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A B S T R A C T

Background: Gamma knife radiosurgery (GKRS) is a common treatment for cerebral arterio-venous malforma-
tions (AVMs), particularly in cases where the malformation is deep-seated, large, or in eloquent areas of the
brain. Unfortunately, these procedures can result in radiation injury to brain parenchyma. The fact that every
AVM is unique in its vascular morphology makes it nearly impossible to exclude brain parenchyma from isodose
radiation exposure during the formulation of a GKRS plan. Calculating the percentages of the various forms of
tissue exposed to specific doses of radiation is crucial to understanding the clinical responses and causes of brain
parenchyma injury following GKRS for AVM.
Methods: In this study, we developed a fully automated algorithm using unsupervised classification via fuzzy c-
means clustering for the analysis of T2 weighted images used in a Gamma knife plan. This algorithm is able to
calculate the percentages of nidus, brain tissue, and cerebrospinal fluid (CSF) within the prescription isodose
radiation exposure region.
Results: The proposed algorithm was used to assess the treatment plan of 25 patients with AVM who had un-
dergone GKRS. The Dice similarity index (SI) was used to determine the degree of agreement between the results
obtained using the algorithm and a visually guided manual method (the gold standard) performed by an ex-
perienced neurosurgeon. In the nidus, the SI was (74.86 ± 1.30%) (mean ± standard deviation), the sensitivity
was (83.05 ± 11.91)%, and the specificity was (86.73 ± 10.31)%. In brain tissue, the SI was
(79.50 ± 6.01)%, the sensitivity was (73.05 ± 9.77)%, and the specificity was (85.53 ± 7.13)%. In the CSF,
the SI was (69.57 ± 15.26)%, the sensitivity was (89.86 ± 5.87)%, and the specificity was (92.36 ± 4.35)%.
Conclusions: The proposed clustering algorithm provides precise percentages of the various types of tissue within
the prescription isodose region in the T2 weighted images used in the GKRS plan for AVM. Our results shed light
on the causes of brain radiation injury after GKRS for AVM. In the future, this system could be used to improve
outcomes and avoid complications associated with GKRS treatment.

1. Introduction

Cerebral arterio-venous malformation (AVM) is a congenital cere-
bral vascular anomaly with an incidence rate estimated at 1.12–1.34
per 100,000 person years (Al-Shahi et al., 2003). An AVM comprises an

abnormal nidus of blood vessels that shunt blood directly from an artery
to a vein and thereby bypass an intervening capillary bed (Joint Writing
Group of the Technology Assessment Committee American Society of
Interventional and Therapeutic Neuroradiology et al., 2001). The
symptoms of cerebral AVM include hemorrhagic stroke, seizure, and
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headache. These vascular lesions account for 9% of subarachnoid he-
morrhages and 1–2% of all strokes (Ogilvy et al., 2001). Gamma knife
radiosurgery (GKRS) is a common approach to the treatment of cerebral
AVM, particularly in cases where the AVM is located at depth or in a
functional area of the brain that is deemed too risky for resection.
Following radiosurgery, 80% of patients show complete obliteration of
the AVM in long-term follow-up (Bollet et al., 2004; Lunsford et al.,
1991; Pan et al., 2000). However, it can take 2–3 years after GKRS
before the AVM is obliterated, and adverse radiation effects (ARE)
during the latency period can lead to brain edema (Yen et al., 2013).

The underlying causes of AREs are still unclear. Researchers have
hypothesized that AREs are related to brain parenchyma injuries, which
occur close to the nidus of AVM during GKRS treatment. The niduses of
AVM are unique in terms of size and vascular morphology. Some pre-
sent a compact vascular structure with little brain tissue, whereas
others are spread out and intermingled with brain tissue. The later
(diffuse type) are more likely to receive higher doses of radiation during
GKRS treatment. A lack of tools for the quantitative analysis of images
for the evaluation of GKRS plans means that the hypothesis of volume-
dependent adverse radiation effects after GKRS cannot be proven.

