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Abstract: Solifenacin (Vesicare®, SOL), known to be a member of isoquinolines, is a muscarinic
antagonist that has anticholinergic effect, and it has been beneficial in treating urinary incontinence
and neurogenic detrusor overactivity. However, the information regarding the effects of SOL on
membrane ionic currents is largely uncertain, despite its clinically wide use in patients with those
disorders. In this study, the whole-cell current recordings revealed that upon membrane depolariza-
tion in pituitary GH3 cells, the exposure to SOL concentration-dependently increased the amplitude
of M-type K+ current (IK(M)) with effective EC50 value of 0.34 µM. The activation time constant of
IK(M) was concurrently shortened in the SOL presence, hence yielding the KD value of 0.55 µM based
on minimal reaction scheme. As cells were exposed to SOL, the steady-state activation curve of IK(M)

was shifted along the voltage axis to the left with no change in the gating charge of the current. Upon
an isosceles-triangular ramp pulse, the hysteretic area of IK(M) was increased by adding SOL. As
cells were continually exposed to SOL, further application of acetylcholine (1 µM) failed to modify
SOL-stimulated IK(M); however, subsequent addition of thyrotropin releasing hormone (TRH, 1 µM)
was able to counteract SOL-induced increase in IK(M) amplitude. In cell-attached single-channel
current recordings, bath addition of SOL led to an increase in the activity of M-type K+ (KM) channels
with no change in the single channel conductance; the mean open time of the channel became
lengthened. In whole-cell current-clamp recordings, the SOL application reduced the firing of action
potentials (APs) in GH3 cells; however, either subsequent addition of TRH or linopirdine was able to
reverse SOL-mediated decrease in AP firing. In hippocampal mHippoE-14 neurons, the IK(M) was
also stimulated by adding SOL. Altogether, findings from this study disclosed for the first time the
effectiveness of SOL in interacting with KM channels and hence in stimulating IK(M) in electrically
excitable cells, and this noticeable action appears to be independent of its antagonistic activity on the
canonical binding to muscarinic receptors expressed in GH3 or mHippoE-14 cells.

Keywords: solifenacin (Vesicare®); M-type K+ current; current kinetics; voltage-dependent hysteresis;
M-type K+ channel; pituitary cell; hippocampal neuron

1. Introduction

Solifenacin (Vesicare®, SOL), a member of isoquinolines (Figure 1), has been viewed
as an oral anticholinergic (i.e., a competitive muscarinic [M1 and M3] receptor antagonist)
and antispasmodic agent used to treat the symptoms of overactive bladder, neurogenic
detrusor overactivity, or urinary incontinence [1–8]. It has been reported to be a muscarinic
(M2 and M3) receptor antagonist that has anticholinergic effects such as relaxation of the
detrusor muscle in urinary bladder [9].
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detrusor overactivity, or urinary incontinence [1–8]. It has been reported to be a musca-
rinic (M2 and M3) receptor antagonist that has anticholinergic effects such as relaxation of 
the detrusor muscle in urinary bladder [9]. 

 
Figure 1. Chemical structure of solifenacin (Vesicare®, [(3R)-1-azabicyclo [2.2.2]octan-3-yl] (1S)-1-
phenyl-3,4-dihydro-1H-isoquinoline-2-carboxylate, 2(1H)-isoquinolinecarboxylic acid, 3,4-dihydro-
1-phenyl-,1-azabicyclo(2.2.2.)oct-3-yl ester, (R-(R*,S*))-905, quinculidin-3′-yl-1-phenyl-1,2,3,4-tetra-
hydroisoquinoline-2-carboxylate). 

Earlier clinical investigations have revealed the efficacy and safety of the antimusca-
rinic, solifenacin (SOL), for treating patients with overactive bladder or neurogenic detru-
sor overactivity [1–5,7,8,10–19]. However, recent evidence has been reported showing that 
the treatment with SOL could be closely linked to an increased risk of the impairment in 
cognitive functions [20–31]. Therefore, it is pertinent to reappraise the mechanism of SOL 
actions on electrical behaviors in varying excitable cells, given that its growing clinical use 
occurs [6,32]. 

Many types of anterior pituitary cells have been previously demonstrated to secrete 
acetylcholine [33]. Earlier studies have also revealed that pituitary GH3 cells could exhibit 
the activity of muscarinic receptors and that muscarinic agonists were able to inhibit hor-
monal secretion through a reduction in intracellular cyclic AMP [33–40]. In these cells, the 
binding of acetylcholine to M2-muscarinic receptor might induce a weak stimulation on 
the hydrolysis of phosphatidylinositol 4,5-bisphosphate [41]. The binding of acetylcholine 
to muscarinic receptors in GH3 cells was also reported to activate the activity of G protein-
coupled K+ channels directly [42,43] and to inhibit voltage-gated Ca2+ currents [44]. 
Whether SOL could perturb the electrical activities directly or indirectly through its bind-
ing of acetylcholine to muscarinic receptors in pituitary cells is uncertain. 

The KCNQ2, KCNQ3, or KCNQ5 gene is viewed to encode the core subunit of KV7.2, 
KV7.3, or KV7.5 channel, respectively. The enhanced activity of this family of voltage-gated 
K+ channels (KCNQx or KM channels) can generate the macroscopic M-type K+ current 
(IK(M)), which is biophysically characterized by current activation in response to low-
threshold voltage [45]. Once being activated, this type of K+ currents can be sensitive to 
block by linopirdine and it is demonstrated to exhibit a slowly activating and deactivating 
property [46–51]. Alternatively, targeting IK(M) has been noticeably viewed as an adjunc-
tive regimen for the management of various neurological, smooth muscle, or endocrine 
disorders closely linked to membrane hyperexcitability, which include cognitive dysfunc-
tion, epilepsy, and over-active bladder [47,52–55]. However, to our knowledge, how and 
whether this agent can interact directly with KV channels to modify the amplitude and 
gating of voltage-gated K+ currents (e.g., M-type K+ current) remain largely unknown. 

Therefore, in terms of the considerations stated above, in the current study, we de-
cided to explore the possible perturbations of SOL on IK(M) in pituitary GH3 cells and 
mouse mHippoE-14 hippocampal neurons. Findings from the present observations enable 
us to reflect that the IK(M) inherent in different cell types could be an additional and yet 
non-canonical target through which SOL can act to govern the functional activities of the 

Figure 1. Chemical structure of solifenacin (Vesicare®, [(3R)-1-azabicyclo [2.2.2]octan-3-yl]
(1S)-1-phenyl-3,4-dihydro-1H-isoquinoline-2-carboxylate, 2(1H)-isoquinolinecarboxylic acid, 3,4-
dihydro-1-phenyl-,1-azabicyclo(2.2.2.)oct-3-yl ester, (R-(R*,S*))-905, quinculidin-3′-yl-1-phenyl-1,2,3,4-
tetrahydroisoquinoline-2-carboxylate).

