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SUMMARY

This paper proposes a novel clustering and dynamic recognition–based auto-
reservoir neural network (CDbARNN) for short-term load forecasting (STLF) of
industrial park microgrids. In CDbARNN, the available load sets are first decom-
posed into several clusters via K-means clustering. Then, by extracting character-
istic information of the load series input to CDbARNN and the load curves
belonging to each cluster center, a dynamic recognition technology is developed
to identify which cluster of the input load series belongs to. After that, the input
load series and the load curves of the cluster to which it belongs constitute a
short-term high-dimensional matrix entered into the reservoir of CDbARNN.
Finally, reservoir node numbers of CDbARNN which are used to match different
clusters are optimized. Numerical experiments conducted on STLF of an actual
industrial park microgrid indicate the dominating performance of the proposed
approach through several cases and comparisons with other well-known deep
learning methods.

INTRODUCTION

Motivation

Short-term load forecasting (STLF) has garnered significant attention in the context of the modernization of

industrial parks.1,2 Accurate STLF plays a crucial role in facilitating the resolution of the power supply–

demand imbalance. Additionally, it aids in formulating power purchase plans and supports the analysis

of energy storage system operation strategies to realize the economic operation of the parks.3–5 However,

the increasing integration of various electrical devices, coupled with various factors such as power demand,

weather conditions, regional characteristics, and temperature has exacerbated the stochastic fluctuations

in the load curve of industrial parks, posing substantial challenges for STLF.6,7 In light of these challenges,

this paper proposes a novel model to address the short-term power load forecasting problem and

effectively capture the complex dynamics associated with various electricity consumption behaviors,

alongside other significant factors.

Literature survey

In recent years, the development of mathematical theory and modern computational technology boost

continuous improvement of load forecasting models, therefore, varieties of models have been advocated

for practical applications. There are, generally speaking, three categories of forecasting models, i.e., clas-

sical forecasting models, modern forecasting models, and hybrid models.1

One representative of classical forecasting models is the Kalman filter method. For example, Sharma et al.

proposed a blind Kalman filtering algorithm for STLF and applied it both on load profile estimation and

peak load forecast.8 The Kalman filtering obtains the best estimate of the state of the system at one

time by filtering the sample data and uses the new data obtained to forecast the future state.9 The disad-

vantage is that it is difficult to accurately estimate the statistical characteristics of system noise in applica-

tions. If the load forecastingmodel is built on the basis of inaccurate model parameters and noise statistics,

a large forecasting error will occur.10 Another widely used classical forecasting model is the time series

method. The disadvantage is that it has high requirements for the stationarity of the time series of the

data, and it focuses too much on the fitting of the data and ignores the variability of the data.11 With the

modification of the power grid structure, the complexity and fluctuation of the power load in industrial
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parks are increasing. Although the classical forecasting model has a fast calculation speed, its simple struc-

ture prevents it from adapting to changes in load trends.12

In the context that a forecasting model with assertive stochastic and non-linear behavior capturing abilities

is needed, AI models have been utilized commonly,13 including artificial neural network (ANN), support

vector regression (SVR), fuzzy logic approach, etc. Kamran et al. designed an ANN based on artificial

bee colony algorithm and applied it to the Bushehr Province demand forecasting.14 Yang et al. proposed

a sequential grid approach based SVR model for STLF by introducing the asymptotic normality of a fixed

grid point of parameters.15 The latest short-term but high-dimensional data possess rich information on its

immediate future evolution than the remote-past time series, which is more useful for the power load fore-

casting.16,17 With respect to hybrid models, recent research has primarily focused on combining AI

methods with a variety of techniques to leverage the combined advantages of individual models. For

instance, Hafeez et al. integrated a locally weighted SVR based forecaster with adaptive grasshopper

optimization and feature engineering to address the challenges of parameter tuning and computational

complexity, and they demonstrated its effectiveness using real half-hourly load data from five states of

Australia.17 Jiang et al. introduced a framework combing long short-termmemory and convolutional neural

network, which learns the recent electricity usage behavior and features in the low-level information extrac-

tion stage and then integrates the forecasting information in the high-level stage.18 But, in general, the

above-mentioned models tend to be data-hungry, requiring long observation times and substantial

computational resources.19 So, due to the insufficient data, it is a challenging task to makemultistep-ahead

forecasting based only on short-term load series. Furthermore, even if AI is compelled to perform STLF, it

will be vulnerable to local optima and overfitting.17

In order to resolve the above limitations, Chen et al. proposed an auto-reservoir neural network (ARNN) by

combining reservoir computing (RC) and spatiotemporal information (STI) transformation.20 ARNN is a

variant of neural networks recently developed following RC frameworks that is suitable for temporal and

sequential information processing. It achieves an accurate, robust, and computationally efficient multi-

step-ahead forecasting with short-term high-dimensional data.20 Unlike traditional RC, which uses an

external dynamical system unrelated to the target system as its reservoir,21–23 ARNN uses the observed

high-dimensional information as its reservoir, which uses STI to map high-dimensional data to future

temporal values of a target variable. It has been put into practical application; for instance, Li et al. pro-

posed a method to forecast outbreaks of Covid-19, called the landscape network entropy based ARNN.24

In the past few years, ARNN has achieved great success in learning the dynamics of time series and demon-

strated accuracy in forecasting gently changing data.20,25,26 But it faces challenges when dealing with data

mutations caused by external factors in real-life scenarios. To address this issue, wavelet transform and

empirical mode decomposition (EMD) have been commonly used in previous studies to decompose

and simplify the original load series. For instance, Gao et al. employed empirical wavelet transformation

in a walk-forward approach, decomposing the raw load data into sub-series that were fed into the neural

network for prediction.27 Similarly, Liang et al. proposed a hybrid model, EMD-mRMR-FOA-GRNN, which

utilized EMD to decompose nonstationary load series into bivariate modal components to enhance predic-

tion precision.1 However, predicting all deconstructed components simultaneously in these models

increases their complexity and computational cost, leading to potential errors in ensemble forecasting.3