In fuzzy c-means (FCM) clustering, each data point may belong to
more than one cluster (Cannon et al., 1986; Hathaway and Bezdek,
2001). This image analysis technique is well established in tumor de-
tection (Gatos et al., 2017). Clustering and cluster analysis involves as-
signing data points to clusters to ensure that items in a given cluster are
as similar as possible and that items belonging to different clusters are as
dissimilar as possible. Clusters are identified using similarity measures,
such as distance, connectivity, and intensity. The choice about which
measures to use is based on available data or the intended application.

Our objective in this study was to use the FCM technique to classify
the prescription isodose radiation exposure range in T2 weighted (T2W)
images for GKRS plans with the aim of calculating precise percentages
and volumes of the various forms of tissue.

2. Methods

The algorithm proposed in this study is intended for fully automated
image analysis. In brief, the dose intensity distribution of a GKRS plan is
first converted into a corresponding 3D special position in a T2w image
set via linear interpolation. The prescription isodose region is then
identified to specify the ROI, whereupon the voxels within the ROI are
classified according to intensity via FCM clustering. Finally, the volumes
or ratios of the various forms of tissue within the ROI are calculated.

2.1. Subjects

Twenty five patients (age range 9.7–77.2 years) with cerebral AVM
who had been admitted to Taipei Veterans General Hospital were
randomly recruited for this study. Written, informed consent was ob-
tained from each participating patient. The protocol of this research
was approved and monitored by Taipei Veterans General Hospital
Institutional Review Board.

GKRS plans were drawn up using the various pulse sequences of MR
images (T1w, T2w, and TOF) to locate the margin of the AVM nidus.
During the planning process, we delineated the margin of the nidus in
the MR images and compared these results with findings obtained from
angiograms. Among the various pulse sequence images used during
GKRS planning, T2w images provided the best tissue resolution for
differentiating among the three tissue components in gray scale.

2.2. MR imaging protocol

All MRI data of patients with cerebral AVM were collected using a
Signa HDxt 1.5 T (GE healthcare Milwaukee, WI) scanner with an eight-
channel phased-array neurovascular coil to obtain T2w and magnetic re-
sonance angiography time of flight (TOF) sequences. The T2w images were

used for subsequent data processing because they provided the best tissue
contrast and resolution, wherein brain tissue appeared gray, the nidus
appeared black (due to flow void effects), and the CSF space appeared
white. The parameters used in acquiring the T2w sequences were as fol-
lows: repetition time (TR)=4000–5500ms, echo time (TE)=80–100ms,
field of view (FOV)=260mm, number of excitations (NEX)=2, slice
thickness=3mm, and slice gap=0mm. The parameters for acquiring
TOF sequence were TR=6.9ms, TE=45ms, FOV=260mm, NEX=2,
slice thickness=1.5–2mm, and slice gap=1.5–2mm.

2.3. Manual clustering

Manual clustering was performed by an experienced neurosurgeon
(H.C. Yang) according to the radiation exposure region and T2w intensity.
Preprocessing was performed to obtain the boundary of the prescription
isodose region within the parenchymal brain in T2w images. The areas of
the nidus, brain tissue, and CSF within the boundary were identified via
manual demarcation using Paintbrush software. The neurosurgeon re-
cognized the black and white of the T2w intensity as the nidus and CSF,
respectively. The remaining voxels were regarded as brain tissue. The lo-
cation of cerebral AVM was determined according to the corresponding
neuroanatomy observed in the images. For example, the blue, green, and
red curves in the T2w intensity histogram shown in Fig. 1 respectively
illustrate the manually demarcated nidus, brain tissue, and CSF.

2.4. Automated clustering

We developed an automated (i.e., unsupervised) clustering algo-
rithm using FCM that is capable of analyzing T2w images of the ra-
diation exposure region of the brain that had been delineated in the
GKRS plan. The algorithm was used to calculate the various percentages
of nidus, brain tissue, and CSF. The program was run on a personal
computer with Intel Core™ i7-6700HQ CPU@ 2.60 GHz with 16 GB
RAM. The procedure was conducted primarily in the MATLAB en-
vironment (MathWorks Inc., Natick, Massachusetts). As shown in Fig. 2,
analysis and automated clustering consisted of 7 steps, which required a
total of 3.47 ± 1.29 s for execution for each case. The details of each
step are described in the following:

