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Abstract
Background: MAdCAM-1 plays a central role in T-lymphocyte homing to the gut, but its role in
chronic liver inflammation remains unknown. Therefore, this study measured MAdCAM-1
expression, regulation, and function in cultured murine hepatic endothelial cells.

Methods: Cultures of hepatic endothelial cells (HEC) were prepared from mice expressing a
temperature-sensitive SV40 large T antigen (H-2Kb-tsA58) under the control of an IFN-γ promoter.
Time and dose dependent expression of MAdCAM-1 in response to TNF-α, IL-1β and IFN-γ was
studied by immunoblotting. Lymphocyte adhesion was studied using α4β7integrin expressing
lymphocytes (TK-1) +/- anti-MAdCAM-1 mAb.

Results: TNF-α induced MAdCAM-1 dose-and time-dependently with maximum expression at 20
ng/ml and at 48 hours. IL-1β also induced MAdCAM-1 to a lesser extent compared to TNF-α; IFN-
γ did not induce MAdCAM-1. TNF-α significantly increased lymphocyte-endothelial adhesion (P <
0.01), which was reversed by anti-MAdCAM-1 antibody. MAdCAM-1 expression was also reduced
by N-acetylcysteine and by two NO donors (SperNO, DETANO) suggesting that hepatic
endothelial MAdCAM-1 is oxidant and NO regulated.

Conclusion: MAdCAM-1 is a major determinant of leukocyte recruitment in chronic inflammation
and is expressed by HEC in response to IL-1β and TNF-α. This system may provide a useful model
for studying inflammatory mechanisms in liver disease and help determine if controlled MAdCAM-
1 expression might influence inflammation in liver disease.
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Background
Lymphocyte trafficking to secondary lymphatic organs
including peripheral lymph nodes, Peyer's patches, bone
marrow, spleen, and mesenteric lymph nodes, is largely
governed by adhesion molecules on lymphocytes, called
homing receptors, and their corresponding ligands on
endothelial cells, called vascular addressins [1]. Binding
through these molecules increases the frequency with
which these cell arrest on cells expressing these cognate
antigens. Most memory and effector lymphocytes also
access and recirculate through extra-lymphoid immune
effector sites. The liver, like the skin and gut, is a major site
of antigen presentation with its own resident lymphocyte
population. On the other hand, at sites of inflammation,
lymphocyte homing depends on interactions between
lymphocytes and venular endothelial cells. It is becoming
increasingly apparent that inflammation is associated
with enhanced expression of endothelial cell adhesion
molecules (ECAMs) in the intestines of both experimental
animals and humans [2,3]. Liver endothelial cells have
also been shown to express intercellular adhesion mole-
cule-1 (ICAM-1), intercellular adhesion molecule-2
(ICAM-2), and vascular cell adhesion molecule-1 (VCAM-
1) [4,5]. Recent studies indicate that in hepatic ischemia
reperfusion injury, blocking ICAM-1 reduced inflamma-
tion and liver injury, and ICAM-1 immunoblockade has
been considered as a possible target for therapeutic inter-
vention [6]. However, the precise mechanism of adhesion
and transmigration of lymphocytes in the hepatic vascula-
ture is still poorly understood. Recently it was reported
that MAdCAM-1 was expressed in the liver portal region in
autoimmune hepatitis, and MAdCAM-1 mediated adhe-
sion might provide a basis for hepatic recruitment of
mucosal lymphocytes, (at least in inflammatory bowel
disease complicated by liver disease) [7].

Mucosal addressin cell adhesion molecule-1(MAdCAM-
1) is a ~ 60 kDa endothelial cell adhesion molecule
expressed on the surface of high endothelial venules in the
gut and in Peyer's patches [8]. MAdCAM-1 is also
expressed on endothelial cells within the mesenteric
lymph nodes, the lamina propria of both the small and
large intestine, in the mammary gland during lactation
and on brain endothelial cells [9,10]. In addition to its
normal role in lymphocyte trafficking to mucosal lym-
phoid tissue, MAdCAM-1 expression is also dramatically
increased in chronic inflammatory and disease states (33),
e.g., inflammatory bowel disease (IBD) [2], sclerosing
cholangitis, cirrhosis [12], and diabetes [13,14], and may
play important roles in these conditions. In IBD, espe-
cially Crohn's disease, MAdCAM-1 acts as the main ligand
for α4β7-expressing lymphocytes, and recruits these lym-
phocytes into the intestine where they initiate and sustain
chronic inflammation. Several animal models and human
studies support an absolute requirement for both MAd-

CAM-1 and α4β7 in the production of immune models of
colitis [15].