In contrast, ARNN is specifically designed for forecasting high-dimensional data. However, when the

dimensions of the data are not sufficiently high, ARNN may not effectively highlight its advantages over

other forecasting models.20 In the historical daily load data of industrial park microgrids, there are often

significant similarities that can be extracted. For example, the electricity consumption trend on holidays

or days with similar weather conditions tends to exhibit similarities.28–30 By leveraging the similarities in

load series, we can compensate for the limitations of ARNN in handling load mutations by forming them

into a high-dimensional input dataset.

Previous studies have employed various characteristic variables such as meteorological data, date types,

and electricity prices to identify similar load days.31,32 However, the consideration of numerous character-

istic factors and the intricate relationships between vectors pose challenges. Therefore, identifying similar

load series in a simple and effective manner to drive ARNN for achieving more accurate STLF remains to be

studied.
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Contributions

To address the above-mentioned limitations of ARNN, this study proposes a clustering and dynamic recog-

nition (DR) based ARNN (CDbARNN) for STLF. The CDbARNN is a wait-and-see approach, which consists

of four steps, i.e., decomposition, recognition, reconstruction, and forecasting.

The main contributions of this study can be outlined as follows.

(1) Introducing the CDbARNN into an STLF model for the first time achieves a model-free method to

make multistep-ahead forecasting.

(2) Inspired by the concept of ‘‘Birds of a Feather Flock Together’’, we introduce the K-means clustering

algorithm to decompose the load data fed into CDbARNN. This approach effectively extracts and

identifies the fluctuation characteristics of the data, contributing to more accurate forecasting.

(3) The reservoir nodes of CDbARNN applied to different clusters are optimized to enhance forecasting

accuracy and stability simultaneously. This optimization process improves the performance of the

model by adapting to the specific characteristics of different load clusters.

(4) The DR technique is utilized in CDbARNN to determine which cluster the input load data for fore-

casting belongs to. This enables the model to capture internal features and reconstruct the input

matrix, facilitating more precise forecasting within each cluster.

RESULTS AND DISCUSSION

Data description and pre-processing

To evaluate the forecasting performance of CDbARNN, this study conducts an empirical study on an

industrial park in Zibo city, China. The load data is collected at a frequency of one observation per minute,

resulting in a total of 1,440 data points per day. The historical load data spans 365 days, resulting in a total

of 365 rows of daily data. As depicted in Figure 15, the CDbARNN framework directly transforms the

observed high-dimensional dynamic information, denoted as matrix Qt = ðqt;n
in ;q

t;n
M1

;qt;n
M2
;.;qt;n

Mk
Þ0; n =

1; 2; .; N, into the reservoir and maps the high-dimensional spatial data to a one-dimensional delay

time vector denoted as vector Rt = ðrn; rn+1;.; rn+D� 1; rn+DÞ0. In the training phase, the length of vector

N is used for training, and the length of vector D is used for prediction.

Evaluation metrics

To scientifically and systematically evaluate the performance of our proposed approach, the following four

evaluation criteria are used in this study, i.e., normalized mean absolute error (NMAE), normalized root-

mean-square error (NRMSE), mean absolute percentage error (MAPE), and Willmott index of

agreement (IA).

NMAE =
1

NUM

XNUM

t = 1

jxt � yt j
maxfxtg3 100% (Equation 1a)

NRMSE =
1

maxfxtg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NUM

XNUM

t = 1

ðxt � ytÞ2
vuut 3 100% (Equation 1b)

MAPE =
1

NUM

XNUM

t = 1

jxt � yt j
xt

3 100% (Equation 1c)

IA = 1 �
PNUM

t = 1

ðxt � ytÞ2

PNUM

t = 1

ðjyt � xt j+jxt � xt jÞ2
(Equation 1d)

where NUM = 1440, xt is the true load series, yt is the forecasting load series, xt is the average value of the

true load series and maxfxtg is the maximum value of the true load series. Among these four indicators, the

smaller the value of NMAE, NRMSE, or MAPE, the more accurate or stable the forecasting result is. Here,

NMAE is used to measure the forecasting accuracy and is expressed as a percentage, ranging from 0 to
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100%. A smaller NMAE indicates higher forecasting accuracy, while an NMAE of zero indicates a perfect

model. NMAE provides a superior measure of forecasting accuracy as it avoids scale dependency, allowing

for fair comparisons between different models regardless of the magnitude of the data.33 NRMSE, on the

other hand, overcomes scale dependence and simplifies the comparison between models that have

different scales or datasets. By normalizing the RMSE values, NRMSE enables a standardized measure of

forecast accuracy, facilitating meaningful comparisons across different models.34,35 IA is a standardized

measure of the degree of forecasting error of the model and it only takes values between zero and one.

The closer the forecasting value matches the actual value the closer IA is to 1.

Analysis of forecasting results

Comparison with ARNN

In this part, comparative simulations are conducted to validate the effectiveness of CDbARNN. Specifically,

we compare performances of CDbARNN, CDbARNN without node number optimization

(CDbARNNwNNO), and ARNN on load forecasting under two scenarios. In Scenario 1, three load curves

are randomly selected from Clusters I to III, while in Scenario 2, three load curves are randomly generated

from Clusters I to III. Another is to forecast after randomly generating a load curve based on the three

cluster centers. Evaluations are conducted on four indexes, i.e., MAPE, NMAE, NRMSE, and IA, and results

are shown in Table 1. It lists the detailed forecasting results of different methods under different scenarios.