Step 1. Interpolation The dose intensity distribution from the dose
map is converted into corresponding spatial positions on the T2w
images using linear interpolation, and the Dose Grid Scaling factor is
extracted from the header information of the dose data. The dose
intensity distribution at the various voxel positions in the T2w
image are then multiplied by the Dose Grid Scaling factor to obtain
the radiation dose intensity distribution in centigrays (cGys).
Step 2. Selection of prescription isodose region After selecting a
prescribed peripheral radiation dose intensity, the selected radiation
exposure region included the entire area in the T2w images that
received radiation dose intensity equal to or greater than the pre-
scription dose intensity.
Step 3. Registration The TOF is registered to the corresponding T2w
image via 3-D voxel registration using the normalized mutual in-
formation method to correct for differences resulting from head
movement (Maes et al., 1997).
Step 4. Brain mask extraction A brain mask is extracted from the
registered TOF based on estimates of the inner and outer skull sur-
faces using BET (Brain Extraction Tool), a software package devel-
oped at the FMRIB Centre, University of Oxford, Oxford, United
Kingdom (Smith, 2002).
Step 5. ROI definition The ROI is identified using a logical AND
operation applied to the selected radiation exposure region and
brain mask.
Step 6. Fuzzy c-means classification The voxels in the ROI of a T2w
image are classified as the nidus, brain tissue, or CSF, according to
differences in voxel intensity between the various forms of tissue.
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This is achieved using fuzzy C-means clustering (Bezdek, 1981). This
function is detailed below, with the information expressed as a value
between 0 and 1, indicating the degree to which each voxel belongs
to each cluster. The expected number of clusters is N, which is equal
to 3 (nidus, brain tissue, and CSF). There are D voxels in the ra-
diation exposure region of the T2w images (x1,x2, …xD). Each voxel
has its own grayscale value. For example, for data point xi in a brain
T2w image set, the sum of the membership grades belonging to the
respective clusters is equal to 1. The function for fuzzy clustering is
as follows:

= = …
=

=

u i D1, 1, 2, ,
j

N

ij
1

3

The objective function is defined according to matrix U:

=
= =

=

J u x cm
i

D

j

N

ij
m

i j
1 1

3
2

where m is the fuzzy partition matrix exponent that controls the degree
of fuzzy overlap; cj is the center of the jth cluster; and uij is the degree of
membership of data point xi in the jth cluster.

Fuzzy clustering is performed as follows:

Step 6.1. Cluster uij is randomly initialized.
Step 6.2. The centers of the various clusters (nidus, brain tissue, and
CSF) are calculated as follows:
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Step 6.3. uij is renewed according to the following formula.
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Step 6.4. The objective function Jm is calculated.
Step 6.5. Steps 2–4 are repeated iteratively until self-improvement
Jm is smaller than a specified threshold or until a specific number of
iterations has been performed. For example, the minimum im-
provement Jm could be set at 1e-5 and the maximum number of
iterations could be set at 100.
Step 7. The volumes or percentages of the nidus, brain tissue, and
CSF within the ROI are calculated.

2.5. Quantitative evaluation

Based on the Dice similarity index (SI) (Dice, 1945), sensitivity and
specificity were calculated to determine the degree of conformity be-
tween automatic and manual segmentation in the GKRS plan of 25
patients with cerebral AVM. The agreement between the proposed al-
gorithm and manual method in terms of volumetric measurement was
evaluated using the intraclass correlation coefficient (ICC) (McGraw
and Wong, 1996). Bland–Altman plots were used to assess systematic
dissimilarity (Bland and Altman, 1999).

2.6. Clinical application

The automated clustering algorithm was used to analyze patients
with unruptured cerebral AVM who were treated at Taipei Veterans
General Hospital before 2012 and underwent follow-up for at least
3 years. A total of 40 patients were enrolled for clinical analysis. Our
objective was to determine whether the volume of intervening brain
parenchyma in the nidus of cerebral AVM is associated with increased
ARE rates following GKRS.

