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Medical innovation has an extraordinary attrition rate. More than
95% of drug candidates fail to receive final approval for patient care,
and to reach market the average drug requires a dozen years of research
and development at a cost in the billions of dollars (Giri and Bader,
2015). Medical companies are responding by seeking strategies that
lower these costs, including a reluctance to invest in less profitable med-
ications, such as those for rare or complex diseases.

One reason costs remain stubbornly high is the dependence on ani-
mal models. For many diseases, animal models are the only option, be-
cause human samples are difficult to acquire pre-mortem. Even when
human cells are available, they often express phenotypes of the disease
at late stage. In the case of Parkinson's disease, for example, it has been
estimated that approximately 50% of dopaminergic neurons are already
lost when patients begin showing symptoms (Bezard et al., 2001). Most
experimental therapies tested on human cells at this stage of the disease
are unlikely to recover the lost cells, which is why many Parkinson's pa-
tients still await effective treatments.

Induced pluripotent stem cells (iPSCs) may provide an alternative
model for cheaper and faster drug discovery. Human iPSCs, which
were first reported in 2007, describe somatic cells that have been
reprogrammed to the pluripotent state from which they can be differen-
tiated into three germ layers (Takahashi et al., 2007). iPSCs revolution-
ized our understanding of cell identity and revealed the epigenetic
mechanism determining this identity. From a medical perspective,
iPSCs also launched research into regenerative medicine that had been
hamstrung by legislative limitations on the use of embryonic stem
cells (ESCs). To date, there exists only one case study of iPSC-based ther-
apy for human patients. In 2014, researchers in Japan transplanted au-
tologous iPSC-derived retinal cells into the eye of a patient suffering
from age-related macular degeneration (AMD). Observation one year
later showed the transplanted sheet survived well without immune re-
sponse or adverse proliferation (Mandai et al., 2017). This study was
done conservatively, as the same operation on a second patient was
cancelled when some irregularities were found in the iPSC clones. Be-
cause there is no international consensus on the criteria of safe iPSCs,
the authors chose prudence. Comparatively, another article published
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the same time reported disastrous results for AMD therapy using autol-
ogous adipose stem cells (Kuriyan et al., 2017). In the latter case, the pa-
tients saw rapid loss of vision and needed emergency care. In the case of
the iPSC-based treatment, the vision ceased to degenerate, and the pa-
tient is satisfied with the outcome. Other iPSC-based clinical researches,
such as one for Parkinson's disease, are expected to commence before
2020 in Japan.

The creation of patient iPSCs suggests that as a technology, iPSCs
could surpass ESCs in medical applications. Patient iPSCs may not al-
ways be advantageous for regenerative medicine, because they preserve
the genome including all mutations that associate with the disease. For
the very same reason, however, they could serve as in vitro human
models for the study of disease mechanisms and drug discovery, signif-
icantly reducing costs. Like regenerative medicine, there are few exam-
ples of drug discovery directly linked to iPSCs. Nevertheless, iPSCs are
already the basis for one clinical study of an experimental drug to
treat amyotrophic lateral sclerosis that did not rely on mouse models
(Mcneish et al., 2015). It should be noted, however, that this example
is an exception, and that iPSC models should be assumed as comple-
ments and not substitutes for animal models.

Another way in which iPSCs could reduce costs is by stratifying pa-
tients into subgroups that are positive and negative responders to a
treatment. Kawasaki disease is an inflammatory disease that primarily
targets arterial endothelial cells. Treatment with high-dose intravenous
immunoglobulin significantly mitigates coronary-related disorders, but
a percentage of patients do not respond to this treatment. Recently, re-
searchers used patient iPSCs to find a new biomarker for the identifica-
tion of non-responders. Endothelial cells induced from Kawasaki
patient iPSCs showed that non-responders tended to express more
CXCL12, a potent chemoattractant for several immune cells (Ikeda et
al., 2016). This identification would recognize the necessity of alterna-
tive treatments, which would save both cost and precious time.