The forecasting error is the average value of all load curve errors in each cluster. It shows that the proposed

CDbARNN has the most prominent forecasting performance, as indicated by the approximately 1.09%,

1.84% and 7.49% lower NMAE, NRMSE, and MAPE, and 0.05 higher IA, respectively, when compared

with ARNN in Scenario 1. And in Scenario 2, it is indicated by the approximately 1.36%, 1.72% and

7.22% lower NMAE, NRMSE, and MAPE, and 0.03 higher IA. The enhancement of forecasting accuracy

could be attributed to K-means clustering and DR. With these strategies, the input matrix is reconstructed

and obtains the optimal node numbers. In this way, the data similarity characteristic information drives the

input load series to realize STLF directly in the cluster it belongs to, that we can use more sufficient

information to improve the forecasting precision.

Besides, the forecasting performance of the proposed CDbARNNunder Scenario 1 is depicted by Figure 1.

We choose themost representative three days from each of the three clusters to illustrate the effectiveness.

It shows the forecasting results and errors from the 500th minute to the 600th minute on the three days,

which is the time segment of a day when work begins. The left column is the comparison between the fore-

casting value and the true value, and the right column is the error of the true value minus the forecasting

value. It can be seen from Figure 1 that the forecasting value obtained by the proposed CDbARNNmethod

has the trend closest to the true value, that is, the forecasting method has the strongest ability to track the

true value. Although ARNN has an accurate short-term forecasting, its high-dimensional input matrix

Table 1. Performance evaluation of CDbARNN on industrial park load forecasting

Evaluation metrics Forecasting method

Scenario 1 Scenario 2

I II III I II III

NMAE(%) ARNN 4.12 6.18 6.13 14.72 16.21 19.70

CDbARNNwNNO 4.10 4.15 5.44 11.46 16.13 19.54

CDbARNN 3.86 3.98 5.33 11.44 16.11 19.01

NRMSE(%) ARNN 6.47 9.26 9.17 18.72 20.11 23.84

CDbARNNwNNO 6.21 5.95 7.83 17.32 19.97 23.71

CDbARNN 5.87 5.83 7.67 14.47 19.83 23.20

MAPE(%) ARNN 18.54 21.35 20.74 60.33 72.80 83.61

CDbARNNwNNO 14.28 11.93 15.10 59.04 71.63 79.15

CDbARNN 11.67 11.71 14.78 54.75 66.98 73.36

IA ARNN 0.95 0.92 0.88 0.69 0.58 0.38

CDbARNNwNNO 0.97 0.96 0.89 0.69 0.60 0.41

CDbARNN 0.98 0.98 0.93 0.69 0.62 0.42

ll
OPEN ACCESS

4 iScience 26, 107456, August 18, 2023

iScience
Article



containing information independent of the target variable makes it less effective than CDbARNN. As for

CDbARNNwNNO, no matter which cluster of loads is forecasted, its reservoir node is same. Without the

optimization node number, it doesn’t work as well as CDbARNN. Furthermore, we observe that the error

of Cluster III changes little. The main reason is that the load curves in Cluster III are holidays, with a low

power consumption and small fluctuation range, so the forecasting superiority of the proposed

CDbARNN is not obvious. Clusters I and II correspond to working days, with a large fluctuation range,

which can better reflect the advantages of CDbARNN for STLF.

Moreover, the forecasting performance of the proposed CDbARNN under Scenario 2 is depicted by Fig-

ure 2. Visually inspecting the left column of the figure, CDbARNN can effectively capture the basic trends in

the short-term load profile with more subtle and various random noise. The right column of Figure 2 illus-

trates the comparison of the forecasting error of different methods represented with bars.

To verify the algorithm’s dependence on the length of the input series, Table 2 shows the forecasting per-

formance of CDbARNN on 30, 20 and 10 input load series lengths. The performance of CDbARNN also

dominates when compared with various forecasting methods on different input load series lengths.

When the input lengths are 30, 20, and 10, the NMAE of CDbARNN are approximately 0.22%, 0.28%,

0.32% lower than ARNN, and the MAPE of CDbARNN are approximately 1.32%, 1.82%, 1.14% lower, vali-

dating its effectiveness. The NRMAE of CDbARNN are approximately 0.33%, 0.39%, 0.44% lower than

ARNN, and the IA of CDbARNN are approximately 0.015%, 0.018%, 0.02% higher, further validating its bet-

ter stability. Furthermore, the decrease of input load series length does not affect the performance of

CDbARNN in terms of MAPE, NMAE, and NRMSE. This demonstrates that CDbARNN, in contrast to
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Figure 1. Comparison of forecasting performance among CDbARNN, CDbARNNwNNO and ARNN in three

clusters.
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traditional neural networks, doesn’t require a massive amount of data to train and has excellent computa-

tional efficiency, opening up a new avenue for STLF.

Moreover, the forecasting performance of the proposed CDbARNN under different input length in Sce-

narios 1 and 2 is depicted by Figures 3, 4, 5, 6, 7, and 8.