3. Results

The ICCs in the delineation of the nidus, brain tissue, and CSF were
0.894, 0.882, and 0.714, respectively. Fig. 3 presents an example of the
image analysis used in the clustering of the nidus, brain tissue, and CSF
as well as the intensity distribution. The regions demarcated manually
by the neurosurgeon are as follows: nidus (dark blue), brain tissue
(green), and CSF (red). The regions demarcated by the algorithm are as
follows: nidus (bright blue), brain tissue (green), and CSF (red). Linear
regression analysis yielded the following regression coefficients and
regression slopes for the three regions: nidus (R2=0.873 and slope of
1.136), brain tissue (R2= 0.905 and slope of 0.778), and CSF
(R2= 0.639 and slope of 0.781), as shown in Fig. 4A. The Bland-Altman
plot in Fig. 4B indicates a slight overestimation of the nidus (bias of
0.286ml) and CSF (bias of 0.242ml) as well as a pronounced under-
estimation of brain tissue (bias of 0.528ml). Clearly, the results ob-
tained using automated clustering are strongly correlated with those
obtained via manual clustering.

We also used SI to determine the degree to which the proposed au-
tomated segmentation method agrees with manual clustering in terms of
sensitivity, specificity, and average performance for the three types of
tissue. The proposed algorithm outperformed manual clustering (the gold

Fig. 1. Histographic characterization of cerebral AVM. The intensity histogram of the T2w image was obtained within the radiation exposure region, with the nidus
(dark blue), brain tissue (green), and CSF (red) demarcated manually. (A) The red curve indicates the region exposed to radiation; (B) The blue, green, and red colors
respectively indicate the nidus, brain tissue, and CSF delineated via manual segmentation. (C) Intensity histogram of nidus, brain tissue, and CSF obtained using
manual segmentation within the region exposed to radiation.
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Fig. 2. Schematic diagram showing the workflow employed for image analysis and automated segmentation. The process includes seven steps: interpolation,
selection of isodose coverage area, registration, brain mask extraction, ROI definition, Fuzzy c-means classification, and calculation of volumes or percentages of the
various brain tissues.
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standard) in terms of sensitivity and specificity in detecting the nidus:
SI= (74.86 ± 1.30)% (mean ± standard deviation); sensi-
tivity= (83.05 ± 11.91)%, and specificity= (86.73 ± 10.31)%. The
results for brain tissue were as follows: SI= (79.50 ± 6.01)%; sensi-
tivity= (73.05 ± 9.77)%; and specificity= (85.53 ± 7.13)%. The re-
sults for CSF were as follows: SI= (69.57 ± 15.26)%; sensi-
tivity= (89.86 ± 5.87)%; and specificity= (92.36 ± 4.35)%. An SI
value exceeding 0.7 is regarded as strong agreement (Bartko, 1991;
Zijdenbos et al., 1994). Image analysis and automated segmentation re-
quired less than 1.523 ± 0.694 s to complete.

Table 1 lists the percentages of the three forms of brain tissue within
the radiation exposure region as determined using automated clus-
tering. Among the 25 patients, the lowest percentage of brain tissue was
37.13%, whereas the highest percentage of brain tissue was 70.85%,
highlighting the high degree of variance that can be expected in the
amount of brain tissue exposed to radiation during GKRS.

Finally, we correlated the results obtained using the imaging algorithm
and clinical follow-up results from the other 40 AVM patients with un-
ruptured AVMwho underwent upfront GKRS only. This included 19 female
and 21 male patients. The median age of these patients was 35 years old
(range from 20 to 80 y/o). The median follow-up time was 71.5months
(range from 20 to 217months). The median volume of the prescription
isodose region was 21ml (range from 7 to 53ml). The median prescription
peripheral dose for the nidus was 17Gy (range from 15 to 18.5Gy). We
adopted the grading system proposed by Yen et al. (2013) to evaluate the
severity of ARE. Briefly, Grade I AREs indicate slight changes in imaging

that impose no mass effect on the surrounding brain tissue. Grade II AREs
indicate moderate changes that cause effacement of the sulci or compres-
sion of the ventricles. Grade III AREs indicate severe changes that cause a
midline shift of the brain. AREs were identified in 27 patients (17 patients
with grade I, 9 patients with grade II and 1 patient with grade III), which
was significantly related to the percentage of brain tissue within the pre-
scription isodose range (53.3% vs. 44.6%, p=.001) in Fig. 6.