MAdCAM-1 is expressed at the surface of lymphoid and
brain endothelial cells in response to several cytokines
including TNF-α and IL-lβ. However, the signal transduc-
tion pathways involved in MAdCAM-1 induction in HEC
have not been studied. Since MAdCAM-1 is induced by
Th1 cytokines, like TNF-α and IL-lβ, it is likely that its
induction would mechanistically resemble that described
for other adhesion molecules (such as ICAM-1 and
VCAM-1). These adhesion molecules are also induced by
Th1 cytokines, and require activation of the NF-kB/PARP
complex [16]. Activation of these transcription factors is
also believed to require the production of intracellular
oxidants (since synthesis of these adhesion molecules in
response to cytokines is prevented by antioxidants like N-
acetylcysteine). Physiologically, the expression of these
adhesion molecules and forms of injury mediated by
them also appears to be limited by the presence of NO
produced by either constitutive or inducible forms of
nitric oxide synthase (eNOS, iNOS) or by NO donors [17-
19]. It has been suggested that NO might limit the tran-
scription/translation of adhesion molecules either by
scavenging signal oxidants (produced in response to
cytokines) or by covalent modification of polypeptides in
the signaling pathway, like the inhibitor of kappaB (IkB).

In the intact liver, oxidative stress appears to be part of the
mechanism for ischemia and reperfusion (I/R) injury and
is closely related to the generation of reactive oxygen spe-
cies (ROS) [20] and possibly nitric oxide [21]. Sinusoidal
endothelial cells appear to be a major target of liver I/R in
vivo as well as hypoxia-reoxygenation injury in vitro
[22,23]. The I/R injury to sinusoidal endothelium disrupts
the microcirculation, reducing blood flow and enhancing
further tissue necrosis. Neutrophils will then adhere to
damaged endothelial cells, and their subsequent activa-
tion is likely to be an important source of ROS. Endog-
enous levels of reduced glutathione (GSH), critically
important in providing protection against injury from
ROS during I/R injury in the intact liver [24] as well as in
the other tissue [25], are reduced following I/R. The role
of the hepatic endothelial cell in the production of auto-
crine oxidative stress remains unclear.

In the present study, we used a hepatic endothelial cell
line from transgenic mice whose tissues maintain a tem-
perature-sensitive SV40 large T antigen (H-2Kb-tsA58
mice) to assess the MAdCAM-1 expression of HEC
directly. Our data show that hepatic microvessel endothe-
lial MAdCAM-1 is induced by TNF-α and IL-1β, but not by
IFN-γ Expression of MAdCAM-1 was dose-dependently
increased by TNF-α. Further, we showed that the HEC
bound TK-1 lymphocytes to a significantly higher extent
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after TNF-α stimulation and that this adhesion was inhib-
ited by anti-MAdCAM-1 antibody. We also evaluated
whether endogenous nitric oxide (from eNOS and iNOS),
exogenous NO (from rapid or slow-releasing NO donors)
or redox imbalance affects the expression of MAdCAM-1.
Our data suggest that in this model, insufficient NO may
be produced directly by HEC (from either iNOS or eNOS),
to influence MAdCAM-1 expression. However, these cells
can respond to NO from other sources (rapid and slow
releasing NO donors), and exogenous NO potently
decreases both MAdCAM-1 expression and lymphocyte
endothelial adhesion.

Methods
Cells
Hepatic microvascular endothelial cells were prepared
according to Langley et al. [26]. Briefly, the cells were iso-
lated from livers of mice, homozygous for a temperature-
sensitive SV40 large T antigen (ImmortoMice; CBA/ca X
C57Bl/10 hybrid; Charles River Laboratories). The culture
medium was DMEM including 10% fetal bovine serum, 2-
mM L-glutamine, nonessential amino acids, a vitamin
solution and 1% antibiotic/anti-mycotic (Life Technolo-
gies, Inc., Rockville, MD). The culture flasks were coated
by 2% gelatin. After the cultures reached confluence, the
cells were maintained in the same medium. We cultured
HEC under permissive temperatures (33°C) and trans-
ferred them to non-permissive temperatures (37°C) to
inactivate SV40 large T antigen 24 h before cytokine stim-
ulations.

