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Spatial blurring in laser speckle 
imaging in inhomogeneous turbid 
media
Luka Vitomir, Joris Sprakel   & Jasper van der Gucht

Laser speckle imaging (LSI) has developed into a versatile tool to image dynamical processes in turbid 
media, such as subcutaneous blood perfusion and heterogeneous dynamics in soft materials. Spatially 
resolved information about local dynamics is obtained by measuring time-dependent correlation 
functions of multiply scattered light. Due to the diffusive nature of photons in highly scattering media, 
the measured signal is a convolution of the local dynamics in the material and the spatial distribution 
of photons. This spatial averaging inevitably leads to a loss of resolution, which must be taken into 
account for a correct interpretation of LSI measurements. In this paper we derive analytical expressions 
to quantify the effects of spatial blurring in backscatter LSI for materials with heterogeneous dynamics. 
Using the diffusion approximation, we calculate the photon density distribution for a semi-infinite 
material, and we predict the effect of dynamic heterogeneity on the measured correlation function. 
We verify our theoretical expressions using random walk simulations. Our results show that LSI 
measurements in dynamically heterogeneous materials should be interpreted with caution, especially 
when only a single wavelength and correlation time are used to obtain the dynamical map.

Many disordered materials, such as rubbers, plastics, foams, suspensions, and biological tissue strongly scatter 
light, which makes a direct observation of structure and dynamics, for example with light microscopy, very dif-
ficult. However, detailed information about the dynamical processes in such non-transparent materials can be 
obtained by analyzing the temporal fluctuations of light that is multiply scattered in the material. This forms the 
basis of diffusing-wave spectroscopy (DWS)1–3, a powerful technique to study Brownian motion or flow in con-
centrated colloidal systems4–6 or to extract viscoelastic moduli of soft materials from the dynamics of embedded 
tracer particles7. While DWS has been applied mostly to uniform samples, it can also be used as an imaging tool 
for characterizing spatially resolved dynamics in heterogeneous turbid media8–10. A particularly useful realization 
of this is laser speckle imaging (LSI). In LSI, the sample is illuminated with a plane wave of coherent light. Photons 
that enter the sample undergo many scattering events before leaving the sample again and reaching the camera. 
Each camera pixel receives many photons that have scattered from different positions in the sample; the resulting 
path length differences create a random interference pattern that is known as a speckle pattern. Movement of the 
scattering particles causes temporal fluctuations in the speckle pattern, which can be quantified by calculating 
for each speckle the intensity autocorrelation function g2(τ) = 〈I(0)I(τ)〉/〈I〉2, with I(τ) the intensity at time τ. 
The decay rate of this autocorrelation function is directly related to the dynamics of the scatterers in the material. 
Because the photons that reach the detector have scattered many times inside the sample, decorrelation already 
occurs when the scatterers have moved only a fraction of the wavelength. This makes it possible to measure par-
ticle displacements as small as a few nanometers with LSI1.

Because of its high sensitivity, its relative cost-effectiveness, and its non-invasive nature, LSI has become an 
attractive tool in bio-medical imaging11–16 and materials science17–22. However, obtaining quantitative informa-
tion from LSI measurements remains difficult, because the decay of the autocorrelation function depends not 
only on the internal dynamics of the material, but also on the distribution of photon paths through the sample. 
This means that an accurate model is needed for the propagation of photons in the turbid medium. Usually, it is 
assumed that the propagation of light in the material can be approximated as a diffusion process, so that the path 
followed by an individual photon can be described as a random walk23–25. The distribution of path lengths can 
then be calculated by solving the diffusion equation. For samples in which the particle dynamics does not depend 
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on position, this yields a direct relation between the intensity autocorrelation function and the mean-square 
displacement of the particles 〈Δr2(τ)〉2,4. However, for dynamically inhomogeneous samples, the information 
carried by the speckle pattern depends on which regions the photons have probed. Since each photon takes a 
different path through the sample, LSI measurements performed on inhomogeneous samples actually represent 
averages, resulting from a convolution of dynamic processes in the sample and the spatial probability distribution 
of photons in the sample26,27. This leads to spatial blurring and loss of resolution and thus limits the ability of LSI 
to detect dynamic heterogeneities28. For a correct interpretation of LSI measurements on dynamically heteroge-
neous samples, it is therefore necessary to quantify the effects of spatial averaging.