Earlier clinical investigations have revealed the efficacy and safety of the antimus-
carinic, solifenacin (SOL), for treating patients with overactive bladder or neurogenic
detrusor overactivity [1–5,7,8,10–19]. However, recent evidence has been reported showing
that the treatment with SOL could be closely linked to an increased risk of the impairment
in cognitive functions [20–31]. Therefore, it is pertinent to reappraise the mechanism of
SOL actions on electrical behaviors in varying excitable cells, given that its growing clinical
use occurs [6,32].

Many types of anterior pituitary cells have been previously demonstrated to secrete
acetylcholine [33]. Earlier studies have also revealed that pituitary GH3 cells could exhibit
the activity of muscarinic receptors and that muscarinic agonists were able to inhibit hor-
monal secretion through a reduction in intracellular cyclic AMP [33–40]. In these cells,
the binding of acetylcholine to M2-muscarinic receptor might induce a weak stimulation
on the hydrolysis of phosphatidylinositol 4,5-bisphosphate [41]. The binding of acetyl-
choline to muscarinic receptors in GH3 cells was also reported to activate the activity of G
protein-coupled K+ channels directly [42,43] and to inhibit voltage-gated Ca2+ currents [44].
Whether SOL could perturb the electrical activities directly or indirectly through its binding
of acetylcholine to muscarinic receptors in pituitary cells is uncertain.

The KCNQ2, KCNQ3, or KCNQ5 gene is viewed to encode the core subunit of KV7.2,
KV7.3, or KV7.5 channel, respectively. The enhanced activity of this family of voltage-
gated K+ channels (KCNQx or KM channels) can generate the macroscopic M-type K+

current (IK(M)), which is biophysically characterized by current activation in response
to low-threshold voltage [45]. Once being activated, this type of K+ currents can be
sensitive to block by linopirdine and it is demonstrated to exhibit a slowly activating and
deactivating property [46–51]. Alternatively, targeting IK(M) has been noticeably viewed
as an adjunctive regimen for the management of various neurological, smooth muscle, or
endocrine disorders closely linked to membrane hyperexcitability, which include cognitive
dysfunction, epilepsy, and over-active bladder [47,52–55]. However, to our knowledge,
how and whether this agent can interact directly with KV channels to modify the amplitude
and gating of voltage-gated K+ currents (e.g., M-type K+ current) remain largely unknown.

Therefore, in terms of the considerations stated above, in the current study, we decided
to explore the possible perturbations of SOL on IK(M) in pituitary GH3 cells and mouse
mHippoE-14 hippocampal neurons. Findings from the present observations enable us to
reflect that the IK(M) inherent in different cell types could be an additional and yet non-
canonical target through which SOL can act to govern the functional activities of the cells
involved, presuming that similar in vitro or in vivo findings occur. It thus merit attention
that the stimulation of IK(M) and the antagonistic effect on the binding to muscarinic
receptors may potentially converge to act on the functional activities of neurons, and
neuroendocrine or endocrine cells.
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2. Results
2.1. Effect of SOL on the M-Type K+ Current (IK(M)) Measured from GH3 Cells

For the first stage of experiments, we intended to determine the possible effect of SOL
on the amplitude and kinetics of IK(M) identified in these cells. In attempts to measure the
magnitude of IK(M), we kept cells bathed in high-K+, Ca2+-free solution which contained
1 µM tetrodotoxin (TTX), and the recording pipette was backfilled with a K+-containing
(145 mM) solution. When the whole-cell configuration was established, we held the exam-
ined cell in voltage-clamp mode at the level of −50 mV and a 1-sec depolarizing command
voltage to −10 mV was thereafter applied to it. Under these experimental conditions,
a specific population of K+ currents with a slowly activating and deactivating property
was robustly evoked and it has been thus viewed as an IK(M) [48,49,51,56]. This type of
IK(M) found in pituitary lactotrophs including GH3 cells has been demonstrated to be
sensitive to be blocked by thyrotropin releasing hormone (TRH) [48,57]. As demonstrated
in Figure 2A,B, the IK(M) in response to step depolarization from −50 to −10 mV was sensi-
tive to inhibition by 10 µM linopirdine (Lino) or 1 µM TRH, while the presence of 10 µM
naringenin (NGEN) or 10 µM ML213 increased current amplitude. NGEN or ML213 was
previously reported to be an activator of IK(M) [58,59]. Of particular interest, one minute af-
ter GH3-cell exposure to SOL, the amplitude of IK(M) upon 1-sec membrane depolarization
from −50 to −10 mV progressively became increased together with a concurrent decrease
in the activation time constant (τact) of the current (Figure 3A). For example, the addition of
0.3 or 1 µM SOL increased IK(M) amplitude to 56 ± 7 pA (n = 8, p < 0.05) or 77 ± 9 pA (n = 8,
p < 0.05), respectively, from control value of 36 ± 6 pA (n = 8). Concomitantly, the presence
of 0.3 or 1 µM SOL also reduced the τact value to 89.1 ± 12.5 msec or 56.7 ± 10.1 msec,
respectively, from control value of 123.5 ± 16.8 msec (n = 8). After SOL was removed,
current amplitude was returned to 39 ± 7 pA (n = 7).
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ML213 on M−type K+ current (IK(M)) recorded from pituitary tumor (GH3) cells. These experiments 

Figure 2. Effect of linopirdine (Lino), thyrotropin releasing hormone (TRH), naringenin (NGEN) or
ML213 on M−type K+ current (IK(M)) recorded from pituitary tumor (GH3) cells. These experiments
were performed in cells which were kept bathed in high−K+, Ca2+−free solution containing 1 µM
TTX and 0.5 mM CdCl2, and we then backfilled the recording electrode by using K+−containing
(145 mM) solution. (A) Representative current traces obtained in the control period (a’s) or during
exposure (b’s) to 10 µM Lino (upper part) or 1 µM TRH (lower part). The uppermost part shows
the voltage−clamp protocol used. (B) Summary bar graph showing effects of Lino, TRH, NGEN, or
ML213 on the amplitude of IK(M) in GH3 cells (mean ± SEM; n = 7 for each bar). Current amplitude
was measured at the end of depolarizing pulse from −50 to −10 mV. Statistical analysis was made by
ANOVA−1 (p < 0.05). * Significantly different from control (p < 0.05).
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Figure 3. Effect of SOL on IK(M) recorded from GH3 cells. This set of experiments was under-
taken in cells which was kept bathed in high−K+, Ca2+−free solution containing 1 µM TTX and
0.5 mM CdCl2, and we backfilled the recording electrode by using K+−containing (145 mM) solution.
(A) Representative IK(M) traces obtained in the control period (i.e., SOL was not present; a) and dur-
ing cell exposure to 0.3 µM SOL (b) or 1 µM SOL (c). The uppermost part denotes the voltage−clamp
protocol applied, while the lower part shows the activation time courses of IK(M) taken in the absence
(a) and presence of 0.3 µM SOL (b) or 1 µM SOL (c). Current traces in the bottom panel show an
expanded record from the dashed box in the top panel, and their trajectories taken from (A) was well
fitted by a single exponential (indicated in smooth gray line). Data points (indicated in open circles)
with or without the addition of SOL are reduced by 20. (B) Kinetic estimate of SOL−stimulated IK(M)