Comparison with other deep learning methods

In order to further verify the effectiveness of the CDbARNN, several classic deep learning methods, which

include generalized regression neural network (GRNN), back-propagation (BP), and Elman, are employed

for comparison. BP is a well-established and widely utilized ANN model known for its ability to learn and

store complex mapping relationships. It has been extensively applied in various fields due to its capability

to handle non-linear relationships and learn intricate patterns. GRNN, on the other hand, has demon-

strated superior approximation capability and faster learning speed compared to other traditional ANN

models, especially when the available sample data is limited. This makes GRNN a suitable candidate for

STLF that often involve limited historical data. Lastly, the Elman network is chosen because it requires a

relatively smaller amount of data samples for effective training. This is particularly advantageous when

dealing with situations where the available data are scarce or insufficient. By employing these three

models, the authors aimed to assess the performance and validity of CDbARNN against established and

widely used ANN models, while also considering the unique strengths and advantages offered by each

model.36,37 Table 3 shows the evaluation indicators of the forecasting results of each model. As can be

seen from it, when compared with the other three methods in Scenario 1, the performance of

CDbARNN also stands out with at least 4.2%, 5.48%, and 9.58% decreases in NMAE, NRMSE, and
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Figure 2. Comparison of forecasting performance among CDbARNN, CDbARNNwNNO and ARNN in curves

randomly generated.
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MAPE, respectively, and at most 0.29 improvement in IA. Among them, GRNN adopts four cross-validation

methods to train the neural network and finds the best SPREAD value by looping, but the effect is still not as

good as that of the proposed CDbARNN. Elman and BP use the training set to train the network, which is

then used to forecast. The different division of the training and test sets will result in unstable forecasting

results and over-fitting. While based on the combination of STI and RC, there is essentially no training pro-

cess in CDbARNN. The input load series reconstructs an inputmatrix with the load curves in the cluster after

K-means clustering and DR. And once the input matrix is entered into CDbARNN, the next step of load

values can be forecasted. As a result, CDbARNN outperforms other models on STLF, no matter in accuracy

or application.

Table 2. Performance evaluation of CDbARNN on different lengths of input load series

Input length Evaluation metric Forecasting method

Scenario 1 Scenario 2

I II III I I III

30 NMAE (%) ARNN 4.89 3.48 5.06 14.76 16.39 20.00

CDbARNNwNNO 4.78 3.35 4.99 14.57 16.32 19.64

CDbARNN 4.66 3.34 4.94 14.42 16.27 19.63

NRMSE (%) ARNN 7.83 4.80 6.90 18.73 20.16 24.30

CDbARNNwNNO 7.39 4.67 6.81 18.46 20.12 23.92

CDbARNN 7.26 4.65 6.78 18.30 20.02 23.75

MAPE (%) ARNN 13.31 10.47 14.36 59.98 75.04 80.49

CDbARNNwNNO 12.97 10.19 14.24 58.46 74.31 78.80

CDbARNN 12.49 10.12 14.19 56.43 73.81 78.68

IA ARNN 0.95 0.97 0.96 0.68 0.57 0.39

CDbARNNwNNO 0.95 0.99 0.96 0.69 0.58 0.40

CDbARNN 0.96 0.99 0.97 0.69 0.59 0.42

20 NMAE (%) ARNN 4.75 3.46 4.82 14.51 16.42 19.82

CDbARNNwNNO 4.64 3.38 4.59 14.31 15.98 19.76

CDbARNN 4.54 3.35 4.58 14.03 15.89 19.69

NRMSE (%) ARNN 7.58 4.75 6.71 18.42 20.20 24.16

CDbARNNwNNO 7.25 4.70 6.50 18.05 19.64 24.06

CDbARNN 7.21 4.63 6.40 17.75 19.48 23.94

MAPE (%) ARNN 12.61 10.47 13.59 55.69 72.12 77.01

CDbARNNwNNO 12.30 10.24 13.07 55.06 70.13 76.96

CDbARNN 12.14 10.22 12.79 53.69 66.86 74.85

IA ARNN 0.95 0.99 0.96 0.68 0.57 0.38

CDbARNNwNNO 0.96 0.99 0.97 0.70 0.59 0.40

CDbARNN 0.96 0.99 0.97 0.71 0.60 0.41

10 NMAE (%) ARNN 4.49 3.18 4.48 15.28 16.93 20.33

CDbARNNwNNO 4.46 3.15 4.43 14.68 16.81 20.18

CDbARNN 4.37 3.14 4.42 14.59 16.56 19.71

NRMSE (%) ARNN 7.15 4.55 6.40 19.58 20.97 24.92

CDbARNNwNNO 7.14 4.53 6.34 18.57 20.83 24.75

CDbARNN 6.97 4.49 6.31 18.55 20.37 24.26

MAPE (%) ARNN 11.98 9.52 12.56 55.47 69.77 75.60

CDbARNNwNNO 11.81 9.44 12.47 54.79 69.52 74.58

CDbARNN 11.58 9.31 12.46 54.57 69.37 70.76

IA ARNN 0.96 0.99 0.96 0.66 0.56 0.42

CDbARNNwNNO 0.96 0.99 0.97 0.69 0.57 0.43

CDbARNN 0.97 0.99 0.97 0.70 0.59 0.45
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Statistical tests

To evaluate the performance of the proposed CDbARNN, we compare it with ARNN, CDbARNNwNNO,

GRNN, Elman, and BP models. Each model is run independently for 50 times. To determine the statistical

significance of the forecasting errors between CDbARNN and the other five models, we employ the

Wilcoxon Signed-Rank t-Test, which is a non-parametric hypothesis testing method.38 The Wilcoxon

Signed-Rank t-Test is used to compare two independent samples of equal sample size. A negative t-test

value indicates that CDbARNN outperforms the corresponding algorithm in terms of both mean and

standard deviation, and vice versa. The p-value is calculated, and if it is less than 0.05, it indicates that

the difference between the two samples is statistically significant. The comparison results are presented

in Table 4. It can be observed that all five t-Test values are negative, and the corresponding p-values are

within acceptable limits. This indicates that CDbARNN performs better than the other five models, and

the differences in the forecasting errors are statistically significant.