4. Discussion

4.1. The advantages of FCM over other methods

Prior to this study, we used artificial markers to label the nidus,
brain tissue, and CSF within the ROI identified by neurosurgeons or
radiologists. We then used the support vector machine supervised
classifier for training and classification. Unfortunately, the analysis
results obtained using a supervised classifier were highly biased by the
contrast and brightness of individual images, which proved difficult to
normalize between images from every patient. Thus, we opted for an
unsupervised classifier to segment the various forms of brain tissue
within the ROI and thereby avoid bias. The high SI of FCM clustering in
this study can be attributed to the following features.

First, fuzzy clustering is based on the principle of assigning voxels to
specific clusters according to the distribution characteristics observed
in voxel intensity. The voxels within the ROI are classified using dif-
ferent algorithms. For example, voxels can be classified by setting

Fig. 3. Radiation exposure region, manual segmentation, and automated segmentation (top to bottom) in T2w images. The red curve indicates the boundary of the
prescription isodose region. The blue, green, and red colors respectively indicate the nidus, brain tissue, and CSF.

Fig. 4. Evaluation of nidus, brain tissue, and CSF segmentation results. (A) Linear regression (B) Bland-Altman plot. The red lines and dots represent the nidus; the
green lines and dots represent brain tissue; and the blue lines and dots represent CSF.
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intensity thresholds pertaining to each of the tissue types, or by using
the unsupervised fuzzy clustering method. FCM is based on the prin-
ciple of fuzzy clustering; however, each data point may belong to dif-
ferent clusters with different membership grades. In other words, no
data point absolutely belongs to any cluster. Rather, each data point is
represented as a number between 0 and 1, indicating the degree to
which each data point belongs to each cluster. This makes it possible to
examine the membership grades of each data point for all of the clusters
in the membership grade matrix. The data point is then assigned to the
cluster with the highest value.

Second, brain masks extracted from a registered TOF are more ef-
fective than those obtained from T2w images. The contrast assigned to
the various types of tissue varies according to the type of image, which
means that different types of MR images can be selected for the extrac-
tion of mask images. For example, Fig. 5A shows a T2w image in which
the left black portion within the periphery of the brain is a cerebral AVM.
Fig. 5B shows a brain mask image extracted from Fig. 5A, in which the
brain region near the nidus is not within the region of the extracted
mask. Fig. 5C shows a registered TOF image obtained from the TOF
image registered to a T2w image of the same patient in which the nidus is
displayed in brighter gray. Fig. 5D shows a brain mask image extracted
from Fig. 5C, in which the extracted mask covers the brain region near
the nidus. Fig. 5A and Fig. 5C are MR images obtained from the same
patient; however, the brain mask images extracted from the two figures
differ considerably in terms of range, as shown in Fig. 5B and Fig. 5D.
This means that mask images must be extracted from an appropriate type
of MR image based on the location of the target.

4.2. Using computers to calculate tissue components within the nidus margin
of cerebral AVM

One previous study demonstrated that the radiation dose required to
obliterate the AVM nidus is approximately 18–22 Gys (Flickinger et al.,
1996). This dose is equal to the effective dose required to treat malignant
brain tumors, and exceeds the tolerance of normal brain tissue. However,
unlike GKRS treatment for solid, well-defined brain tumors, GKRS

treatment for AVMs exposes a greater amount of normal brain par-
enchyma to risky high radiation doses due to the complex morphology of
the AVM nidus. Determining the long-term effects of exposing brain par-
enchyma to radiation is problematic due to the lack of image analysis tools
that are capable of objectively calculating the precise volume and per-
centage of brain tissue exposed to radiation during GKRS. Manual seg-
mentation is time consuming and vulnerable to inter-reader variation,
leaving physicians no choice but to estimate the risk of adverse radiation
effects according to the brain tissue/nidus ratio.