identified in GH3 cells (mean ± SEM; n = 8 for each point). The reciprocal of activation time constant
of IK(M) (1/τact) derived from exponential fit of the IK(M) trajectory was collated and linearly plotted
against the SOL concentration (gray straight line). Forward (k∗+1) or backward (k−1) rate constant for
the binding scheme, derived from the slope and the y−axis of the interpolated line was estimated to
be 13.962 sec−1µM−1 or 7.672 sec−1, respectively; thereafter, the KD value (k−1/k∗+1 = 0.55 µM) was
yielded. (C) Concentration−dependent relationship of SOL effect on IK(M) activated by 1−sec long
membrane depolarization (mean ± SEM; n = 8 for each point). Current amplitude was measured at
the end−pulse of each depolarizing step from−50 to−10 mV with a duration of 1 sec. The sigmoidal
curve (gray line) indicates the goodness of fit to the Hill equation, as stated in Materials and Methods.

Because the IK(M) activation in response to long-last step depolarization tends to be
shortened, our next goal was to determine the kinetics of SOL-stimulated currents seen in
GH3 cells. As demonstrated in Figure 3B, as cells were rapidly depolarized from −50 to
−10 mV with a duration of 1 sec, it was noticed that exposure to SOL resulted in a reduction
in the τact value in a concentration-dependent manner. This finding can thus be interpreted
to reflect that the stimulatory effect of SOL on IK(M) seen in GH3 cells is explained by the
state-dependent activation in situations where the molecule can preferentially bind to
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the open state (conformation) of the M-type K+ (KM) channel, on the assumption of the
first-order reaction scheme:

C
α
�
β

O
k∗+1·[SOL]

�
k−1

O·[SOL] (1)

or
dC
dt = β×O− α× C

dO
dt = α× C + k−1 ×O·[SOL]−O×

(
β + k∗+1·[SOL]

)
dO·[SOL]

dt = k∗+1·[SOL]×O− k−1 ×O·[SOL]

where α or β represents kinetic constant for the opening or closing of KM channel, re-
spectively; and k∗+1 or k−1 is that for forward (on-) or reverse (off-) rate constant of the
SOL binding, respectively. “C”, “O”, or “O [SOL]” denotes the closed, open, or open
[SOL] state of the channel, respectively. Forward or reverse rate constant (k∗+1 or k−1) in
this reaction was evaluated from the τact values for SOL-stimulated modification in the
trajectory of IK(M) activation, as described under the Materials and Methods (Figure 3B).
The value of k∗+1 or k−1 obtained from eight different cells was consequently determined
to be 13.962 sec−1 µM−1 or 7.672 sec−1, respectively; thereafter, the value of dissociation
constant (KD = k−1/k∗+1) was calculated to be 0.55 µM.

The relationship between the SOL concentration and the percentage increase of IK(M)
was determined and thereafter constructed. In these experiments, each examined cell was
held at −50 mV and the depolarizing step from −50 to −10 mV with a duration of 1 sec
was delivered to it, and the IK(M) amplitudes during exposure to different concentrations
(0.3–10 µM) of SOL were measured at the end of depolarizing step. As illustrated in
Figure 3C, SOL increased IK(M) amplitude in a concentration-dependent fashion. By use
of a non-linear least-squares fit to the experimental data, the EC50 value required for the
stimulatory effect of SOL on IK(M) in GH3 cells was calculated to be 0.34 µM, a value that
was noticeably similar to the KD value estimated above. As such, these emerging data
reflect that SOL alone is able to render IK(M) to be sensitive to stimulation attainable in
these cells, which appears to be unlinked to its binding to muscarinic receptors.

2.2. Comparison in IK(M) Amplitudes Caused by the Presence of SOL, SOL plus Acetylcholine
(ACh), SOL plus Iberiotoxin (Iber), SOL plus Apamin (Apa), SOL plus Tolbutamide (TLB), SOL
plus Chlorotoxin (ChTx), SOL plus Linopirdine (Lino), or SOL plus Thyrotropin Releasing
Hormone (TRH)

We continued to examine whether SOL-stimulated IK(M) in GH3 cells could be modi-
fied by further application of acetylcholine, iberiotoxin, apamin, tolbutamide, chlorotoxin,
linopirdine, or thyrotropin releasing hormone. The muscarinic receptor in GH3 cells can
be activated by acetylcholine [42,43], while iberiotoxin or apamin is an inhibitor of large-
or small-conductance Ca2+-activated K+ channels, respectively, whereas tolbutamide is
reported to suppress ATP-sensitive K+ channel. Chlorotoxin is known to suppress the
activity of Cl- channels, while Lino or TRH is an inhibitor of IK(M) in GH3 cells [48–51].
In the examined cells bathed in high-K+, Ca2+-free solution, the potential was held at
−50 mV and the depolarizing step from −50 to −10 with a duration of 1 sec was applied
to the cell. Summary bar graph demonstrated in Figure 4 revealed that cell exposure to
1 µM SOL increased IK(M) amplitude and that neither further addition of acetylcholine
(10 µM), iberiotoxin (200 nM), apamin (200 nM), tolbutamide (10 µM), nor chlorotoxin
(1 µM) resulted in any adjustments in SOL-stimulated IK(M), while that of Lino or TRH was
able to reverse the stimulation of IK(M) caused by SOL. The results indicate that the IK(M)
amplitude stimulated by SOL seen in GH3 cells is unlinked to its effects on the activity
of large- or small-conductance Ca2+-activated K+ channels or on that of ATP-sensitive
K+ channels, and that its stimulatory effect on IK(M) is unable to be adjusted by further
application of acetylcholine.
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or without the addition of SOL (1 μM) is illustrated in Figure 5A. The current amplitude 
was significantly increased as the membrane potential was less negative to −30 mV, and 
the magnitude of SOL-stimulated current at the level of −10 mV was noted to be greater 
than that at −20 mV. The relationship of IK(M) conductance versus membrane potential 
gained in the control period (i.e., SOL was not present) and during cell exposure to SOL 
(1 μM) was collated (Figure 5B). The smooth sigmoidal curve derived from data sets was 
reliably fitted with a modified Boltzmann function (described under Materials and Meth-
ods). That is, the value of V1/2 or q taken in the control period was −17.4 ± 2.1 mV (n = 8) or 
6.4 ± 0.9 e (n = 8), respectively, while that in the presence of 1 μM SOL was −28.2 ± 2.2 mV 
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Figure 4. Effect of SOL, SOL plus acetylcholine (ACh), SOL plus iberiotoxin (Iber), SOL plus apamin
(Apa), SOL plus tolbutamide (TLB), SOL plus chlorotoxin (ChTx), SOL plus Lino, or SOL plus TRH
on the amplitude of IK(M). In these experiments, we bathed GH3 cells in high-K+, Ca2+-free solution
and the recording electrode was filled with K+-enriched (145 mM) solution. Current amplitude
was measured at the end of the depolarizing step from −50 to −10 mV. Each bar represents the
mean ± SEM (n = 7). * Significantly different from controls (p < 0.05) and ** significantly different
from SOL (1 µM) alone group (p < 0.05).