MODEL

In order to overcome the forecasting difficulties of ARNN when the dimensions of the data are not

sufficiently high, this paper proposes CDbARNN, which is driven by K-means clustering and the DR tech-

nique, for STLF of industrial park. In this section, the forecasting framework of CDbARNN is formulated. The

calculation process of this model is divided into the following four steps, and the logical framework of each

step is shown in Figure 11.
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Figure 3. Comparison of forecasting performance among CDbARNN, CDbARNNwNNO and ARNN on different

input lengths under Scenario 1, Cluster I.
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Step 1

The load data is organized on a daily basis, where each row corresponds to a different day and each column

represents a different time point. To capture the similarity in the daily electricity consumption within the

power park, we apply K-means clustering to classify the historical load data samples. This classification

groups together days with similar power load trends and amplitudes, which prepares the data for subse-

quent DR and reorganization of the input matrix.

Step 2

We construct a DR technology for the short-term load series, which refers to the one-dimensional load data

that requires forecasting. By setting an appropriate similarity parameter, we compare the input load series

with the load clusters generated in Step 1 during the same time period. We consider various factors such as

maximum value, slope, power magnitude similarity, and step similarity to determine the cluster to which

the series belongs.

Step 3

Based on the results of DR, we reconstruct the short-term high-dimensional input loadmatrix. To obtain the

optimal number of reservoir nodes for subsequent forecasting, we employ the evolutionary predator and

prey strategy (EPPS).39 If the input load series belongs to cluster k, we combine the series with the load data

in cluster k to form the new input matrix and determine the corresponding optimal number of neural

network reservoir nodes.
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Figure 4. Comparison of forecasting performance among CDbARNN, CDbARNNwNNO and ARNN on different

input lengths under Scenario 1, Cluster II.
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Step 4

The reconstructed matrix is then fed into CDbARNN, with CDbARNNReservoir utilizing the optimal

number of nodes corresponding to cluster k obtained in Step 3. By integrating the STI equation and the

RC structure, we extract the power consumption regularity of the park and iteratively solve the matrix

containing future load information. This iterative approach allows for rolling backward forecasting.

K-means clustering of CDbARNN

In STLF, historical data show a certain correlation, so it is an effective way to improve the forecasting

accuracy by investigating the similarity. According to the test samples with better data correlation, more

accurate forecasting results can be obtained. Although high-dimensional data contain rich information,

they can also introduce noise into the prediction if some of the high-dimensional variables are irrelevant

to the target variable. Our primary objective is to select relevant variables or eliminate irrelevant variables

from the high-dimensional data, which can significantly improve the performance of ARNN in practical ap-

plications. In this study, we chose K-means clustering for load curve clustering. K-means clustering provides

comprehensive information and has a clear and simple change rule, making it easy to comprehend.40 The

principle of K-means clustering is relatively simple, easy to implement, and produces interpretable re-

sults.41 In previous studies, K-means clustering has been used for load decomposition. For example,

Chen et al. used K-means clustering for the early classification and cluster labeling.41 Al-Wakeel et al. pro-

posed a load estimation algorithm based on K-means clustering.42
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Figure 5. Comparison of forecasting performance among CDbARNN, CDbARNNwNNO and ARNN on different

input lengths under Scenario 1, Cluster III.
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In this study, the 365-day load curves of an industrial park in Zibo city, China, is used as historical dataset. In

the K-means clustering algorithm, the determination of k value is a critical step. In this case, we employ the

elbowmethod to calculate the k value of different clustering methods, including K-means, K-medoids, and

BiKmeans. The sum of squared errors (SSE) is used to describe the elbow method, which is an effective

method to determine the optimal number of clusters based on the change in slope. As the k value

increases, the position where the improvement effect of the distortion degree decreases the most is the

k value corresponding to the elbow.43 It can be seen from Figure 12 that k = 3 is the elbow inflection point

and the most suitable number of clusters is 3, regardless of the clustering method used, be it K-means,

K-medoids, or BiKmeans. Therefore, we selected K-means clustering for this study due to its computational

efficiency and effectiveness in yielding results.

Figure 13 shows the clustering results of the 365-day load curves. Data are collected every minute, and 1440

data points are collected each day. As shown by Figure 13, load curves are divided into three clusters,

Algorithm 1. The pseudocode of K-means clustering in CDbARNN

1. Randomly select k points in the data sample as the initial cluster centers of the k clusters.

2. Compute the distance of each data sample to k cluster centers, and divide it into k clusters according to the closest distance.

3. Find the mean vectors for the k clusters and use the k mean vectors as the new cluster centers for each cluster.

4. Repeat 2 to 3 until the cluster center no longer changes.
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Figure 6. Comparison of forecasting performance among CDbARNN, CDbARNNwNNO and ARNN on different

input lengths under Scenario 2, Cluster I.
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denoted as I, II and III, and the corresponding cluster centers of these clusters are also provided on the sec-

ond column of the figure. It can be seen from Figure 13 that the power load during the day time is signif-

icantly higher than that at night time because the park starts work at 8:00 a.m. and leaves work at 5:00 p.m.

Besides, the load curve has strong volatility. Clusters I and II rise in a straight line, while Cluster III rises in a

downward spiral. There is also a difference in the degree of sudden increase and decrease in Clusters I and

II. The range of maximum and minimum values varies for each cluster.

Dynamic recognition of CDbARNN

DR is a similar segment search technology that identifies which cluster the load series entered into

CDbARNN belongs to. And then a high-dimensional dataset is reconstructed by using all the datasets

in this cluster and the input load series. After K-means clustering and DR, it can effectively eliminate the

data unrelated to the forecasting target and improve the forecasting accuracy. The detailed steps of DR

algorithm are as follows.