Western analysis of cell lysates
Protein samples (75 µg each) were separated on 7.5%
SDS-PAGE and transferred to nitrocellulose membranes.
Membranes were incubated with 1° anti-mouse MAd-
CAM-1 monoclonal antibody (mAb; 10 µg/ml MECA-
367; Pharmingen, San Diego, CA). Goat anti-rat horserad-
ish peroxidase-conjugated 2° antibody (Sigma) was
added at a 1:2,000 dilution. Last, membranes were devel-
oped by enhanced chemiluminescence (Amersham, La
Jolla, CA). MAdCAM staining density was measured by
scanning the 58-to 60-kDa band and densitometry using
Image Pro Plus (Media Cybernetics, Bethesda, MD). The
data are expressed as the percentage of the level of density
induced by TNF-α (set at 100%). All experiments were
performed at least in triplicate (n = 3).

Flow cytometric analysis
Expression of MAdCAM-1 analysis was performed by flow
cytometry with FACScan (Becton Dickinson, Mountain
View, CA) with the program CELL Quest (Becton Dickin-
son). For MAdCAM-1 protein expression, HEC(5 × 106)
were trypsinized, washed with PBS containing 0.5% BSA
plus 0.1% NaN3, and 5% heat activated normal rabbit
serum, re-suspended in the Washing Buffer(PBS contain-

ing 0.1% bovine serum albumin (BSA) and 0.1%NaN3),
and incubated with fluorescein isothiocyanate-conju-
gated anti-MAdCAM-1 monoclonal antibody for 60 min
at room temperature. The cells were washed three times
with the Washing Buffer, re-suspended in PBS containing
1% BSA and 0.1%NaN3, and then fixed in PBS containing
4% formalin.

TK-1 lymphocyte adhesion assay
Mouse CD8+ T cell lymphoma tyrosine kinase (TK)-1 cells
that constitutively express the integrin α4β7 [27] were
kindly donated by Dr. Eugene Butcher (Stanford Univ.,
CA). These cells were cultured in RPMI medium supple-
mented with 10% FCS, 2 mM L-glutamine, and 0.05 mM
2-mercaptoethanol. Briefly, TK-1 cells were suspended in
culture medium and fluorescence labeled by incubating
TK-1 cells at 2 × 106 cells/ml with 0.02 mg calcein AM
(Sigma) at 37°C for 15 min. The cells were then washed
twice with ice-cold HBSS, spun at 250 g for 5 min to
remove unincorporated fluorescent dye, and finally re-
suspended in HBSS. The TK-1 lymphocyte cell line used in
this assay expresses high levels of the α4β7 integrin [9,28],
which can interact with multiple ligands including
mucosal addressin-1 (MAdCAM-1), and also VCAM-1, L-
selectin and fibronectin [29]. HEC were grown in 96-well
plates as described, and monolayers activated by incuba-
tion with TNF-α (20 ng/ml) for 24 h. Cytokine treated
HEC endothelial cells were then washed three times with
media, and labeled TK-1 cells then added to 5:1 lym-
phocyte to endothelial cell ratio [30]. Cells were allowed
to bind for 15 min under static conditions. At the end of
the incubation period, the monolayers were washed twice
with HBSS and plates read on a Fluoroskan Ascent (Lab-
systems, Helsinki, Finland) using excitation at 485 nm,
and emission at 515 nm. Blank wells that did not contain
labeled TK-1 cells were run as 0% TK-1 adhesion controls.
The data are expressed as a percentage of TNF-α-induced
(maximal) level of fluorescence. In each protocol, treat-
ments were performed in triplicate.