2.3. Current-Voltage (I-V) Relationship and Steady-State Activation Curve of IK(M) in the Absence
and Presence of SOL

We next studied whether the presence of SOL can modify the amplitude of IK(M)
measured at different level of membrane potentials. The averaged I-V relationship of
IK(M) with or without the addition of SOL (1 µM) is illustrated in Figure 5A. The current
amplitude was significantly increased as the membrane potential was less negative to
−30 mV, and the magnitude of SOL-stimulated current at the level of −10 mV was noted
to be greater than that at −20 mV. The relationship of IK(M) conductance versus membrane
potential gained in the control period (i.e., SOL was not present) and during cell exposure
to SOL (1 µM) was collated (Figure 5B). The smooth sigmoidal curve derived from data
sets was reliably fitted with a modified Boltzmann function (described under Materials and
Methods). That is, the value of V1/2 or q taken in the control period was −17.4 ± 2.1 mV
(n = 8) or 6.4 ± 0.9 e (n = 8), respectively, while that in the presence of 1 µM SOL was
−28.2 ± 2.2 mV (n = 8) or 6.1 ± 0.9 e (n = 8), respectively. The data enable us to reflect that,
in addition to increasing IK(M) conductance, the addition of SOL was capable of producing
a leftward shift along the voltage axis, albeit with no marked change in the gating charge
of the current.
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Figure 5. Effect of SOL on the current-voltage (I-V) relationship (A) and activation curve (B) of
IK(M) identified in GH3 cells. In these experiments, the examined cell was held at −50 mV and the
voltage pulses ranging between −50 and 0 mV in 10-mV step were applied to it. (A) Averaged I-V
relationship of IK(M) taken in the absence (�) and presence (#) of 1 µM SOL (mean ± SEM; n = 8 for
each point). Each data point was taken at the end-point of each voltage pulse. (B) Activation curve
(i.e., normalized conductance versus membrane voltage) of IK(M) obtained in the control period (�)
and during exposure (#) to 1 µM SOL (mean ± SEM; n = 8 for each point). The smooth continuous
lines give best fit to a modified Boltzmann equation as stated in Materials and Methods. Of note,
a leftward shift along the voltage axis in the activation curve of IK(M) recorded from GH3 cells is
illustrated in the presence of 1 µM SOL, despite no perturbation in the apparent gating charge of the
current. The statistical analyses in (A) and (B) were undertaken by ANOVA-2 for repeated measures,
p (factor 1, groups among data taken at different level of membrane potentials) < 0.05, p (factor 2,
groups between the absence and presence of SOL) < 0.05, p (interaction) < 0.05, followed by post-hoc
Fisher’s least-significance difference test (p < 0.05).

2.4. Effect of SOL on Voltage-Dependent Hysteresis (Vhys) of IK(M) Activated by Long
Isosceles-Triangular Ramp Pulse

The Vhys of membrane ionic currents (i.e., a lag in the current amplitude as the linear
voltage ramp is changed in the opposite direction) has been recently noticed with an impact
on the electrical signal events of varying excitable cells [51,60–66]. In other words, Vhys
behavior is thought to dynamically adjust the voltage sensitivity and kinetics to optimize
channel function for appropriately matching its physiological or pathophysiological role in
regulation of AP firing [62,63,65]. Toward this goal, we continued to determine how the
presence of SOL might adjust the Vhys strength of IK(M). In this separate set of experiments,
as soon as the whole-cell configuration was achieved, we maintained the examined cell in
voltage clamp at −50 mV, and a long-lasting upright isosceles-triangular ramp pulse with
a duration of 2 sec at voltages between −45 and +5 mV (i.e., a ramp slope of ±50 mV/sec)
was digitally created and, through DA conversion via Digidata 1440A device, thereafter,
delivered to the examined cell at a rate of 0.025 Hz. Of notice, as demonstrated in Figure 6,
the IK(M) trajectories elicited in response to the forward upsloping (i.e., voltage change
from −45 to +5 mV) ramp pulse and by the backward downsloping (i.e., the change from
+5 to −45 mV) as a function of time (as indicated by the dashed arrows in Figure 6A) were
markedly distinguishable between these two limbs. In other words, the IK(M) amplitude
activated by the upsloping (forward or ascending) limb of the triangular voltage ramp was
demonstrated to be smaller than that by the downsloping (backward or descending) end of
the ramp. These observations led us to indicate that there was a Vhys phenomenon ranging
between −45 and −5 mV for this type of recorded currents in GH3 cells.
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of 1 μM SOL significantly increased the probability of channel openings from 0.023 ± 0.006 
to 0.082 ± 0.012 (n = 7, P < 0.01); conversely, no appreciable modification in the single-
channel amplitude was shown in its presence (28 ± 2 pS [control] versus 29 ± 2 pS [in the 
presence of SOL]; n = 7, P > 0.05). Meanwhile, the mean open time of KM channels in its 
presence was appreciably increased to 5.2 ± 1.1 msec (n = 7, P < 0.05) from a control value 
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Figure 6. Stimulatory effect of SOL on voltage−dependent hysteresis (Vhys) of IK(M) in GH3 cells.
This set of experiments was conducted with an isosceles−triangular ramp pulse. (A) Representative
current traces activated in response to isosceles−triangular ramp pulse with a duration of 2 sec
obtained in the control period (black line, a) and during cell exposure to 0.3 µM SOL (blue line, b)
or 1 µM SOL (red line, c). The dashed arrows indicate the distinctive patterns of current trajectory
by which time passes as the ramp pulse is applied. The voltage−clamp ramp pulse is illustrated in
inset at the left upper corner. (B) Hysteretic area (i.e., ∆area) of IK(M) Vhys gained in control period
(i.e., SOL was not present) or during exposure to SOL and SOL plus linopirdine (Lino). The area
encircled by current amplitudes activated in the ascending and descending limb at the voltages
between −45 and 0 mV was calculated. Each bar indicates the mean ± SEM (n = 7 for each bar). Data
analysis was performed by ANOVA−1 (p < 0.05). * Significantly different from control (p < 0.05) and
** significantly different from SOL (1 µM) alone group (p < 0.05).