Automating the clustering procedure makes it possible to quantify the
ratios of the various types of tissue within the ROI quickly and easily.
Several previous papers have described autosegmentation based on
clustering using MR images to facilitate brain tumor detection (Sauwen
et al., 2016; Emblem et al., 2009). However, to the best of our knowl-
edge, our algorithm is the first automatic segmentation method that uses
images of cerebral AVMs. Our results also appear to correlate with im-
portant clinical responses in patients undergoing GKRS for AVM.

4.3. Clinical importance of the proposed algorithm

Cerebral AVMs are a leading cause of intra-cerebral hemorrhaging
in young adults (Al-Shahi and Warlow, 2001). The risk of re-bleeding in
ruptured cerebral AVM is relatively high; therefore, a ruptured AVM
requires more aggressive treatment. On the other hand, the risk of
bleeding in unruptured AVMs has been reported at 2 to 4% (Ondra
et al., 1990; Itoyama et al., 1989). Therefore, the management of un-
ruptured cerebral AVMs is controversial. GKRS is less invasive than
other treatment options and has the fewest acute side-effects. The most
common complications after GKRS are the symptoms of ARE. Indeed,
the incidence of ARE in follow-up images after GKRS is reported to be
30–60% (Flickinger et al., 1992; Ganz et al., 2009).

Several factors, including radiation dose and target volume, have
been identified as important predictors of radiological outcomes. Other
risk factors for ARE include prior hemorrhage (Hayhurst et al., 2012),
AVM location (Flickinger et al., 1998), and repeated radiosurgery
(Flickinger et al., 2002). Most AREs occur 1–24months after GKS;
however, they are generally transient and self-limited (Flickinger et al.,
1997). Nonetheless, some AREs remain long after complete obliteration,
resulting in a permanent complex lesion in the brain, which can cause
severe symptoms over the long term. In 2005, Izawa etc. reported long-
term complications in 9.3% of cases in their series (Izawa et al., 2005).

Two prospective randomized trials have reported significantly
worse outcomes following intervention for unruptured cerebral AVMs
(Mohr et al., 2014; Wedderburn et al., 2008). Treatment suggestions for
AVMs, especially unruptured AVMs, have become increasingly con-
servative due to the fact that the complication rate after treatment may
be higher than the natural bleeding rate of AVMs. We believe that the
method of quantitatively analyzing the brain/nidus ratio proposed in
this study could be highly beneficial to physicians seeking to optimize
dosimetry. In other words, our proposed method should help to max-
imize therapeutic effects and minimize complications.

Our algorithm allows the various compositions of the AVM nidus
delineated during the GKRS plan to be accurately identified.
Furthermore, our findings demonstrate that a higher percentage of in-
tervening brain parenchyma in the nidus of cerebral AVM is correlated
with a higher prevalence of ARE following GKRS. Previous studies have
reported on many other factors, such as overall AVM size, patient age,
and prescribed radiation dose, which could confound the correlation
with radiation injury after GK treatment (Joint Writing Group of the
Technology Assessment Committee American Society of Interventional
and Therapeutic Neuroradiology et al., 2001; Pan et al., 2000; Yen
et al., 2013). Unfortunately, we would require a greater number of AVM
patients if we were to discuss the correlation between these confounds.
Our objective in this study was to emphasize the clinical importance of
calculating the various tissue percentages within the prescription iso-
dose radiation exposure region. The relationship between the various

Table 1
The percentages of the three tissues within the ROI under the prescription
isodose radiation exposure by the proposed automatic clustering algorithm.