Analysis of nitric oxide donors and cell redox in TNF-α-
induced MAdCAM-1 expression
DETA-NO and SperNO were purchased from Alexis corp.
(San Diego, CA). L-NAME, NAC (N-acetylcysteine) were
purchased from Sigma (St. Louis, MO). To examine NO
effect for induction of MAdCAM expression, HEC were
pretreated with drugs 1 h before TNF-α stimulation. HEC
were harvested 24 h after TNF-α treatment and were West-
ern blotted as described.

Statistical analyses
All values are expressed as mean ± SD. Data were analyzed
using one-way analysis of variance with Bonferroni post-
testing for multiple comparisons. Probability (P) values of
< 0.05 were accepted as significant.
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Results
Hepatic endothelial cells
The hepatic endothelial cells (HEC) exhibited a typical
cobblestone morphology (see Figure 1A). All cells immu-
nostained positively for VCAM-1 and anti-MECA32 (see
Figures 1B, 1C). HEC cells took up DiI-labeled acetylated
low density lipoprotein (AcLDL) (see Figure 1D), markers
expressed by endothelial cell cultures in vitro. These cells
also express lymphatic vascular endothelial vascular
endothelial hyaluronan receptor-1 or LYVE-1, (see Figure
2B), which has been used to identify sinusoidal endothe-
lial cells [31]. Therefore, our results are consistent with
these HEC as pure endothelial cells with characteristics of
sinusoidal hepatic endothelial cells.

Analysis of MAdCAM-1 expression on hepatic endothelial 
cells
We examined MAdCAM-1 expression 24 h after stimula-
tion with cytokines (TNF-α, IL-lβ, IFN-γ) Expression of
MAdCAM-1 protein was measured by immunoblotting
(using MECA-367 mAb). MAdCAM-1 was not constitu-
tively expressed on unstimulated HEC but was induced by
TNF-α (20 ng/ml) (see Figure 2A). IL-1β (10 ng/ml) also
induced MAdCAM-1, but to a lesser extent than TNF-α.
MAdCAM-1 was not expressed in response to IFN-γ. Next,
we examined SV40 activity in response to the 'permissive'
temperature and TNF-α. We showed SV40 activity to a
lesser extent after changing cells to 37°C, but there was no
effect with regard to the TNF-α response (see Figure 2B).

Also, we showed that MAdCAM-1 was present on the
external endothelial cell surface based on immunostain-
ing of the cell surface without prior permeabilization (see
Figure 2C).

TNF-α stimulates MAdCAM-1 expression dose-and time- 
dependently
In controls, MAdCAM-1 was only faintly detected. Incuba-
tion of HEC with TNF-α for 24 h caused a dose-dependent
increase in MAdCAM-1 (see Figure 3A). MAdCAM-1 was
significantly increased by TNF-α (>2.0 ng/ml); maximum
MAdCAM-1 expression occurred at 20 ng/ml. TNF-α (20
ng/ml) for 8, 24 or 48 h caused a time-dependent increase
in MAdCAM-1; maximum MAdCAM-1 expression was
observed at 48 h-α (see Figure 3B).

MAdCAM-1 expression in HEC after TNF-α stimulation
To quantify the amplitude of MAdCAM-1 signal and the
percentage of cells that are positive after treatment with
different cytokines and time course, we analyzed MAd-
CAM-1 expression after TNF-α stimulation by FACS. Fig-
ure 4A shows that 43% of the cells expressed MAdCAM-1
for 24 h. MAdCAM-1 expression is time-dependent, but
the maximum expression is 53% after 48 h (see Figure
4B).

NO reduces MAdCAM-1 expression on hepatic 
endothelial cells
To determine the effect of NO on TNF-α-induced MAd-
CAM-1 expression, 500 µM DETA Neonate, 500 µM Sper-
mine NONOate, 1 mM N-acetyl cysteine (NAC), and 1
mM L-NAME were incubated with HEC 1 h before TNF-α
stimulation. NO donors (DETA NONOate, spermine
NONOate) significantly decreased TNF-α-induced MAd-
CAM-1 expression (see Figure 5). The non-selective NO
synthase inhibitor (L-NAME) failed to limit MAdCAM-1
expression. On the other hand, the antioxidant NAC
reduced MAdCAM-1 expression (see Figure 5).