In this study, we continued to quantify the Vhys strength of IK(M) on the basis of the
area encircled by the curvilinear trajectory in response to the upsloping and downsloping
direction in ramp voltage. Figure 6B illustrates a summary of the area under the curve
(i.e., ∆area) between the forward and backward currents activated in response to a 2-sec
isosceles-triangular ramp pulse. Of notice, when the whole-cell IK(M) was identified, the
addition of 0.3 or 1 µM SOL actually increased the area up to 1.2- or 1.5-fold, respec-
tively, while the subsequent application of 10 µM linopirdine, an inhibitor of KM channels,
markedly attenuated SOL-induced increase in the area by around 30%. It is conceivable,
therefore, that the Vhys of IK(M) in these cells can be augmented by the presence of SOL.

2.5. Stimulatory Effect of SOL on the Activity of M-Type K+ (KM) Channels in GH3 Cells

The SOL-induced raise in whole-cell IK(M) stated above could be due to either changes
in channel open probability, single-channel amplitude, gating kinetics of the KM channels,
or in any combinations. Such reasons thus urged us to assess the single-channel activities
of the channels residing in GH3 cells. In this stage of cell-attached current recordings, we
bathed cells in high-K+, Ca2+-free solution and the recording electrode used was filled
up with low-K+ (5.4 mM) solution. As demonstrated in Figure 7, as the examined cell
was held at +20 mV relative to the bath, the activity of single-KM channels was robustly
detected [51,56,66]. One minute after bath application of SOL, the channel open probability
was markedly raised. For example, at the level of +20 mV relative to the bath, the presence
of 1 µM SOL significantly increased the probability of channel openings from 0.023 ± 0.006
to 0.082 ± 0.012 (n = 7, p < 0.01); conversely, no appreciable modification in the single-
channel amplitude was shown in its presence (28 ± 2 pS [control] versus 29 ± 2 pS [in the
presence of SOL]; n = 7, p > 0.05). Meanwhile, the mean open time of KM channels in its
presence was appreciably increased to 5.2± 1.1 msec (n = 7, p < 0.05) from a control value of
2.8 ± 0.9 msec (n = 7). Furthermore, as cells were continually exposed to SOL, subsequent
addition of Lino (10 µM) or TRH (1 µM) could attenuate SOL-stimulated channel activity,
while that of acetylcholine (10 µM) failed to influence it. However, no detectable change in
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single-channel conductance of KM channels was observed, although the mean open time of
the channel lengthened as well as the channel open probability was elevated.
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Figure 7. Stimulatory effect of SOL on the activity of M−type K+ (KM) channels in recorded GH3

cells. In this set of cell−attached current recordings, we bathed cells in high−K+, Ca2+−free solution,
while the recording electrode was filled up with low−K+ (5.4 mM) solution. (A) Representative
single KM−channel activity obtained in the control period (upper) and during cell exposure to
0.3 µM SOL (middle) or 1 µM SOL (lower). The examined cells were maintained at +20 mV relative
to the bath, and the upward deflection indicates the opening event of the channel. (B) Averaged
I-V relationships of single-channel KM currents between the absence (�) and presence (�) of 1 µM
SOL (mean ± SEM; n = 8 for each point). Notably, no appreciable difference in single−channel
conductance of KM channels is depicted in the presence of 1 µM SOL. (C) Summary bar graph
showing effect of SOL, SOL plus acetylcholine (ACh), SOL plus linopirdine (Lino), or SOL plus
thyrotropin releasing hormone (TRH) on the probabilities of KM-channel openings (mean ± SEM;
n = 7 for each bar). Channel activity was measured at the level of +20 mV relative to the bath. Data
analysis was performed by ANOVA−1 (p < 0.05). * Significantly different from control (p < 0.05) and
** significantly different from SOL (1 µM) alone group (p < 0.05).
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2.6. Effect of SOL on Spontaneous Action Potentials (APs) Recorded from GH3 Cells

For another stage of the experiments, the measurements were repurposed to whole-
cell potential recordings, in attempts to assess the possible perturbations of SOL on the
firing frequency of APs found in these cells. For this stage of measurements, we suspended
cells to be bathed in normal Tyrode’s solution containing 1.8 mM CaCl2, the recording
pipet was filled with K+-enriched solution, and whole-cell current-clamp configuration
was carried out. As demonstrated in Figure 8, one minute after cell exposure to 0.3 or 1 µM
SOL, the firing rate (i.e., spikes/sec) of spontaneous APs was noticeably diminished in
combination with concurrent membrane hyperpolarization. For example, the presence of
SOL at a concentration of 1 µM overly decreased the firing frequency of spontaneous APs
to 0.47 ± 0.03 Hz (n= 8, p < 0.05) from a control value of 1.10 ± 0.05 Hz (n = 8). Moreover,
during continued exposure to SOL, subsequent addition of TRH (1 µM) or Lino (10 µM)
was able to reverse SOL-mediated inhibition of spontaneous APs effectively. It is likely,
therefore, that SOL-mediated decrease in firing frequency of spontaneous APs is mostly
mediated through its stimulation of IK(M) identified in GH3 cells.
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an increased risk of the impairment in cognitive functions [20–31]. Earlier reports have 
also reported the ability of this drug to influence the muscarinic activity in cerebral cortex 
and hippocampus [67,68]. For these reasons, we further assessed the possible adjustments 
of SOL on IK(M) in hippocampal mHippoE-14 neurons. This cell line tends to be a homog-
enous population and it is known to possess the characteristics of embryonic hippocampal 
neurons valuable for the investigations on different types of neurological disorders 
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Figure 8. Effect of SOL on spontaneous action potentials (APs) recorded from GH3 cells. Whole-cell
current-clamp potential recording was carried out in this series of measurements. (A) Representative
potential traces obtained in the control period (a) and during cell exposure to 0.3 µM SOL (b) or 1 µM
SOL (c). (B) Summary bar graph showing effect of SOL, SOL plus TRH and SOL plus Lino on firing
frequency of APs (mean ± SEM; n = 8 for each bar). Data analysis was made by ANOVA-1 (p < 0.05).
* Significantly different from control (p < 0.05) and ** significantly different from SOL (1 µM) alone
group (p < 0.05).