The typical distance travelled by photons before leaving the sample in a backscatter experiment is a few times 
the transport mean free path l*20, which is the average step length of the photon random walk. One would there-
fore expect the penetration depth of light into the sample and the extent of spatial blurring to be also a few times 
l*29,30. However, it is clear that the effect of blurring must also depend strongly on the correlation time τ, since 
the initial decay of the correlation function (at small τ) is much more sensitive to long photon paths than the 
long-time decay1. Hence, to fully appreciate how spatial averaging affects the measured LSI signal at different 
time scales, a more detailed calculation, taking all possible photon paths into account, is needed. Such an anal-
ysis has been performed for a multilayer medium, in which the sample is heterogeneous only in the z-direction 
(perpendicular to the surface)10,31,32. Here, we extend these findings to dynamically heterogeneous materials with 
arbitrary spatial distributions of particle dynamics. Using the diffusion approximation, we calculate the photon 
density distribution in the material and we derive an analytical expression that relates the autocorrelation func-
tion measured in a particular location to the distribution of mean-square displacements in the material. We then 
use this result to evaluate the lateral resolution of LSI, and we show how this depends on the correlation time. We 
verify our results using random walk simulations.

LSI theory
We consider LSI in the backscattering geometry for samples that are much thicker than the penetration depth of 
light in the material, so that the material can be considered as a semi-infinite half-space. We assume that no pho-
ton absorption takes place. Photons enter the material at a particular location r0 and then undergo a sequence of 
scattering events before leaving the sample again at a point rd where they are detected by a camera (Fig. 1). The 
transport of photons in the material is characterized by the mean free path l, which is the average distance 
between two scattering events; it depends on the number density ρ and the scattering cross-section σ of the par-
ticles, l = 1/ρσ. The transport mean free path l* is the distance over which the direction of light becomes rand-
omized; it is related to the mean free path by l* = l/〈1 − cosθ〉, where θ is the scattering angle and where the 
average is taken over the scattering form factor of the particle. For very small particles the scattering is isotropic 
and l* ≈ l, while for larger particles the scattering is peaked in the forward direction so that l* > l. The transport 
mean free path can be determined experimentally33,34 or it can be calculated from Mie theory23. In the Rayleigh 
limit, for particles that are small compared to the wavelength of light, l* can be several tens to hundreds of 
micrometers large and increases very strongly with increasing wavelength, as λ∼⁎l 4.

When the total path length of a photon is much larger than l*, the photon trajectory can be described as a ran-
dom walk with average step size l*. The total electric field collected at a particular location rd is the superposition 
of the fields of all photon paths p ending at rd:

∑ φ= ( )rE t E i t( , ) exp ( )
(1)

d
p

p p

where Ep is the amplitude of the electric field from path p and φp(t) its phase at time t. The electric field correlation 
function g1(τ), which is related to the experimentally measured intensity correlation function g2(τ) by the Siegert 
relation, g2(τ) = 1 + βg1(τ)2 with β an experimental constant of order unity, can then be written as

Figure 1. A photon trajectory: after entering the sample, a photon performs a random walk with mean free 
path l through the material before exiting the sample at rd. The signal detected at rd is the result of all the 
random walks ending at rd. The random walk is assumed to start at the first scattering event, r0. Movement of 
the particles in a time τ leads to a change in the phase of the light wave, Δφp(τ) = ∑iqi ⋅ Δri(τ) with qi = ki − ki−1 
the scattering vector transfer of scattering event i.
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2 2  is the fraction of the scattered intensity at rd coming from path p. Terms 

with p ≠ p′ do not contribute, because light waves belonging to different paths are uncorrelated. The phase shift 
Δφp(τ) = φp(τ) − φp(0) is due to movement of the Np scatterers along path p and can be written as1,4