MAdCAM-1 expressed in HEC is functional
Having established several signals in the regulation of
MAdCAM-1 expression by hepatic endothelial cells, we
next examined lymphocyte adhesion after cytokines using
the mouse lymphocyte cell line TK-1. Figure 6 shows that
control adhesion of TK-1 cells was about 57.68 ± 3.77 of
the maximal adhesion induced by TNF-α. TNF-α induced
maximal adhesion (100 ± 2.1%) which was significantly
elevated compared to controls (p < 0.01TNF-α vs. con-
trol). This level of adhesion was inhibited by pre-incuba-
tion of hepatic endothelial cells with the blocking anti-
MAdCAM-1 antibody MECA-367 (10 ug/ml). This anti-
body reduced TK-1 adhesion to 84.8 ± 3.99% of TNF-α (p
< 0.01 TNF-α + MECA-367 vs. TNF-α). Similar studies per-
formed using MECA-89, a MAdCAM-1 binding, but not
blocking MAdCAM-1 antibody [32], did not significantly

Establishment of hepatic endothelial cells (HEC)Figure 1
Establishment of hepatic endothelial cells (HEC). A. Phase 
contrast image of HEC. B. Immunofluorescent staining for 
VCAM-1 in HEC. C. Immunofluoresent images of mouse 
endothelial cell antigen-32 (MECA-32) expressed on the sur-
face of HEC monolayers. D. Distribution of DiI-labeled 
acetylated low density lipoprotein -(LDL), an endothelial cell 
specific biomarker incorporated into endothelial cells by 
receptor mediated endocytosis.
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reduce TK-1 cell binding following TNF-α (98 ± 5.24% of
the maximum adhesion induced by TNF-α).

Discussion
The present study demonstrates that MAdCAM-1 is
induced on HEC on exposure to some cytokines (TNF-α
and IL-1β), and that this MAdCAM-1 can support lym-
phocyte adhesion (since anti-MAdCAM-1 mAb blocked
TNF-α stimulated adhesion). This indicates that MAd-
CAM-1 might help regulate lymphocyte adhesion/extrava-
sation in the liver during inflammation. MAdCAM-1 is an
endothelial CAM of the immunoglobulin superfamily
(along with ICAM-1 and VCAM-1) that has been impli-
cated in the selective recruitment of lymphocytes to sites
of inflammation in the gut [2,3]. Clinical studies showed
that E-selectin and VCAM-1, (which were absent in nor-
mal human liver tissue), became strongly expressed in
inflammatory liver disease [33]. With respect to MAd-
CAM-1, it is known that MAdCAM-1 was expressed on
portal vein and sinusoidal endothelium in chronically
inflamed human liver [34]. Grant et al. showed that MAd-
CAM-1 in the liver was functionally active because α4β7+
T cells were found to bind with MAdCAM-1-expressing
vessels and circulating T cells from patients with inflam-

matory bowel disease bound to human hepatic endothe-
lium via a MAdCAM-1 dependent pathway [7]. Our data
support that idea that MAdCAM-1 is expressed on the
sinusoidal endothelial cells of the liver.

Pathologically, acute and chronic human hepatitis is also
characterized by prominent infiltration of lymphocytes
(mainly T cells) into the parenchyma and perivascular
interstitial tissues of the liver [35]. Lymphocyte attach-
ment to endothelium within central and portal veins may
provoke what is termed "endothelialitis" [36], and lym-
phocyte migration into the sub-endothelial layer is com-
mon in inflammatory liver disease [37]. T-cell mediated
hepatitis can be induced in mice by administration of Con
A [38]. In this model, after endothelial adhesion, lym-
phocytes promptly migrate out of vessels and accumulate
in the perivascular areas (such as the space of Disse),
perivenular intestinal tissue, and portal tract. TNF-α and
IFN-γ released from activated T cells play important roles
in the development of this order. T-cell cytotoxicity medi-
ated by Fas-Fas ligand [39] or perforin [40] might also be
involved in hepatic injury. Although the main infiltrating
cells in this murine hepatitis model are non-specifically
activated lymphocytes directed to infected hepatocytes (as