2.7. Stimulatory Effect of SOL on IK(M) Present in mHippoE-14 Neurons

Evidence has recently accumulated that the treatment with SOL could be linked
to an increased risk of the impairment in cognitive functions [20–31]. Earlier reports
have also reported the ability of this drug to influence the muscarinic activity in cerebral
cortex and hippocampus [67,68]. For these reasons, we further assessed the possible
adjustments of SOL on IK(M) in hippocampal mHippoE-14 neurons. This cell line tends to
be a homogenous population and it is known to possess the characteristics of embryonic
hippocampal neurons valuable for the investigations on different types of neurological
disorders [56,69–71]. In this series of experiments, we bathed mHippoE-14 cells in high-K+,
Ca2+-free solution which contained 1 µM TTX, and we filled up the recording electrodes
by using K+-enriched (145 mM) solution. As whole-cell configuration was established,
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the examined cell was held at −50 mV in voltage-clamp mode and the depolarizing pulse
to −10 mV with a duration of 1 sec was delivered to it. As shown in Figure 9 as cells
were acutely exposed to different concentrations of SOL, the amplitude of IK(M) activated
by such voltage-clamp protocol progressively rose. For example, the presence of 1 µM
SOL augmented IK(M) amplitude from 28 ± 4 to 65 ± 8 pA (n = 7, p < 0.05); and, after
removal of SOL, current amplitude was returned to 30 ± 5 pA (n = 7). In the continued
presence of 1 µM SOL, further application of Lino (µM) attenuated SOL-stimulated IK(M), as
demonstrated by an appreciable reduction of IK(M) amplitude to 36 ± 5 pA (n = 7, p < 0.05).
Therefore, it is plausible to assume that indistinguishable from those identified above in
GH3 cells, IK(M) present in mHippoE-14 neurons, to which IK(M) confers excitability, is
subject to stimulation by SOL.
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Figure 9. Stimulatory effect of SOL on IK(M) recorded from mouse hippocampal mHippoE-14 neurons.
In this set of whole-cell voltage-clamp experiments, cells were bathed in high-K+, Ca2+-free solution,
the recording pipette used was filled up with a K+-enriched (145 mM) solution, and the examined
cells were depolarized from −50 to −10 mV with a duration of 1 sec. (A) Representative current
traces obtained in the control period (a) and in the presence of 0.3 µM SOL (b) or 1 µM SOL (c).
(B) Summary bar graph showing effect of SOL and SOL plus linopirdine (Lino) on the amplitude
of IK(M) in mHippoE-14 cells (mean ± SEM; n = 7 for each bar). Current amplitude was measured
at the end-point of the depolarizing command from −50 to −10 mV. Data analysis was performed
by ANOVA-1 (p < 0.05). * Significantly different from control (p < 0.05) and ** significantly different
from SOL (1 µM) alone group (p < 0.05). Of notice, the presence of SOL exercises a stimulatory
effect on IK(M), and subsequent addition of linopirdine attenuates SOL-mediated stimulation of
current amplitude.

3. Discussion

The salient findings noticed in the current investigations are as follows: (a) In pi-
tuitary GH3 cells, during exposure to SOL, the IK(M) amplitude upon long membrane
depolarization was concentration-dependently increased and the activation time course of
the current concurrently became shortened; (b) the EC50 or KD value of SOL-stimulated
IK(M) was calculated to be 0.34 or 0.55 µM, respectively; (c) there is a leftward shift of the
steady-state activation curve of IK(M) in its presence; (d) the Vhys area of IK(M) activated by
isosceles-triangular ramp pulse increased during cell exposure to SOL; (e) the KM-channel
activity was elevated by adding SOL; however, no change in single-channel conductance
of the channel was detected; (f) under current-clamp conditions, the firing frequency of
spontaneous APs was measured to be appreciably decreased in the presence of this drug;
and (g) the IK(M) inherently in hippocampal mHippoE-14 neurons was also subject to
stimulation by SOL. Altogether, regardless of the unresolved detailed ionic mechanism of
its actions on KM (or KCNQx) channels, the present results provide an unanticipated and
yet non-canonical ionic mechanisms through which the SOL molecule can interact with
KM channels to increase whole-cell IK(M) and, consequently, to diminish the firing rate of
spontaneous of APs.
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One element that is pertinent to notable findings in this study is that the presence of
SOL has the propensity to interact with KM channels to increase the magnitude of IK(M)
as well as to fasten the activation rate of the current during long depolarizing steps. In
other words, although the SOL addition was effective at stimulating IK(M), the activation
time course of IK(M) evoked by long-step membrane depolarization became raised. The
interaction of SOL with KM channels could also be enhanced by repetitive opening of the
channel pore to provide drug access. According to minimal binding scheme, the KD value
was yielded to be 0.55 µM, a value which noticeably bears a similarity to effective EC50
value needed for SOL-stimulated IK(M). The steady-state activation curve of IK(M) attained
in the SOL presence was also found to be shifted along the voltage axis in a leftward
direction (i.e., a more negative potential), with no modifications in the gating charge of the
current. The mean open time of KM channels was also found to become lengthened in its
presence. In this regard, it is plausible to assume that the SOL molecule can preferentially
bind to the open state of the KM channel; consequently, the magnitude of IK(M) activated
upon long membrane depolarization became elevated during its exposure.

In the present study, the inability of iberiotoxin, apamin, tolbutamide, or chlorotoxin
to modify the stimulatory effect on IK(M) caused by the presence of SOL was demonstrated.
Iberiotoxin or apamin is viewed to inhibit the activity of large- or small-conductance Ca2+-
activated K+ channels, respectively. Tolbutamide can suppress the activity of ATP-sensitive
K+ channels, and chlorotoxin is a blocker of Cl- channels. Therefore, it seems unlikely
that SOL-mediated stimulation of IK(M) in GH3 cells is associated with its perturbations
on the activities of large- or small-conductance Ca2+-activated K+ channels, ATP-sensitive
K+ channels, or Cl- channels, which were reportedly present in GH3 cells. Additionally,
in continued presence of SOL, the subsequent addition of acetylcholine failed to reverse
SOL-mediated increase in IK(M) amplitude, reflecting that the stimulatory action on IK(M)
would not solely be explained by its competitive binding of acetylcholine to muscarinic
receptors in these cells, although GH3 cells have been previously demonstrated to exhibit
the activity of muscarinic receptors [33–40]. Of note, the SOL molecule is structurally
similar to tetrahydropyrrolopyrazines demonstrated to activate IK(M) [72], suggesting that
1-phenyl-3,4-dihydro-1H-isoquinoline moiety residing in the molecule is an active site for
the binding to the channel.

In accordance with the preceding reports, the Vhys phenomenon of IK(M) evoked by
the long isosceles-triangular ramp pulse (i.e., the upsloping and downsloping ramp) was
revealed in GH3 cells [73]. The adjustments of such Vhys have been recently noticed to
serve a role in fine-tuning the activity of ionic channels (e.g., KM channels) to respond when
they are virtually needed [62,63,66,73]. We further determined the possible perturbations
of SOL on such dynamic and non-equilibrium properties of IK(M) present in GH3 cells. The
emerging results allowed us to bespeak that the presence of SOL was able to increase the
hysteretic strength of the current efficiently (i.e., ∆area in Figure 6) associated with the
voltage-dependent activation of instantaneous IK(M). Under such scenario, it is possible
that intrinsic changes in the voltage dependence of the voltage-sensing machinery in KM
(KCNQx) channels, namely voltage-sensing domain relaxation would be dynamically
modulated during exposure to SOL.