Step 1: Comparison of the maximum and minimum of the input load series with the load curves in each

cluster.

Compare the magnitude of the input load series qt
in = fqt;1

in ;q
t;2
in ;.;qt;N

in g13N with all load curves qt
m =

fqt;1
m ;qt;2

m ;.;qt;N
m gK3N, where K denotes the number of clusters, N is the length of input load series at

time t. At time t, if qt
in belongs to cluster k of the load, each value of qt

in must be between the minimum

and maximum of the corresponding qt
m.
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Figure 7. Comparison of forecasting performance among CDbARNN, CDbARNNwNNO and ARNN on different

input lengths under Scenario 2, Cluster II.
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min
m˛Mk

�
qt;n
m

�
%

�
qt;n
in

�
% max

m˛Mk

�
qt;n
m

�
(Equation 2)

where n˛ f1; 2;.;Ng, and Mk is the number of the load curves in cluster k.

Assume that K1 is the number of clusters that satisfies Equation 1. If K1 is 1, q
t
in belongs to the only cluster. If

there is more than one cluster satisfying Equation 1, i.e., K1 > 1, proceed to the next step.

Step 2: Comparison of the slope similarity of the input load series with the load curves in the cluster with

respect to K1.

Assume that qt
kðK1Þ = fqt;1

kðK1Þ;q
t;2
kðK1Þ;.;qt;N

kðK1ÞgK13N is the cluster centers with respect to K1. Calculate the

slope of qt
in in each adjacent time interval and count it as stin = fst;1in ; st;2in ;.; st;N� 1

in g13ðN� 1Þ, i.e., s
t;n
in =

ðqt;n
in � qt;n� 1

in Þ=Dt, whereDt is the time interval between adjacent sampling points. And the slope direction

is denoted as pt
in = fpt;1

in ;p
t;2
in ;.;pt;N� 1

in g13ðN� 1Þ. Similarly, calculate the slop of qt
kðK1Þ in each adjacent time

interval and count it as stkðK1Þ = fst;1kðK1Þ; s
t;2
kðK1Þ;.; st;N� 1

kðK1Þ gK13ðN� 1Þ, i.e.,

st;nkðK1Þ = ðqt;n
kðK1Þ � qt;n� 1

kðK1Þ Þ=Dt. And the slope direction can be expressed as pt
kðK1Þ =

fpt;1
kðK1Þ;p

t;2
kðK1Þ;.;pt;N� 1

kðK1Þ gK13ðN� 1Þ. The counting rules are shown as follows:
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Figure 8. Comparison of forecasting performance among CDbARNN, CDbARNNwNNO and ARNN on different

input lengths under Scenario 2, Cluster III.
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pt;n
in =

8>><
>>:

1; st;nin >0

0; st;nin = 0

� 1; st;nin <0

(Equation 3)

pt;n
kðK1Þ =

8>>><
>>>:

1; st;nkðK1Þ >0

0; st;nkðK1Þ = 0

� 1; st;nkðK1Þ <0

(Equation 4)

If the slope st;nin or st;nkðK1Þ is positive, the corresponding slope direction pt;n
in or pt;n

kðK1Þ is 1. If the slope st;nin or st;nkðK1Þ
is 0, the corresponding slope direction pt;n

in or pt;n
kðK1Þ is 0. If the slope st;nin or st;nkðK1Þ is negative, the correspond-

ing slope direction pt;n
in or pt;n

kðK1Þ is � 1. Then we define the binary variables etkðK1Þ = fet;1kðK1Þ;.;et;NkðK1ÞgK13N for

each cluster associated with K1, where et;nkðK1Þ ˛ f0; 1g. If pt;n
in equals to pt;n

kðK1Þ , e
t;n
kðK1Þ is counted as 1. Otherwise,

it is counted as 0. Summing over et;nkðK1Þ yields EkðK1Þ.

et;n
kðK1Þ =

8<
:

1;pt;n
in = pt;n

kðK1Þ

0;pt;n
in spt;n

kðK1Þ
(Equation 5)

EkðK1Þ =
XN
n = 1

et;n
kðK1Þ (Equation 6)

EkðK1Þ indicates a slope similarity, the larger the value of EkðK1Þ, the higher the similarity between qt
in and

qt
kðK1Þ. Assume that the similarity rate v is 90 %, and K2 is the number of cluster that satisfies EkðK2Þ R N3

v. If K2 is 1, qt
in belongs to the only cluster. If there is more than one cluster satisfying EkðK2Þ RN3 v, i.e.,

K2 > 1, proceed to the next step.