MAdCAM-1 is expressed by cytokine activated hepatic endothelial cellsFigure 2
MAdCAM-1 is expressed by cytokine activated hepatic endothelial cells. A. Hepatic endothelial cells were treated with TNF-α 
(20 ng/ml), or IL-1β (10 ng/ml) or IFN-γ (1000 u/ml) for 24 h. B. Immunoblotting for SV40 Large-T antigen and MAdCAM-1 C. 
Immunostaining for MAdCAM-1 on the HEC cell surface.
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s

een in human viral hepatitis), the main pathological fea-
tures (i.e., massive hepatocellular degeneration and
prominent T-cell infiltration) [38] are shared by these
two. This indicates that lymphocyte adhesion/transmigra-
tion is commonly seen in various kinds of hepatic inflam-
mation. We found that the TK-1 lymphocyte line bound
to HEC via α4β7 binding to MAdCAM-1.

Primary sclerosing cholangitis (PSC) and primary biliary
cirrhosis (PBC) are both chronic cholestatic liver diseases
with progressive destructive inflammatory fibrosis of int-
rahepatic bile ducts, especially the septal and interlobular
bile ducts. While the etiology of both diseases is
unknown, there is evidence to suggest that immunologi-
cal mechanisms may be important [12]. Abnormalities in
lymphocyte subsets exist in peripheral blood and liver in
both PSC [41] and PBC [42]. Infiltrating T cells in both of
these models are closely associated with areas of bile duct
destruction [41,43]. Grant et al. reported that vessels in
the human liver support adhesion of α4β7+ mucosal lym-
phocytes via binding to expressed MAdCAM-1 on liver
endothelium and proposed a mechanism to explain the
hepatic recruitment of mucosal lymphocytes in inflam-
matory liver disease complicating IBD [7]. Eksteen et al.
proposed that long-lived populations of memory lym-
phocytes arise as a consequence of bowel inflammation
and that these cells express homing receptors that direct

Effect of nitric oxide (NO) donors and N-acetylcysteine, an antioxidant on MAdCAM-1 expression by HEC in response to TNF-αFigure 5
Effect of nitric oxide (NO) donors and N-acetylcysteine, an 
antioxidant on MAdCAM-1 expression by HEC in response 
to TNF-α. HEC were pretreated for 30 minutes with the 
NO donors, DETA-NO or SperNO (500 uM), or L-NAME 
(1 mM), or N-acetylcysteine (1 mM). Tumor necrosis factor 
(TNF)-α (20 ng/ml) was then added to these cultures for 48 
h. MAdCAM-1 expression was significantly increased by 
TNF-α and significantly reduced by DETA-NO, SperNO or 
NAC, but not by L-NAME. Values represent the mean ± SE; 
n = 3 experiments in each group. * = p < 0.01 vs. TNF-α 
treatment.
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their subsequent migration not only to the gut but also to
the liver [44]. We already reported that MAdCAM-1 on
colonic endothelial cells after TNF-α stimulation in vitro
[45]. Our results here may support previous assumptions
that MAdCAM-1 expression might be one of the causes of
lymphocyte-mediated liver disease, like autoimmune
hepatitis and primary sclerosing cholangitis, which com-
plicate inflammatory bowel disease.

NO is an important modulator of adhesion molecule
expression in both acute and chronic inflammatory states
and may influence the course of chronic inflammation. It
is known that NO can function both as an oxidant or anti-
oxidant depending on the availability of reactive oxygen
species. Similarly, the concentration of NO can also aug-
ment or inhibit oxygen-radical mediated tissue damage
and lipid peroxidation. It has also been reported that inhi-
bition of endothelial nitric oxide synthases (using the
non-selective NOS inhibitor L-NAME) induces endothe-
lial adhesion molecules (ICAM-1 and VCAM-1) in
HUVEC [17]. Ischemia/Reperfusion (I/R) is a conse-
quence of liver transplantation and resectional surgery, as
well as hemorrhagic shock and thermal injury. The role
that NO plays in this process has been the subject of active

debate. A growing body of experimental evidence suggests
that NO may also modulate I/R-induced tissue injury in
various organ systems [17,19]. In vitro and in vivo data
show that NO protects tissue by decomposing superoxide
radical (O2 