Nations have taken notice and responded with several new policies
intended to stimulate collaboration between academia and industry for
iPSC clinical translation. The United States implemented the 21st Centu-
ry Cures Act in 2016 with the intent of expediting the development and
review of regenerative medicine. One year earlier, Japan established the
Japan Agency for Medical Research and Development (AMED). AMED
consolidates the budgets of several ministries in which medical research
was only one portfolio of many (Azuma and Yamanaka, 2016). One of
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the major initiatives at AMED is the creation of iPS cell stocks. The Cen-
ter for iPS Cell Research and Application (CiRA) at Kyoto University is
currently contributing to two stocks. The first involves the creation of
clinical-grade iPS cells. These cells are distributed to partnering medical
centers that differentiate them into specific cell types for therapies and
are intended primarily for the innovation of regenerative medicines.
Complementing this work is a patient iPS cell stock that provides cells
for disease modeling, drug discovery and toxicity assays.

Besides drug discovery, iPSCs could be an ideal model for drug
repurposing. It has been estimated that drug repurposing can take
only one third the time and cost of drug discovery (Nosengo, 2016). In
2014, the first proof-of-concept using iPSCs for drug repurposing was
reported (Yamashita et al., 2014). Here, scientists prepared iPSC-differ-
entiated chondrocytes from skeletal dysplasia patients and found that
statin could rescue cell development and promote bone growth.

Building on these discoveries, a new partnership between CiRA and
Takeda Pharmaceuticals known as T-CiRA was commenced at the end of
2015 and brings together the pharmaceutical expertise at Takeda with
the expertise of academic researchers like those at CiRA to translate
iPSCs to clinical application. The partnership is distinct from other bio-
medical collaborations between academia and industry, both in its fi-
nancial scale and structure. The project is completely funded by
Takeda, which is investing 20 billion yen (approximately $180 million
USD) for research along with another 12 billion yen for infrastructure.
This amount is intended to remove the need for venture capital, with
the goal of reducing cost of the translation and sensitivity to investor ca-
priciousness. The amount is also one reason why T-CiRA is secure for at
least ten years, whereas most academic-industry collaborations in Japan
rarely exceed three-year commitments. Accordingly, there are funda-
mental differences between the organization at T-CiRA and other acad-
emy-industry partnerships that are hoped to become a model for future
translation of academic innovations. First is that all labs are located on
Takeda property. Normally, industry representatives will work at the
academic lab during the collaboration, but at T-CiRA, all members will
be based at Takeda, which allows more company employees to engage
the project. Further, although Takeda completely funds T-CiRA, the lead-
er of each lab holds primary appointment at an academic institution.
The T-CiRA staff permanently ensconced at Takeda constitutes a mix
of Takeda employees and members of the partnering academic insti-
tutes. Because CiRA was the original partner, CiRA faculty members
were appointed as the principal investigators (PI) of the first seven T-
CiRA laboratories. An eighth lab has since been added and is affiliated
with a separate academic institute. It is expected that more institutes
will be represented at T-CiRA as the project grows. Second is the divi-
sion of intellectual property. In principle, all patents are to be shared be-
tween the academic institute and Takeda regardless of the inventors'
primary affiliation. Third, in response to the creation of AMED and the
expertise of its academic partners, T-CiRA aims to expand Takeda's in-
terests to new regenerative medicine and cell therapies, while academic
partners will have easy access to many of Takeda's resources such as
compound libraries for drug discovery.

At the same time, there is an awareness that the grand size of T-CiRA
risks discouraging other potential industry partners from collaborating
with T-CiRA's academic partners. For this reason, PIs are maintaining a
clear separation between their academic research and T-CiRA research.
For example, research done previously by one T-CiRA lab leader that has
led to a new mechanism and drug targets for the rare disease
fibrodysplasia officans progressiva will be in the exclusive domain of
GiRA, since that is where the research was done (Hino et al., 2015). CiRA
itselfis a critical node in the Japan iPSC network and is already distributing
cells from its stocks. T-CiRA is the biggest, but just one of many industry
collaborations that GiRA deems necessary for the translation of iPSCs.

Having only begun its second year, T-CiRA is still adapting and is a
long way from realizing products for patients. Nevertheless, there is ex-
pectation in Japan that this organization will become a model for lower-
ing the cost and time of translating academic innovation to patient care.
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