According to previous pharmacokinetic studies, the peak plasma concentrations of
SOL with 24.0 ng/mL (0.066 µM) or 40.6 ng/mL (0.11 µM) were reported to reach 3–8 h
after long-term oral administration of a 5 or 10 mg SOL dose, respectively [7,74–76]. The
SOL plasma level was also found to be even higher (i.e., around 52 ng/mL or 0.14 µM)
in patients with renal insufficiency [77]; and, it could have a long duration of action as
it is usually taken once daily. As such, it is possible that, apart from interfering with
the binding to muscarinic receptors, SOL-mediated stimulation of IK(M) is of clinical or
therapeutic relevance.

Considering all of the experimental results together, the effects of SOL on IK(M) demon-
strated herein appears to be acute and robust in onset; moreover, meanwhile, such stimula-
tory actions tend to be non-canonical and they are presumably mediated via a mechanism
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independent of its blockade of muscarinic receptors. These actions probably result in
its perturbations on the functional activities of electrically excitable cells (e.g., GH3 or
mHippoE-14 cells), in the case that in vivo findings occur. Whether the impairment of cog-
nitive function after long-term administration of SOL [20–31] could be intimately connected
with its stimulation of IK(M) in central neurons remains to be further investigated.

It is worth noting that different types of smooth muscle cells, including smooth
myocytes of the urinary bladder, have been demonstrated to be functionally expressed
in the activity of KM (KCNQx) channels [52,53,78–89]. The SOL-induced interaction with
KM channels to modify the magnitude and gating of IK(M) has the propensity to change
muscarinic cholinergic activation involved in the micturition reflex, presuming that the
in vivo results happen. It turns out that whether the actions of SOL or other structurally
similar compounds (e.g., darifenacin) on overactive bladder or neurogenic detrusor over-
activity [90] are related to its enhanced actions on KM-channel activity [82–85], warrants
further investigations, despite its high-affinity binding to muscarinic receptors.

4. Materials and Methods
4.1. Chemicals, Drugs and Solutions Used in This Work

Solifenacin (Vesicare®, UNII-A8910SQJ1U, YM-905, [(3R)-1-azabicyclo[2.2.2]octan-3-
yl] (1S)-1-phenyl-3,4-dihydro-1H-isoquinoline-2-carboxylate, 2(1H)-isoquinolinecarboxylic
acid, 3,4-dihydro-1-phenyl-,1-azabicyclo(2.2.2.)oct-3-yl ester, (R-(R*,S*))-905, quinculidin-3′-
yl-1-phenyl-1,2,3,4-tetrahydroisoquinoline-2-carboxylate, C23H26N2O2, CAS No. 242478-
37-1, Solifenacin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Solifenacin
(accessed on 14 November 2021)) was supplied by MedChemExpress (Asia Bioscience,
Taipei, Taiwan), the chemical structure of which is illustrated in Figure 1. Linopirdine
(Lino), tetrodotoxin (TTX), thyrotropin releasing hormone (TRH) and tolbutamide (TLB)
were acquired from Sigma-Aldrich (Merck, Taipei, Taiwan), and iberiotoxin (Iber) and
apamin (Apa) were from Alomone (Asia Bioscience, Taipei, Taiwan). Naringenin (NGEN)
was acquired from MP Biomedicals (Cold Spring, New Taipei City, Taiwan), while ML213
(N-(2,4,6-trimethylphenyl)-bicyclo[2.2.1]hepane-2-carboxamide) was from Tocris (Union
Biomed, Taipei, Taiwan). Chlorotoxin (ChTx) was kindly provided by Professor Dr. Woei-
Jer Chuang (Department of Biochemistry, National Cheng Kung University Medical Col-
lege, Tainan, Taiwan). Unless stated otherwise, culture media (e.g., Ham’s F-12 or Dul-
becco’s modified Eagle’s medium), fetal bovine calf serum, horse serum, L-glutamine,
and trypsin/EDTA were supplied by HyCloneTM (Thermo Fisher; Level Biotech, Tainan,
Taiwan), whereas other chemicals such as CdCl2, aspartic acid, and HEPES, were of the
best available quality, mostly at analytical grade.

The ion composition of extracellular solution (i.e., HEPES-buffered normal Tyrode’s
solution) was as follows (in mM): NaCl 136.5, CaCl2 1.8, KCl 5.4, MgCl2 0.53, glucose
5.5, and HEPES-NaOH buffer 5 (pH 7.4). To record the flowing through IK(M), the patch
electrodes were backfilled with the following intracellular solution (in mM): K-aspartate
130, KCl 20, MgCl2 1, KH2PO4 1, Na2ATP3, Na2GTP 0.1, EGTA 0.1, and HEPES-KOH buffer
5 (pH 7.2). To measure IK(M), we used a high K+-bathing solution containing the following
(in mM): KCl 145, MgCl2 0.53, and HEPES-KOH buffer 5 (pH 7.4). To record the activity of
single KM channels, the pipette solution was composed of the following (in mM): NaCl
136.5, KCl 5.4, MgCl2 0.53, and HEPES-NaOH buffer 5 (pH 7.4). All solutions used in this
work were prepared in deionized water from a Milli-Q® water purification system (Merck
Millipore, Taipei, Taiwan). The pipette solution and culture media were always filtered
with Acrodisc® syringe filter which contains 0.2-µm Supor® nylon membrane (#4612; Pall
Corporation; Genechain Biotechnology, Kaohsiung, Taiwan).

4.2. Cell Preparations

The GH3 pituitary cell line was supplied by the Bioresources Collection and Research
Center (BCRC-60015; Hsinchu, Taiwan), while the embryonic mouse hippocampal cell line
(mHippoE-14, CLU198) was from Codarlane CELLutions Biosystems, Inc. (Burlington,
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ON, Canada) [71]. GH3 cell line was originally derived from the American Type Culture
Collection (ATCC® [CCL-82.1TM]; Manassas, VA, USA). GH3 cells were cultured in Ham’s
F-12 medium supplemented with 2.5% fetal calf serum (v/v percent), 15% horse serum (v/v
percent), and 2 mM L-glutamine, while mHippoE-14 neurons were in Dulbecco’s modified
Eagle’s medium supplemented with 10% fetal bovine serum (v/v percent) and 2 mM
L-glutamine. Cells were grown at 37 ◦C in a humidified environment of 5% CO2/95% air.