∑φ τ τΔ = ⋅ Δ
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(3)i ip
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p

where qi = ki − ki−1 is the wave vector transfer of scattering event i, with a magnitude that is determined by the 
scattering angle as q = 2k0sin(θ/2), and with Δri(τ) = ri(τ) − ri(0) the displacement of scatterer i in the time 
interval τ. For Brownian motion, the Δri(τ) are random Gaussian variables and the average in Eq. (2) is readily 
obtained1 to give:
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2 . Here, we will assume that l* does not depend on the position in the mate-

rial; in other words, that the material is dynamically heterogeneous, but optically homogeneous. This is a reason-
able approximation for many applications in materials science; for example, spatial variations in crosslink density 
in a polymer material will lead to variations in the local rigidity (and therefore in the local dynamics), without 
causing large variations in the refractive index. To simplify the analysis further, we pass to a continuum limit and 
replace the summation over all paths by an integral over all path lengths s = Npl:
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where P(rd, s) is the relative contribution of paths of length s to the intensity at rd, smin the minimum path length 
(which is of order l*), and Γ(rd, τ, s) the weighted average mean square displacement of scatterers along all paths 
of length s that end at rd. This can be written as

∫τ τ ρΓ = 〈Δ 〉r r r rs r s r( , , ) ( , ) ( ; , )d (6)d d
2

where 〈Δr(r, τ)2〉 is the mean square displacement of particles at position r and ρ(r; rd, s) is the normalized 
photon density at position r for diffusion paths of length s ending at rd

27. For a homogeneous medium 〈Δr(r, 
τ)2〉 does not depend on r, so that Γ(rd, τ, s) = 〈Δr(τ)2〉 = 6Dτ with D the diffusion coefficient of the particles. 
However, for a medium with an inhomogeneous diffusivity, Γ(rd, τ, s) depends on what parts of the sample have 
been probed by the light. In this case, both the path length distribution P(rd, s) and the spatial density distribution 
of photon paths ρ(r; rd, s) are needed to interpret the measured g1(rd, τ) in terms of the spatiotemporal dynamics 
in the sample.

Photon density distribution in scattering media. To derive expressions for P(rd, s) and ρs(r; rd), we 
start by defining G(r, n; r0,rd, s) as the probability for a random walk of length s, starting from a point r0 on the 
surface of the material and ending at rd, to pass through point r after a distance n. Since this random walk consists 
of two random walks, first from r0 to r in n steps and then from r to rd in s − n steps, we can write:

=
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where the propagator G(r0, r, n) gives the relative probability of paths from point r0 to point r with path-length n. 
The probability of all photon paths of length s to a point r is

∫=r r r r rG s G s J d( , ) ( , , ) ( ) (8)0 0 0

where J(r0) is the intensity of the incident light at r0. We consider here the case of homogeneous illumination, so 
that J(r0) is constant along the surface z = 0. With this, we can write
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for the probability of all walks of length s ending at rd to pass through r after a distance n. The spatial density dis-
tribution of photon paths ρ(r; rd, s) is then obtained by averaging G(r, n; rd, s) over all steps27.
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The distribution of path lengths can be calculated as:
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Within the random walk approximation that we adopt here, the propagator G(r0, r, s) is the solution of the 
diffusion equation1,2.
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where the diffusion coefficient of photons in the sample can be expressed as Dp = vl*/3, with v the speed of light in 
the material. Since the path length s = vt, we can also write this as