-) [46]. It has also been suggested that NO
modulates the activity of transcription factors such as NF-
kB [47]. Although some studies demonstrate that NO lim-
its or down-regulates I/R-induced liver injury, other
reports suggest that NO promotes I/R-induced hepatocel-
lular damage, possibly due to the formation of very strong
oxidizing species like peroxynitrite (ONOO-) [48]. Much
of this controversy is probably due to the wide use of non-
specific inhibitors of the different NOS isoforms [48].
With the advent of genetically engineered mice, it is now
possible to more precisely examine the role of NO in I/R-
induced liver injury [46,49]. Hines et al. have shown that
endothelial nitric oxide synthase (e-NOS)- and inducible
nitric oxide synthase (iNOS)-deficient mice are highly sus-
ceptible to damaging effects of liver I/R [50]. They have
also shown that eNOS-, but not iNOS, derived NO mod-
ulates the expression of pro-inflammatory cytokines pos-
sibly limiting the observed tissue injury with a marked up-
regulation in eNOS message during I/R potentially a pro-
tective mechanism within the liver. In this present study,
we investigated how MAdCAM-1 expression in HEC was
altered by NO donors and synthase inhibitors. We
observed that both a short and long-acting NO donor sig-
nificantly reduced TNF-α-induced expression of MAd-
CAM-1 expression in hepatic endothelial cells. The effects
of NO donors appear to reflect their ability to prevent the
nuclear translocation of NF-kB. The MAdCAM-1 promoter
has several NF-kB binding sites [51], and is necessary to
induce MAdCAM-1 expression. Both a short and long act-
ing NO donor blocked MAdCAM-1 induction, but the
slow-releasing NO DETA-NO was about 5 times more
effective than SperNO (on a molar basis). This probably
reflects a requirement for the continuous production of
NO which is needed to block cytokine signaling in this
system. Oshima et al. reported that in the SVEC-based
experiments (a cell line used to study mechanisms of
MAdCAM induction) that NO limits inflammation via
NF-kB inhibition, since NO donors effectively block p65
translocation into the nucleus [52].

Cellular thiol status has been shown to modulate tran-
scription factor activation of gene expression mediated
TNF-α, IL-1, LPS, or H2O2. Staal et al. demonstrated that
low cell thiol levels promote NF-kB activation, whereas
exogenous cysteine and N-acetyl-L-cysteine (NAC) inhibit
NF-kB activity [53]. Moreover, a decrease in GSH induced
by inhibition of GSH biosynthesis was shown to alter the
NF-kB activation responses to LPS [54] or TNF-α [55].
Samarasinghe et al. showed that sinusoidal endothelial
cells undergo significant intracellular oxidative stress fol-
lowing re-oxygenation, and their viability is critical related

TNF-α induces MAdCAM-1 dependent adhesion of TK-1 lymphocytes to HECFigure 6
TNF-α induces MAdCAM-1 dependent adhesion of TK-1 
lymphocytes to HEC. Compared to controls which exhibited 
57.68 ± 3.77% of the maximum lymphocyte adhesion, 20 ng/
ml TNF-α (24 h), induced a significant increase in TK-1 cell 
adhesion (set as maximal '100%' adhesion). The increased 
adhesion induced by TNF-α was significantly reduced to 84.8 
± 3.99% of maximal adhesion by pre-/co-treatment of HEC 
with the blocking mouse MAdCAM-1 Ab 'MECA-367'(10 ug/
ml). The binding but not blocking MAdCAM-1 antibody 
MECA-89 did not significantly reduce TNF-α induced adhe-
sion (98 ± 5.25% maximal adhesion). Each value represents 
the mean ± s.d.; each group (n = 6).
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to cell GSH levels [56]. Similarly, we show here that pre-
treatment with NAC inhibited cytokine induced MAd-
CAM-1 expression.

MAdCAM-1 was induced on HEC by TNF-α and IL-1β
(but not by IFN-γ). Similarly, HEC adhered lymphocytes
after TNF-α stimulation, and this adhesion was inhibited
by anti-MAdCAM-1 antibody treatment. This suggests that
lymphocytes are recruited and bound to HEC via MAd-
CAM-1. This type of adhesion might be a contributing
mechanism in several inflammatory liver diseases, includ-
ing viral-induced liver disease, autoimmune liver disease,
and I/R induced liver injury. We believe that this HEC cell
system may represent a useful tool for modeling several
acute and chronic liver diseases in vitro.
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