4.3. Electrophysiological Measurements

GH3 cells or mHippoE-14 neurons were gingerly harvested and cell suspension was
rapidly placed in a customized chamber immediately before the electrical recordings.
The recording chamber was positioned on the stage of an inverted DM-IL fluorescence
microscope (Leica, Uranus Technology, Taipei, Taiwan) coupled to a digital video system
(DCR-TR30; Sony, Tokyo, Japan) with a magnification of up to 1500×. Cells were kept
immersed at room temperature (20–25 ◦C) in normal Tyrode’s solutions containing 1.8 mM
CaCl2, and the composition of this solution is stated above. The patch-clamp procedure
in either whole-cell (voltage- and current-clamp mode) or cell-attached configuration was
implemented by using an RK-400 patch amplifier (Biologic, Echirolles, France) [51,91].
When filled with internal solution, patch-clamp glass pipettes had tip resistances ranging
between 3 and 5 MΩ and they were made from Kimax-51 capillaries (#34500 [1.5–1.8 mm
in outer diameter]; Dogger, Tainan, Taiwan), by using either a PP-830 vertical puller
(Narishige, Tokyo, Japan) or a P-97 horizontal puller (Sutter, Novato, CA, USA), and
their tips were fire-polished with an MF-83 microforge (Narishige). The potentials were
corrected for the liquid–liquid junction potential which emerged when the composition
of the pipette solution was different from that in the bath. An anti-vibration air table was
used to ensure mechanical stability during the measurements.

4.4. Data Recordings

The signals comprising voltage and current tracings were monitored on an HM-507
oscilloscope (Hameg, East Meadow, NY, USA) and stored online in an ASUS ExpertBook
laptop computer (P2451F; ASUS, Tainan, Taiwan) at 10 kHz interfaced with a Digidata
1440A converter (Molecular Devices; Bestogen Biotech, New Taipei City, Taiwan), which
proceeded for efficient analog-to-digital/digital-to-analog (AD/DA) conversion. During
the measurements, the process in data acquisition equipped with this device was controlled
by pCLAMP 10.6 program suite (Molecular Devices) run under Windows 7 (Redmond, WA,
USA), and the signals were simultaneously displayed on an LCD monitor through USB
type-C connection. Current signals were low-pass filtered at 2 kHz with an FL-4 four-pole
Bessel Filter (Dagan, Minneapolis, MN, USA) to minimize possible electrical interference.
After the recorded data were digitally collected, we off-line collated them using various
analytical tools that include LabChart 7.0 program (ADInstruments; KYS Technology,
Taipei, Taiwan), OriginPro® 2021 (OriginLab; Scientific Formosa, Kaohsiung, Taiwan)
and varying custom-made macros built in Excel® 2021 under Microsoft 365 (Redmond,
WA, USA).

4.5. Whole-Cell Current Analyses

To evaluate the effect of concentration-dependent stimulation of SOL on IK(M), GH3
cells were allowed to be immersed in high-K+ (145 mM K+), Ca2+-free solution. As the
whole-cell mode was established, each cell was voltage-clamped at a holding potential
of −50 mV, and a 1-sec depolarizing voltage command to −10 mV was delivered to it.
The amplitude of IK(M) at the end-pulse of 1-sec depolarizing pulse measured during
cell exposure to 10 µM SOL was taken as 100%, and current amplitudes were thereafter
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compared to those in the presence of different SOL concentrations. The concentration
required to increase the IK(M) amplitude by 50% was determined by use of the Hill function:

Percentage increase (%) =
Emax × [SOL]nH

ECnH
50 + [SOL]nH

where [SOL] is the SOL concentration applied, Emax the maximal increase in IK(M) caused
by SOL, EC50 the concentration required for 50% stimulation, and nH the Hill coefficient.

The time-dependent rate constant of forward (k∗+1) or backward (k−1) was broadly
evaluated from the activation time constant (τact) of IK(M) activated by the long depolarizing
pulse from −50 to −10 mV. The τact values in the presence of different SOL concentrations
were approximated by fitting single exponential function to the trajectory of each current
trace. Since a Hill coefficient of about 1 was found according to the concentration-dependent
curve, the forward or backward rate constant was extended to be determined using the
following equation:

1
τact

= k−1 + k∗+1 [SOL]

where [SOL] is the SOL concentration applied, and k∗+1 or k−1 was gained from the slope and
the y-axis intercept at [SOL] = 0 of the interpolated regression line, where the relation of the
reciprocal time constant of IK(M) activation (1.e., 1/τact) versus different SOL concentration
was constructed.

The relationship of the membrane potential versus the IK(M) conductance gained in
the absence or presence of SOL was well approximated by a modified Boltzmann function
(or the Fermi-Dirac distribution) of the following form:

G
Gmax

=
1

1 + exp
[
−(V−V1/2)qF

RT

]
where G is the IK(M) conductance, Gmax the maximal conductance of IK(M), V1/2 the voltage
at which half-maximal activation of the current is achieved, q the apparent gating charge, F
Faraday’s constant, R the universal gas constant, and T the absolute temperature.

4.6. Analyses of Single M-Type K+ (KM) Channels

Single KM-channel currents experimentally measured from GH3 cells were collated
using pCLAMP 10.7 suite (Clampfit 10.7 subroutine). We determined single-channel ampli-
tude taken with or without the addition of SOL by reliably fitting Gaussian distributions to
the amplitude histograms of the closed (resting) or open state. The channel open probabili-
ties were defined as N·PO, which was determined by using the following expression:

N·PO =
A1 + 2A2 + 3A3 + . . . + nAn

A0 + A1 + A2 + . . . An

where N is a number of active KM channels residing in the patch examined, A0 is an area
under the curve of an all-points histogram corresponding to the closed (resting) state,
and A1 . . . An represents a histogram area that corresponds to the level of distinct open
state for 1 to n channels in the patch. The single-channel conductance of KM channels
with or without the SOL addition was calculated using a linear I-V approximation with
mean values of single-channel amplitudes measured at the different membrane potentials
relative to the bath, while open lifetime distribution of KM channels was fitted with single
exponential function.

4.7. Curve-Fitting Procedures and Statistical Analyses

Linear (e.g., single-channel conductance) or nonlinear (e.g., Hill or Boltzmann equation
and single exponential) curves fitting to experimental data sets demonstrated here was
performed from the goodness-of-fit test using either the Solver add-in bundled with
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Excel® 2021 (Microsoft) or OriginPro® 2021 (OriginLab). The values are provided as
means ± standard error of mean (SEM) with sample sizes (n), which represents the cell
number collected. The Student’s t-test (paired or unpaired) or analysis of variance (ANOVA-
1 or ANOVA-2) followed by post-hoc Fisher’s least-significance difference test for multiple-
range comparisons, was implemented for the statistical evaluation. Statistical analyses
were performed using IBM SPSS version 20.0 (IBM Corp., Armonk, NY, USA). Probability
with p < 0.05 was considered statistically significant, unless noted otherwise.
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Abbreviations

ACh acetylcholine
ANOVA analysis of variance
AP action potential
Apa apamin
ChTx chlorotoxin
EC50 the concentration required for 50% stimulation
I-V current versus voltage
Iber iberiotoxin
IK(M) M-type K+ current
KD dissociation constant
KM channel M-type K+ channel
Lino linopirdine
SEM standard error of mean
SOL solifenacin (Vesicare®)
TLB tolbutamide
TRH thyrotropin releasing hormone
τact activation time constant
TTX tetrodotoxin
Vhys voltage-dependent hysteresis
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