∂
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with initial condition G(r0, r, 0) = δ(r − r0). Since the incident light becomes diffuse at a depth z ≈ l*, we take the 
beginning of the random walk in the sample to be at a distance z0 = l* inside the sample. The boundary condition 
can be specified by requiring that for s 0 the net flux into the sample is zero1. It has been shown that this is almost 
equivalent to forcing G(r0, r, s) to become zero a small distance outside the sample, at the extrapolated boundary 
condition z = −ze, with ze ≈ 0.7l*23,35. The solution of the diffusion equation with this boundary condition (and 
constant l*) can be obtained using the method of images36:
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Using this result with r = rd = (xd, yd, 0), we can obtain the path length distribution from Eqs (11) and (8). 
Carrying out the integrations over r0 and s gives (with smin = 0):
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Since we consider homogeneous illumination and homogeneous optical properties of the material, the path 
length distribution does not depend on the location of the detector, so that we have dropped the dependence on 
rd. The path length distribution P(s) has a maximum around s ≈ l*, while for long paths,  ⁎s l , ∼ −P s s( ) 3/2, as 
found previously1.

Next, we calculate the spatial photon density ρ(r; rd, s) from Eq. (10). The convolution integral is most conven-
iently calculated by using the properties of the Laplace transform27:
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Using Eqs (5), (6), (15), and (17), we can directly relate the field correlation function measured at location rd, 
g1(rd, τ), to the spatial distribution of particle mean-square displacements in the material, 〈Δr(r, τ)2〉.

Results
Intensity distribution. The goal of an LSI experiment is to generate a spatially resolved image of the dynam-
ics in the sample. The intensity of multiply scattered light that leaves the sample at z = 0 is recorded with a cam-
era; from the intensity fluctuations the correlation function can be obtained for each position rd in the z = 0 
plane. Since the photons that reach rd have taken different paths through the sample, the correlation function is 
a weighted average of the dynamics in the region probed by these photons. The spatial distribution of photons 
arriving at rd can be calculated as

∫ ρ=
∞

r r r rI P s s s( ; ) ( ) ( ; , )d
(18)d d

smin

and represents the relative contribution of particles in the region around r to the signal measured at rd. As shown 
in Fig. 2a, most photons probe a region within a distance l* from the detector; nevertheless, a significant fraction 
of the photons also explores regions farther out in the sample. We have also compared our prediction for the 
intensity distribution with the distribution obtained from random walk simulations (Fig. 2b). For distances from 
the detector that are significantly larger than l* the agreement is very good; however, for small distances, there are 
clear differences, which are due to the fact that short paths are not well described by the diffusion approximation.

To investigate how this spatial distribution of photons affects the LSI signal in a dynamically heterogeneous 
material, we consider two different examples of materials that contain a layer of thickness d in which the diffusion 
coefficient of the particles D1 differs from that in the rest of the material D0 (Fig. 3). In case A the layer is parallel 
to the surface of the material, and positioned between z = d and z = 2d. This situation allows us to investigate how 
sensitive the LSI technique is to dynamic regions that are hidden at some depth below the surface of the material. 
A similar geometry has been considered previously using a slightly different approach, based on solving the cor-
relation transport equation31. Here, we present an alternative expression for the autocorrelation function for this 
case, which we use to study the effect of τ and the ratio l*/d on the measured autocorrelation function. We then 
consider case B, in which the layer is perpendicular to the surface of the material. This situation, which has not 
been studied quantitatively before, allows us to assess the effect of resolutional blurring in the lateral direction.

Dynamic heterogeneity in the z-direction (case A). When the material is only heterogeneous in the z-direction, 
but not in the xy directions, the correlation function does not depend on the position rd of the detector and Eq. 
(6) can be simplified to ∫τ ∆ τ ρΓ = 〈 〉

∞s r z z s z( , ) ( , ) ( ; )d
0

2 , where ρ(z; s) is the spatial distribution of photons in 
the z-direction, obtained by integrating ρ(r; rd, s) over x and y:
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with z3 = z + 2ze. For long paths,  ⁎s l  this can be approximated as

Figure 2. (a) Photon intensity distribution as a function of = − + −r x x y y( ) ( )d d
2 2  and z, obtained from 

Eq. (18), with smin = 1.3l*. (b) Intensity distribution obtained with random walk simulations. (c) Spatial density 
distribution ρ(z; s) for photon paths of various path lengths s/l* = 5, 10, 50, and 100, and overall photon density 
I = ∫P(s)ρ(z; s)ds compared to random walk simulations (symbols).
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As shown in Fig. 2c, the photon density for diffusion paths of a given length s has a maximum around a depth 
zmax ≈ (sl*/6)1/2. Particles at this depth contribute most to the decorrelation of these paths. The total photon den-
sity, obtained by integrating over all path lengths, I(z) = ∫P(s)ρ(z; s)ds, is highest close to the surface of the mate-
rial and decays as ∼ −I z z( ) 2 for larger z.