Table 3. Performance comparison of CDbARNN with other methods

Evaluation metric Forecasting method

Scenario 1 Scenario 2

I II III I II III

NMAE (%) CDbARNN 3.86 3.98 5.33 11.44 16.11 19.01

GRNN 5.86 9.54 15.56 13.53 16.55 22.29

Elman 5.36 13.67 12.13 17.17 20.16 21.39

BP 8.06 8.11 15.58 17.23 20.02 20.89

NRMSE(%) CDbARNN 5.87 5.83 7.67 14.47 19.83 23.20

GRNN 7.89 12.05 20.25 16.80 19.99 27.26

Elman 7.23 18.56 17.56 22.07 25.10 26.17

BP 11.26 10.54 21.57 22.56 24.55 26.45

MAPE(%) CDbARNN 11.67 11.71 14.78 54.75 66.98 73.36

GRNN 15.96 31.96 43.67 57.41 76.70 91.84

Elman 16.53 29.82 26.96 55.56 73.75 73.97

BP 21.25 30.21 40.91 56.51 71.32 79.87

IA CDbARNN 0.98 0.98 0.93 0.69 0.62 0.42

GRNN 0.94 0.90 0.68 0.62 0.58 0.40

Elman 0.95 0.75 0.66 0.57 0.51 0.40

BP 0.90 0.94 0.64 0.58 0.59 0.41

Through the forecasting results and errors in Figures 9 and 10, it can be observed that CDbARNN is closer to the true value in

Scenario 1, and in Scenario 2 it can forecast the actual load trend comparing with GRNN, Elman and BP.
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Step 3: Comparison of the power magnitude similarity of the input load series with the load curves in the

cluster with respect to K2.

Assume that qt
kðK2Þ = fqt;1

kðK2Þ;q
t;2
kðK2Þ;.;qt;N

kðK2ÞgK23N is the cluster centers with respect to K2. Calculate the

difference between qt
in and qt

kðK2Þ at each sampling point and count it as Dqt
kðK2Þ =

���qt
in � qt

kðK2Þ
���. Then

we define the binary series ztkðK2Þ = fzt;1kðK2Þ;.; zt;NkðK2ÞgK23N for the cluster with respect to K2, where zt;nkðK2Þ ˛

f0; 1g. We define Dqt;n
kðK 0

2
Þ as the minimum value of Dqt;n

kðK2Þ. The zt;nkðK2Þ corresponding to the cluster of

Dqt;n
kðK 0

2
Þ is counted as 1, and others are counted as 0. Summing over zt;nkðK2Þ yields power magnitude similarity

ZkðK2Þ.

zt;nkðK2Þ =

(
1; if Dqt;n

kðK2Þ = min
�
Dqt;n

kðK2Þ

�
0; otherwise

(Equation 7)

ZkðK2Þ =
XN
n = 1

zt;nkðK2Þ (Equation 8)

ZkðK2Þ indicates a power magnitude similarity, the larger the value of ZkðK2Þ, the higher the similarity between

qt
in and qt

kðK2Þ. Assume that K2 is the number of clusters that satisfies ZK3
RN3 v. If K3 is 1, q

t
in belongs to

the only cluster. If there is more than one cluster satisfying the condition, i.e., K3 > 1, proceed to the next

step.
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Figure 9. Comparison of CDbARNN and other models for forecasting in the three clusters.
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Step 4: Comparison of the step length similarity between the input load series with the load curves in the

cluster with respect to K3.

Assume that qt
kðK3Þ = fqt;1

kðK3Þ;q
t;2
kðK3Þ;.;qt;N

kðK3ÞgK33N is the cluster centers of the clusters with respect to K3.

Calculate the straight line distance between two adjacent sampling points in qt
in, and count it as dt

in =

fdt;1
in ;dt;2

in ;.;dt;N
in g13N. Similarly, calculate the straight line distance between two adjacent sampling points

in qt
kðK3Þ, and count it as dt

kðK3Þ = fdt;1
kðK3Þ;d

t;2
kðK3Þ;.;dt;N

kðK3ÞgK33N. Then, let d
t
in minus dt

kðK3Þ to get the differ-

ence LtkðK3Þ.

dt;n
in =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt2+

�
qt;n
in � qt;n� 1

in

	2q
(Equation 9a)

dt;n
kðK3Þ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt2+

�
qt;n
kðK3Þ � qt;n� 1

kðK3Þ

�2
r

(Equation 9b)

Lt;nkðK3Þ =
���dt;n

in � dt;n
kðK3Þ

��� (Equation 10)
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Figure 10. Comparison of CDbARNN and other models for forecasting in the curves randomly generated.

Table 4. Statistical tests of ARNN, CDbARNNwNNO, GRNN, Elman, BP and CDbARNN

ARNN CDbARNNwNNO GRNN Elman BP

p-value 0.0189 0.0480 2.508e-10 2.873e-05 3.153e-43

t-Test �564.016 �393.593 �1973.317 �1457.048 �1896.894
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Define binary series gt
kðK3Þ = fgt;1

kðK3Þ;.;gt;N
kðK3ÞgK33N for each cluster with respect to K3, where gt;n

kðK3Þ ˛ f0; 1g.
The gt

kðK3Þ of the load cluster corresponding to the minimum value of Lt;nkðK3Þ is counted as 1, and the rest of

the load clusters are counted as 0. Summing over gt;n
kðK3Þ yields step length similarity GK3

.

gt;n
kðK3Þ =

(
1; if Lt;nkðK3Þ = min

�
Lt;nkðK3Þ

�
0; otherwise

(Equation 11)

GK3
=

XN
n = 1

gt;n
kðK3Þ (Equation 12)

GK3
indicates a step length similarity, the larger the value ofGK3

, the higher the similarity betweenqt
in andqt

kðK3Þ.
Assume that K4 is the number of clusters that satisfies GK4

RN3 v. If K4 is 1, q
t
in belongs to the only cluster. If

there is more than one cluster satisfying the condition, i.e., K4 > 1, increases the value of v, and repeat from

Step 2 to Step 4 until get out of the loop. Figure 14 shows the overview of the proposed DR technique.

When the input load series corresponds to a holiday or experiences sudden changes due to weather, the

DR technology employed in this paper can identify whether the curve belongs to the existing clusters. If the

load series does not belong to any of the existing clusters, it is treated as a new cluster. However, it should

Figure 11. The flow chart of CDbARNN.
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Figure 12. SSE with different k values.
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be noted that in such cases, where there are significant changes in load patterns, the accuracy of

CDbARNN’s forecasting may be comparable to that of other methods. This is because the model may

not be able to capture enough spatial information to accurately predict load variations.

