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ABSTRACT We present the draft genome sequences of Bacillus flexus strain DMT-
MMB08, Bacillus licheniformis strain DMTMMB10, and Oceanobacillus picturae strain
DMTMMB24, isolated from marine macroalgae.

In marine environments, Bacillus sp. strains are common inhabitants and are known to
produce a variety of natural products (1, 2). Bacillus flexus, Bacillus licheniformis, and

Oceanobacillus picturae strains are known as alkali-halotolerant bacteria which produce
bacteriocins, glycopeptides, exopolysaccharides, serine proteases, cellulases, and poly-
hydroxyalkanoates, and they are also known for their phosphate-solubilizing capabili-
ties (3–11).

Bacillus flexus strain DMTMMB08 and Bacillus licheniformis strain DMTMMB10 were
isolated from surface-sterilized tissues of Sargassum polycystum L., and Oceanobacillus
picturae strain DMTMMB24 was isolated from surface-sterilized tissues of Acanthophora
spicifera L. following the method of Stoltzfus et al. (12) and using Zobell marine agar
(Himedia). After 72 h of incubation, individual bacterial colonies were transformed to
liquid medium (Zobell marine broth) for overnight growth and then subjected to
genomic DNA (gDNA) extraction and purification using a genomic DNA isolation kit
(Qiagen). The sequencing library was set up with a TruSeq Nano DNA library prepara-
tion kit (Illumina) with gDNA, following the manufacturer’s instructions, and sequenced
using a NextSeq 500 with 2 � 150-bp read chemistry (Eurofins Genomics, India). The
sequenced raw data were processed to obtain high-quality clean reads using Trimmo-
matic version 0.38; reads with more than 10% quality threshold (QV) �20 Phred score
and those �100 nucleotides (nt) in length were eliminated (13). After removing the
adapters and low-quality sequences, 3,049,932 paired-end reads totaling 906,971,477
bases remained for Bacillus flexus strain DMTMMB08, 6,368,973 paired-end reads total-
ing 1,896,742,518 bases remained for Bacillus licheniformis strain DMTMMB10, and
6,532,483 paired-end reads totaling 1,945,935,542 bases remained for Oceanobacillus
picturae strain DMTMMB24. De novo genome assembly was performed using the
SPAdes genome assembler version 3.11.1 with default parameters (14). The resulting
draft genome sequence consists of 189 contigs with a total genome size of
3,463,842 bp (38.1% GC content) for Bacillus flexus strain DMTMMB08, 24 contigs with
a total genome size of 4,265,203 bp (45.9% GC content) for Bacillus licheniformis strain
DMTMMB10, and 49 contigs with a total genome size of 3,663,112 bp (39.2% GC
content) for Oceanobacillus picturae strain DMTMMB24, with average coverages of
257-fold, 416-fold, and 488-fold, respectively. The draft genome sequences were an-
notated using the NCBI Prokaryotic Genome Annotation Pipeline (15). A total of 3,638
(3,517 protein-coding genes), 4,469 (4,300 protein-coding genes), and 3,678 (3,563
protein-coding genes) genes were predicted in Bacillus flexus strain DMTMMB08,
Bacillus licheniformis strain DMTMMB10, and Oceanobacillus picturae strain DMTMMB24,
respectively.

Biosynthetic gene cluster (BGC) analysis was carried out using all analytical features
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of antiSMASH version 4.2.0 (16). Twenty-five BGCs from Bacillus flexus DMTMMB08, 33
BGCs from Bacillus licheniformis DMTMMB10, and 29 BGCs from Oceanobacillus picturae
strain DMTMMB24 were predicted, respectively. All three bacteria were found to have
the signature of known and putative BGCs, like type 3 polyketides (T3PKs), bacteriocins,
siderophore synthases, terpenes, nonribosomal peptides (NRPs), polysaccharides, and
fatty acids within them. In Bacillus flexus strain DMTMMB08, the novel hydroxamate
siderophore signature was noted in the predicted BGCs. The presence of an ectoine
BGC, with the capability of extreme osmotic tolerance, and a novel kijanimicin-like
antibiotic BGC were found in Oceanobacillus picturae strain DMTMMB10. Further in-
sights into these draft genome sequences will help guide natural product discovery
from these strains in the future.

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession numbers QWLS00000000, QWLT00000000,
and QWLU00000000 and the SRA accession numbers SRR8039988, SRR8039989, and
SRR8039987 for Bacillus flexus DMTMMB08, Bacillus licheniformis DMTMMB10, and
Oceanobacillus picturae strain DMTMMB24, respectively.
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