In Fig. 4a, we compare the field correlation function g1(τ) for a homogeneous sample (D1 = D0) with that in a 
sample in which the diffusion coefficient in the layer D1 is either a factor of 10 higher or lower than that in the rest 
of the material D0, for l* = 2d/3. Clearly, the decorrelation is slowed down by a slowly diffusing layer, while it is 
accelerated by a rapidly diffusing layer. For a homogeneous sample, the correlation function is given by1,4

Figure 3. Two dynamically heterogeneous materials containing a layer of thickness d in which the diffusion 
coefficient of particles D1 differs from that in the rest of the material D0.

Figure 4. LSI results for samples with a layer positioned between z = d and z = 2d in which the diffusion 
coefficient D1 differs from that in the rest of the material D0 (case A in Fig. 3). Lines represent theoretical results 
and symbols random walk simulations. (a) Field correlation functions g1(τ) as a function of the renormalized 
time τ/τ0 with τ = −k D(6 )0 0

2
0

1, for l* = 2d/3 and different ratios D1/D0. (b) ln[g1(τ)] versus τ1/2 for the same 
parameters. (c) Correlation function g1(τ) for τ/τ0 = 6 × 10−3, 3 × 10−2, and 6 × 10−2 and D1 = 10D0 as a 
function of l*/d. (d) Apparent mean square displacements obtained from the g1(τ) values in (c) using Eq. (21).
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τ γ τ γ τ τ≈ − 〈Δ 〉 = − 〉g k r( ) exp( ( ) ) exp( / ) (21)1 0
2

0

with γ = (z0 + ze)/l* ≈ 1.7 and τ = −k D(6 )0 0
2

0
1 the time for particles in the medium to diffuse a distance −k0

1. It follows 
that a plot of ln[g1(τ)] versus τ1/2 should give a straight line with slope γ τ− / 0 . This is indeed what we find (orange 
data in Fig. 4b). Here, the short correlation times, corresponding to fast decorrelation, originate from the long paths 
with many scattering events, while the long correlation times originate from the short paths with only few scattering 
events. For a material with a layer of different diffusivity (D1 ≠ D0), we find that the initial decay follows that of the 
homogeneous sample. This initial decorrelation is due to the very long paths,  ⁎s d l/2  that mostly sample the 
region z > 2d. For intermediate correlation times, we find a faster decay for D1D0 and a slower decay for D1 < D0, with 
a slope in Fig. 4b that differs roughly by a factor D D/1 0  . This different decay is due to the paths with a length on the 
order of 6d2/l* that sample the diffusive layer. At longer correlation times, where we mainly see the short photon 
paths that sample the region z < d, the slope returns to that of the homogeneous sample.

The extent to which photons probe different depths in the sample depends on the transport mean free path 
l* (and thus on the wavelength). We therefore expect the measured dynamics in a material with a z-dependent 
diffusion coefficient to depend strongly on the value of l*. To investigate this, we calculate the correlation function 
for the case with D1 = 10D0 for different ratios l*/d. The largest effect of the diffusive layer is observed when l* is 
on the order of the layer depth d (Fig. 4c). When l* is much smaller, the photons do not penetrate deep enough 
in the sample to reach the layer, while for much larger l* the photons travel much deeper in the sample and only 
spend a small fraction of the time in the layer. We also find that for longer correlation times τ, the optimum l* for 
which the effect of the diffusive layer is highest gradually shifts to higher values. Again, the reason for this is that 
longer decay times correspond to paths with fewer scattering events, so that a larger l* is needed for these paths 
to reach the diffusive layer. These findings are in agreement with previously obtained results that showed that the 
correlation time at which the largest effect of the diffusive layer is observed decreases with increasing depth d of 
the layer31. Usually, in the analysis of LSI data the correlation functions g1(rd, τ) are converted to mean square 
displacements using Eq. (21), implicitly assuming that the material is homogeneous in the z-direction. Doing this, 
one obtains an apparent mean square displacement, which is a weighted average over the z-range probed by the 
photons. As shown in Fig. 4d, this apparent diffusion coefficient lies between D0 and D1, depending on the ratio 
l*/d and the correlation time τ, and reaches at most 30 to 40 percent of D1.