CDbARNN

In contrast to traditional statistics-based machine learning, CDbARNN opens a new way for dynamics-

based machine learning based on STI and RC. CDbARNN capitalizes on RC structure and STI transforma-

tion, but the two are by no means a simple combination. To be specific, assuming that after clustering and

DR, a N-dimensional reconstructed load vector matrix Qt with N columns and Mk rows is entered

into CDbARNN. And according to the delay-embedding theory, a one-dimensional vector Rt =

ðrt ; rt+1;.; rt+DÞT which contains the forecasting value we expect to obtain can be maped from Qt . D is

the forecasting step size. CDbARNN can be represented by the following equations:

UF

�
Qt

	
= Rt

F
�
Qt

	
= VRt (Equation 13)

where UV = I, U is a D3N matrix, and V is a N3D matrix. They are unknown parameters in advance. I is a

D3D identity matrix. The multi-layer feedforward neural network F whose weights are randomly given

beforehand and fixed has four layers. By iteratively using the ordinary least square method to solve U, V

and Rt , the forecasting values involved in Rt can be generated.

As shown in Figure 15, the yellow dashed box is the reservoir of CDbARNN, with four layers and different

numbersofnodes,but theweightsbetweenneuronsarenot involved in the training. In traditionalRC, themiddle

layer’s reservoir matrix is randomly generated and remains unchanged.44 However, by combining RC and STI,

CDbARNN converts Qt into cluster and DR based reservoir (CDbReservoir) and obtains a high-dimensional

spatial information FðQtÞ. Then Rt involved target load forecasting value is maped from FðQtÞ. Furthermore,

this framework’s CDbReservoir matches the optimal node numbers for different clusters of loads.

Figure 13. Clustering results of 365-day load curves.
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Unlike traditional RC models that rely on external/additional dynamics irrelevant to the target system,

CDbARNN transforms the dynamics of the observed high-dimensional data as the reservoir, thereby

exploiting the intrinsic dynamics of the observed/target system. By using a nonlinear function F as the

reservoir structure based on both the primary and conjugate forms of the STI equations, we construct

the CDbARNN-based equations. This enables CDbARNN to encode FðQtÞ to Rt and decode Rt to

FðQtÞ, where the Rt is the temporal (one-dimensional) dynamics across multiple time points and Qt is

the spatial (high-dimensional) information at one time point. CDbARNN has been successfully applied

to both representative models and real-world datasets, demonstrating satisfactory performance in

multi-step-ahead prediction, even in the presence of noise and time-varying systems. The CDbARNN

transformation effectively expands the sample size and holds great potential for practical applications in

artificial intelligence and machine learning.

DISCUSSION

This study introduces a novel STLF method called clustering and DR–based auto-reservoir neural network

(CDbARNN). The historical available load data samples from an industrial park microgrid in Zibo city,

China, spanning 365 days and from 0:00 to 23:00, are analyzed to identify electricity consumption patterns.

Utilizing K-means clustering, the load data is categorized into three clusters based on daily characteristics.

Scenarios 1 and 2 are employed to assess the accuracy and versatility of CDbARNN. The results demon-

strate that CDbARNN outperforms other methods in STLF. Its precise forecasting enables better power

dispatching and improved utilization of electricity resources, leading to reduced waste. The key

conclusions of this study are summarized as follows.

(1) By leveraging K-means clustering and DR, CDbARNN achieves higher accuracy compared to ARNN.

In the performance comparison of CDbARNN with ARNN and CDbARNNwNNO, the maximum re-

ductions in NMAE, NRMSE, and MAPE are 3.28%, 4.25%, and 10.25%, respectively. Additionally, the

maximum improvement in IA is 0.06.

(2) CDbARNN, with input load series lengths of 30 steps, 20 steps, and 10 steps, exhibits superior fore-

casting accuracy and robustness compared to both ARNN and CDbARNNwNNO. The comparison

of metrics reveals that CDbARNN achieves maximum reductions in NMAE, NRMSE, and MAPE of

0.69%, 1.03%, and 5.26%, respectively, while also demonstrating a maximum improvement of 0.04

in IA. Furthermore, when comparing different input lengths of CDbARNN, the maximum reductions

in NMAE, NRMSE, MAPE, and IA are 0.67%, 0.89%, 7.92%, and 0.04, respectively.

(3) CDbARNN not only captures the nonlinear mapping relationship of the load but also effectively ex-

tracts and utilizes the temporal characteristics of the time series. When compared to Elman, GRNN,

and BP, CDbARNN achieves maximum reductions in NMAE, NRMSE, and MAPE of 10.25%, 13.9%,

and 28.89%, respectively. Furthermore, the maximum improvement in IA is 0.29. Therefore,

CDbARNN successfully learns the distinctive characteristics of similar load curves and reconstructs

the input matrix, resulting in more accurate forecasting outcomes with limited load data.

Figure 14. The flow chart of DR.
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Limitations of the study

The main limitation of the proposed model lies in the lack of comprehensive analysis regarding the influ-

ence of uncertainty coupling between power load and renewable energy on the clustering and DR. Addi-

tionally, we have not taken into account the coupling relationship between active and reactive power in re-

ality, such as voltage offset and power factor range, which directly impact active and reactive power. In our

future work, we plan to investigate STLF considering these coupling characteristics.
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Data and code availability
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� Code: The code that support the findings of this study are available on request from the corresponding
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