3a,
MHC) tuples, which present 870 different peptides, we set l and u

to 100 and 5,000, respectively. This results in a set of 42 possible

test peptides. The l parameter is a lower bound and ensures that

the selected test peptides are paired with a sufficiently broad

variety of CDR3 sequences. The u parameter is an upper bound
frontiersin.org
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and allows excluding test peptides that can too quickly saturate

the test budget, hence reducing the variety of test peptides. We

create five different hard splits using five different random seeds

for the sampling of the test peptides. For the creation of the hard

training/test splits, we consider all positive samples, as well as the

negative samples from the RN set, i.e., excluding the negative

samples from the negative assays. We refer to this type of split as

HS(RN).

Tables S2 and S3 describe the different HS(RN) hard splits

for the (peptide, CDR3b) and (peptide, CDR3b, CDR3a, MHC)

samples, respectively. They present the lists of test peptides and

the number of positive and negative samples associated with

each of them. Each displayed test is paired with different TCRs.

The test TCRs can be observed at training time, as the HS only

ensures that test peptides are unseen.

Since a subset of the available samples is included in more

than one source database, we drop duplicate data points for the

two considered settings, i.e., (peptide, CDR3b, label) and

(peptide, CDR3b, CDR3a, MHC, label).
3.2. Validation approach and
performance evaluation

For robust performance evaluation, we repeat the

experiments for each different training/test split (i.e., five

times). The area under the receiver operator characteristic

(AUROC) curve (33, 34), the area under the precision–recall

(AUPR) curve (35, 36), the F1 score (F1) (37), and precision,

recall, and classification accuracy are computed on the test sets

and averaged.

We adopt the default configuration for both ERGO II and

NetTCR-2.0, as proposed in their original implementations. For

ERGO II, we adopt the LSTM amino acid sequences encoder.

The training is performed for a maximum of 1,000 epochs and,

in order to avoid over-fitting, the best model is selected by saving

the weights corresponding to the epoch where the AUROC is

maximum on the validation set. The validation set is obtained

via 80/20 stratified random split of the training set.
4 Results

Figure 2 shows test results for ERGO II and NetTCR-2.0, for

the RS and HS splitting strategies, in both the peptide+CDR3b
and the peptide+CDR3b+CDR3a+MHC settings. We perform

experiments considering negative samples from the NA set only,

from the RN set only, and jointly from both the NA and RN sets.

Additionally, in the Supplementary Material, we report results of
Frontiers in Immunology 05
experiments performed exclusively on VDJdb samples with

quality score ≥ 1.
4.1. Overoptimistic classification
performance due to sequence
memorization

As depicted in Figure 2, almost perfect classification is

achieved when training with negative samples only from the

NA set and testing using the RS(NA) split. As shown in Figures

S2C and S4C, when considering negative samples from the NA

set only, the binding and non-binding class histograms of the

CDR3 sequences are disjoint. Hence, models can learn to

correctly map a large portion of test tuples to the correct label

simply by memorizing the CDR3 sequences, ignoring the

peptide. We believe that these results are overoptimistic and

should not be considered as the approximation of these models’

real-world performance.
4.2. The hard split allows for realistic
evaluation

Using the HS heuristic appears to make prediction on the

test set consistently harder, if not impossible. This tendency is

observed in the peptide+CDR3b setting (Figures 2A, B) and in

the peptide+CDR3b+CDR3a+MHC setting (Figures 2C, D). In

the peptide+CDR3b setting, when testing the models using the

HS(RN) split, the predictions on the test set barely exceed

random-level performance, i.e., almost no generalization to

unseen peptides is occurring (AUROC ≈ 0.55). This

phenomenon is observed when the models are trained using

negative samples from the RN set only, as well as when using

negative samples from both the RN and NA sets.