Dynamic heterogeneity in the lateral direction (case B). When the material is homogeneous in the z-direction, 
but inhomogeneous in the xy-plane, the measured correlation function depends on the position of the detector 
and is given by the photon density ρ(x − xd, y − yd; s), which is obtained from ρ(r; rd, s) by integrating over z:

∫ρ ρ

π

− − =

=






− + − 





∞

⁎ ⁎

r rx x y y s s z

sl
E

x x y y
sl

( , ; ) ( ; , )d

3
4

3[( ) ( ) ]
4 (22)

dd d

d d

0

1

2 2

with ∫=
∞ −E x e t t( ) ( / )d

x
t

1  the exponential integral function. The lateral spreading of photons can be quantified 
by the second moment of this distribution,

∫ π ρ〈 − 〉 = − =
∞ ⁎

r r r r r s r sl( ) 2 ( , )d 2
3 (23)d d

2

0

3

with r − rd = ((x − xd)2 + (y − yd)2)1/2. If the material is heterogeneous only in one direction (as in Fig. 3B), we can 
also integrate over y, to obtain

∫ ∫ρ ρ

π

− =

=




−
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−
| − | 





− 





∞

−∞

∞

⁎ ⁎ ⁎ ⁎

r rx x s s y z

sl
x x

sl
x x

sl
x x

sl

( , ) ( ; , )d d

3 exp 3( )
4

3
2

erfc 3( )
4 (24)

dd

d d d

0

2 2

which has a second moment 〈(x − xd)2〉 = sl*/3.
To see how this lateral spreading of photons influences the resolution of LSI in dynamically heterogeneous 

materials, we consider a material that contains a layer of width d perpendicular to the imaging plane in which 
the diffusion coefficient is 10 times higher than that in the rest of the material (case B in Fig. 3). We calculate the 
correlation function as a function of the detector position xd using Eqs (15) and (24), and convert this into an 
apparent mean square displacement using Eq. (21). Figure 5 shows the apparent mean square displacements for 
two different correlation times and various l*. It is clear that the actual mean square displacement is more accu-
rately followed for small l* values. As expected, when l* > d, the photons explore a region that is much larger than 
the width of the layer, leading to smoothing of the profile and a strongly reduced imaging contrast. However, even 
when l* is ten times smaller than d, the smoothing is still very significant for short correlation times (Fig. 5a), and 
the apparent mean square displacement measured in the layer is almost two times smaller than the actual mean 
square displacement. For longer correlation times, the blurring is significantly smaller (Fig. 5b); this is explained 
by the fact that these longer correlation times correspond to shorter paths with fewer scattering events, which 
sample a smaller region of the sample (Eq. (23)), therefore causing less blurring.
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Discussion
We have obtained theoretical expressions for the path length distribution and spatial density distribution of pho-
tons in a strongly scattering, semi-infinite medium under plane wave illumination. These expressions allowed us 
to calculate the dynamic correlation function that would be measured in a backscatter LSI experiment for dynam-
ically heterogeneous materials. We have applied these results to two simple geometries of a layered medium with 
different diffusivities, but our expressions can be used for any spatial distribution of diffusion coefficients. 
Moreover, the effects of directional flows with spatially varying shear rates γ


r( ) can be included straightforwardly, 

by adding a term ∫τ γ ρ


⁎ r r r rl s d( ) ( ) ( ; , )d
1
5

2 2  to Eq. (6), which accounts for the decorrelation due to spatially inho-
mogeneous flows5,27.