Patient TP(Gy) Volume Nidus BT CSF Location of AVM

1 18.5 3.00 26.19% 55.16% 18.66% thalamus
2 18.5 3.78 32.68% 47.41% 19.91% Hemisphere
3 19.5 4.38 45.07% 38.91% 16.02% Hemisphere
4 18 11.43 48.40% 39.41% 12.19% Hemisphere
5 16 11.71 29.48% 50.89% 19.63% Brain stem
6 19 3.50 31.25% 48.73% 20.02% Hemisphere
7 17.5 3.08 26.33% 57.12% 16.55% Hemisphere
8 17 12.45 24.17% 56.55% 19.29% Hemisphere
9 18 3.18 23.24% 48.31% 28.45% Cerebellum
10 18 3.03 35.65% 47.36% 17.00% Hemisphere
11 17 3.40 29.94% 52.11% 17.95% Cerebellum
12 18.5 4.25 35.03% 48.14% 16.83% Basal ganglia
13 18 4.02 19.27% 59.60% 21.13% Hemisphere
14 20 4.04 25.88% 53.60% 20.52% Cerebellum
15 18.5 4.24 34.65% 50.17% 15.18% Basal ganglia
16 18.5 4.27 31.07% 51.51% 17.42% Hemisphere
17 20 3.03 18.79% 60.29% 20.92% Hemisphere
18 18 2.96 31.64% 53.20% 15.16% Hemisphere
19 20 3.41 16.14% 70.85% 13.01% Lateral ventricle
20 18.5 13.01 48.70% 37.13% 14.16% Hemisphere
21 18.5 3.70 51.93% 37.13% 10.94% Hemisphere
22 18.5 4.36 28.86% 48.87% 22.27% Basal ganglia
23 17.8 3.93 42.05% 43.70% 14.25% Hemisphere
24 18 3.23 26.00% 48.44% 25.56% Brain stem
25 18.3 4.28 40.96% 49.21% 9.84% Hemisphere
MEAN 18.32 5.03 32.13% 50.15% 17.71%
STDEV 0.94 3.22 9.61% 7.68% 4.32%

Note: BT= brain tissue, TP indicates margin dose.
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confounds could be undertaken in the future using multiple medical
centers to enroll a sufficient number of patients. Further clinical studies
on the use of the proposed algorithm could help to elucidate the long-
term effects of radiation on the brain and nidus. This means that the
proposed algorithm could be a valuable tool for physicians making
treatment decisions for AVM patients or formulating Gamma knife
treatment plans.

4.4. Limitations of the study

Our initial objective was to validate the proposed methodology;
therefore, we only enrolled a small number of patients. As a result, the
study was susceptible to bias with regard to patient selection and
treatment. The 1.5 T scanner is no longer considered a state-of–the-art
device; however, in our hospital, FSE T2WI for GK treatment is always
performed using a 1.5 T with birdcage head coil, 2D 3mm slice thick-
ness, and 0mm slice gap. The 1.5 T scanner is preferred because ima-
ging torsion caused by susceptibility artifacts from the stereotaxic frame
is more prominent when using a 3.0 T scanner. Instead of a multi-
channel head coil, we use a birdcage head coil (lacking accelerating

ability) to accommodate the stereotaxic frame. The scanning time for
3D FSE T2WI using a birdcage head coil would be far too long.

We opted for relatively thin slices (3mm) for 2D acquisition in order to
strike a reasonable balance between SNR and scanning time. In the future,
it would be interesting to verify our methodology using pre-GK 3D images
acquired at higher spatial resolution on a state-of-the-art scanner.

A greater number of AVM cases and higher resolution images could
improve the performance of the proposed methodology. In addition, our
results are not necessarily applicable to cases of ruptured AVM or to cases
involving other forms of treatment, such as surgery or embolization, prior to
GKRS. Previous insult and bleeding may interfere with the autosegmenta-
tion process, potentially reducing the accuracy of segmentation results.

5. Conclusions

In this study, we developed a fully automated algorithm that uses
unsupervised classification via fuzzy c-means clustering for the analysis
of T2 weighted images of the Gamma knife plan. Our algorithm is able
to calculate the percentages of the nidus, brain tissue, and CSF within
the prescription isodose radiation exposure region. Analysis of the

Fig. 5. Brain mask extraction. (A) T2w image, (B) brain mask image extracted from (A), (C) TOF image, (D) brain mask image extracted from (C) of patient with
cerebral AVM. The brain mask that was extracted from the registered TOF was superior to the brain mask obtained from the T2w image when the AVM was located at
the periphery of the brain.
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results yielded by this algorithm could help to differentiate among the
various tissue responses to radiation and their relationship with AREs
following GKRS.
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