The effect of including negative samples from NA at training

time does not significantly influence test performance when the

HS is adopted. Conversely, when RS is performed, significant

differences are caused by the utilization of the negative samples

from NA. This reinforces our claims regarding sequence

memorization. ERGO II, in the peptide+CDR3b setting

(Figure 2A), achieves overoptimistic performance when the

negative samples come from both NA and RN and testing is

operated using RS(RN+NA). The same phenomenon is observed

in Figure 2B for ERGO II in the peptide+CDR3b+
CDR3a+MHC setting and in Figure 2D for NetTCR-2.0 in the

peptide+CDR3b+CDR3a+MHC setting.

Figure S6 depicts NetTCR-2.0 results on the (peptide,

CDR3b, CDR3a, MHC) samples, but ignoring the MHC; we

report these results for fairness, as NetTCR-2.0 is not originally

designed to handle MHC pseudo-sequences.
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5 Discussion

In this work, we aim to test the reliability of state-of-the-art

deep learning methods on TCR-peptide/-pMHC binding

prediction for unseen peptides. To this purpose, we integrate
Frontiers in Immunology 06
TCR-peptide/-pMHC samples from different databases. We

name this collection of samples TChard.

We perform experiments with two state-of-the-art deep

learning models for TCR-peptide/-pMHC interaction

prediction, ERGO II and NetTCR-2.0. We study the peptide
A B

D

E

F

C

FIGURE 2

Test results for ERGO II and NetTCR-2.0 for TCR-peptide/-pMHC interaction prediction trained and tested on TChard. AUPR: area under the
precision–recall curve. AUROC: area under the receiver operator characteristic curve. NA: negative samples from negative assays. RN: negative
samples from random mismatching. RS(·): random split. HS(·): hard split. Confidence intervals are standard deviation over 5 experiments with
independent training/test splits. (A–D) ERGO II and NetTCR-2.0 results on (peptide, CDR3b) and (peptide, CDR3b, CDR3a, MHC) samples.
Legend: Source of training negatives | Training/test split. (E) Peptide-specific AUROC computed on the (peptide, CDR3b) test set obtained with
hard split 0 (see Table S2). (F) Peptide-specific AUROC computed on the (peptide, CDR3b, CDR3a, MHC) test set obtained with hard split 0 (see
Table S3).
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+CDR3b and the peptide+CDR3b+CDR3a+MHC settings. We

compare the effect of different training/test splitting strategies,

RS and HS. RS is a naive random split, while HS allows testing

the models on unseen peptides. We investigate the effect of

training and testing the models using mismatched negative

samples generated randomly (RN), in addition to the negative

samples derived from assays (NA).

As shown in our experiments, when the HS is performed, the

two models do not generalize to unseen peptides; this appears to

be in contrast to the TPP-III results presented by Springer et al.

(23). Conversely, when a simple RS is employed and negative

samples only belong to NA, almost perfect classification is

achieved. We believe that this phenomenon is due to the class

distribution of the CDR3 sequences and the related sequence

memorization. As shown in Figure 1C, when considering negative

samples from NA only, the positive and the negative samples are

completely disjoint. Hence, a given CDR3 sequence is only

presented in either binding or non-binding samples. This leads

to learning an inductive bias, which classifies tuples as binding or

non-binding exclusively based on the CDR3 sequence, without

considering which peptide they are paired with; this appears to be

confirmed also by the findings of Weber et al. (24).

In order to make progress towards robust TCR-peptide/-

pMHC interaction prediction, machine learning models should

achieve satisfactory test performance on the hard training/test

split (HS), which we propose in this work. Only then will such

models be applicable for real-world applications, e.g.,

personalized cancer immunotherapy and T-cell engineering.

Possible strategies to achieve this goal might require exploring

different feature representations, e.g., SMILES (38) encodings as

proposed in TITAN (24). Further possible methods might rely

on physics-based simulations for the generation of large-scale

datasets. Additionally, transfer learning techniques (39) might

allow to leverage knowledge from large databases of protein-

ligand binding affinity, e.g., BindingDB (30), which includes

more than 1 million labeled samples.
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