Our model makes use of the diffusion approximation for describing the transport of photons in the medium, 
which is known to be accurate for sufficiently long paths,  ⁎s l . It is not obvious that this condition holds for 
backscattering LSI, in which short paths contribute significantly to the signal; for example, according to Eq. (15) 
the path length distribution has a maximum for s ≈ l*. This is aggravated by our neglect of polarization effects, 
which are important for short photon paths for which depolarization does not yet occur33. To suppress the contri-
bution of these short paths, we have assumed that the random walk starts at a depth z ≈ l* and we have imposed a 
minimum path length smin ≈ l*. Likewise, in the simulations, we only considered photons that were scattered at 
least twice. This corresponds to the experimental situation, where singly scattered photons are usually excluded 
from the analysis by using a polarization filter. With these conditions, we find remarkably good agreement 
between the theoretical results (with smin = 1.3l*) and the random walk simulations (Figs 2, 4, and 5). The agree-
ment is especially good for short correlation times τ, which correspond to the long diffusion paths, with many 
scattering events. For longer τ, corresponding to shorter paths, the diffusion approximation loses its validity, 
leading to larger differences between the theoretical results and the simulations (see e.g. Figs 4c,d and 5b). 
Nevertheless, even in this case there is still very good qualitative agreement.

Our results show that the interpretation of LSI measurements in dynamically heterogeneous samples should 
be done with care. The apparent diffusion coefficient measured at a particular position can depend strongly on the 
transport free path l* and the correlation time τ. For larger l* and for shorter τ, the decorrelation is due to longer 
photon paths, which probe regions that are deeper inside the material, while for small l* and large τ the decorre-
lation is due to short paths that probe the regions near the surface (Fig. 4). For the same reason, the resolution of 
LSI in the lateral direction is smaller for large l* and small τ due to the spatial averaging that is inherent for the 
longer photon paths. For short correlation times, significant spatial blurring occurs even on length scales that are 
more than ten times larger than l* (Fig. 5). The outcome of an LSI measurement in a dynamically heterogeneous 
material thus depends strongly on the value of l* and τ. For a reliable interpretation, it is therefore recommended 
to perform measurements for a range of correlation times, and preferably also for different l*. We believe that 
our theory will be useful for analyzing the results of such measurements and for estimating the effects of spatial 
averaging, and will therefore contribute to an improved accuracy of LSI measurements.

Methods: random walk simulations
To validate the expressions obtained for the photon density distribution and the autocorrelation function, we use 
random walk simulations37. We collect statistics for 106 photons, which are launched one at a time in the 
+z-direction at z = 0, and allowed to perform a random walk until they leave the sample again at z = 0. The step 
length is sampled from a Poisson distribution with mean l*, and we assume isotropic scattering, so that the 

Figure 5. Apparent mean square displacement for samples with a layer of higher diffusivity with D1 = 10D0, 
placed between x = −d/2 and x = d/2 (case B in Fig. 3), for l*/d = 0.1, 0.3, 1, and 3, and for τ/τ0 = 3 × 10−4 (a) 
and 6 × 10−2 (b). Lines represent theoretical results and symbols random walk simulations. The dashed black 
line represents the real mean square displacements.
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direction of each step is random. For each step we calculate the transfer wave vector qi, and we record the accu-
mulated phase shift φ τ τ〈Δ 〉 = ∑ 〈Δ 〉q r r( ) ( , )i i i

2 2 2 , with 〈Δr(ri, τ)2〉 = 6D(ri)τ the mean square displacement of 
particles at the location of scattering event i. The field correlation function g1(τ) is obtained from this by averaging 

φ τ− 〈Δ 〉( )exp ( )1
2

2  over all random walks37. Since we are dealing with multiple scattering, we only consider tra-
jectories with at least 2 scattering events.
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