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Introduction: For patients with end-stage renal disease (ESRD), due to the heterogeneity of the population,

appropriate risk assessment approaches and strategies for further follow-up remain scarce. We aimed to

conduct a pilot study for better risk stratification, applying machine learning–based classification to pa-

tients with ESRD who newly started maintenance hemodialysis.

Methods: We prospectively studied 101 patients with ESRD, who were new to maintenance hemodialysis

therapy, between August 2016 and March 2018. Baseline values of variables such as blood and urine tests

were obtained before the initiation of hemodialysis. Agglomerative hierarchical clustering was conducted

with the collected continuous data. The resulting clusters were followed up for the primary outcome of 1-

year mortality, as analyzed by the Kaplan-Meier survival curve with log-rank test and the Cox proportional

hazard model.

Results: The participants were divided into 3 clusters (cluster 1, n ¼ 62; cluster 2, n ¼ 15; cluster 3, n ¼ 24)

by hierarchical clustering, using 46 clinical variables. Patients in cluster 3 showed lower systolic blood

pressures, and lower serum creatinine and urinary liver-type fatty acid-binding protein levels, before the

initiation of hemodialysis. Consequently, cluster 3 was associated with the highest 1-year mortality in the

study cohort (P < 0.001), and the difference was significant after adjustment for age and sex (hazard ratio:

10.2; 95% confidence interval: 2.94–46.8, cluster 1 as reference).

Conclusion: In this proof-of-concept study, hierarchical clustering discovered a subgroup with a higher 1-

year mortality at the initiation of hemodialysis. Applying machine learning–derived classification to pa-

tients with ESRD may contribute to better risk stratification.
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A
considerable number of patients with chronic
kidney disease worldwide require initiation of

maintenance dialysis therapy, despite every effort to
prevent chronic kidney disease progression1; the
number of patients newly registered as having ESRD
has continued increasing.2,3 The patients starting
dialysis form a heterogeneous population; their in-
cidences of underlying renal diseases, speeds of
declining residual renal function, responsiveness to
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treatment, and comorbidities vary greatly. It has
become increasingly important to address this hetero-
geneity with precise and personalized care, to amelio-
rate the health and economic burdens of ESRD.4

Given the markedly higher mortality rate of patients
with ESRD with dialysis when compared with that of
the general population,3 risk evaluation, for effective
intervention strategy, is warranted; this is especially
true at the initiation of dialysis. One study reported the
most vulnerable period, with the highest mortality, to
be the first several months of dialysis therapy.5 Several
previous studies have suggested some clinical risk
factors to help inform predictions of maintenance
dialysis patients’ prognoses; lower systolic blood
pressure (<140 mm Hg)6 or higher pH ($7.40)7 was
associated with higher mortality. However, there is a
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paucity of evidence supporting the introduction of
multidimensional data analysis for risk stratification in
patients with ESRD.

Recently, some researchers have applied machine
learning techniques for risk stratification in clinical
medicine8 and have succeeded in refining optimal
treatment approaches.9 Machine learning contains an
advantage in discovering similarities within multidi-
mensional datasets, as given by particular protocols.
With unsupervised learning, a subcategory of machine
learning, past studies have succeeded in identifying
intrinsic subgroups within heterogeneous populations,
such as patients with heart failure8 and those with
obstructive pulmonary diseases.10 In contrast, the
impact of applying machine learning to the ESRD
population remains to be understood.

We hypothesized that a machine learning–derived
technique would be useful for the risk stratification
of patients on maintenance hemodialysis. This proof-of-
concept study aimed to conduct a clustering analysis of
patients with ESRD at the initiation of their hemodi-
alysis, following them up to ascertain any associations
between the resulting clusters and their clinical
outcomes.
METHODS

Study Design and Population

We performed a prospective observational cohort
study at the University of Tokyo Hospital, a tertiary
general medical center. We recruited patients with
ESRD who had started maintenance hemodialysis
therapy between August 1, 2016, and March 31, 2018.
All patients were hospitalized to start their hemodial-
ysis during the observational period; the timing of
dialysis initiation for each patient, as well as its mo-
dality, was decided by at least 2 nephrologists, inde-
pendently of the present study. We excluded those
who were younger than 20 years, those who withdrew
from dialysis therapy within 3 months of initiation,
those who were without laboratory data, either of
blood or urine, at the dialysis initiation, or those who
were without informed consent. Body weight, height,
and blood pressure were all measured from all subjects
on admission, and blood and urine samples were
collected just before their first dialysis sessions. The list
of collected data is provided in Supplementary
Table S1.

We conducted the study in accordance with the
tenets of the Declaration of Helsinki; written informed
consent was obtained from all participants or their next
of kin. The study protocol was approved by the Clin-
ical Research Review Board of The University of Tokyo
(study ID: 11239).
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Clinical Outcomes

The primary outcome was 1-year mortality after the
initiation of hemodialysis therapy. The secondary
outcome was the duration of hospital stay for those
who were discharged from the hospital alive. We
performed the follow-ups on an outpatient clinic basis,
using telephone calls for patients who did not visit
after their discharge.

Statistical Analysis

First, the baseline characteristics of the continuous
variables were summarized as medians with inter-
quartile ranges, and the categorical variables were
summarized as counts and percentages. We then
applied agglomerative hierarchical clustering11,12 to the
study cohort. Continuous variables with less than 10%
of their data missing showed candidates for the clus-
tering analysis; all the variables were standardized into
normal distributions, and skewed variables were
transformed onto logarithmic scales. The remaining
missing data were imputed according to multivariate
normal distribution model.13 To reduce redundant
variables for clustering, we calculated Pearson’s cor-
relation coefficients among the candidate variables;
either of 2 variables with correlation coefficients more
than 0.6 was deleted from the clustering model, ac-
cording to a previous article.8

Agglomerative hierarchical clustering is a technique
that sequentially joins the 2 nodes of data with the
shortest distance until all nodes are connected as one
cluster. We adopted Ward’s method for this analysis;
the definition of the distance between 2 nodes was a
weighted Euclidean distance, and the sum of within-
cluster variance was controlled to be the minimum at
each step.14 More detailed method for the clustering
process is available in the Supplementary Methods.
The same clustering was also applied for intervariable
analysis afterward, generating a visual heat map. We
had to decide the optimal number of clusters, because
agglomerative hierarchical clustering does not indicate
the best trimming height for the resulting dendrogram.
For this purpose, the cubic clustering criterion,15 C-
index,16 and SD-index16 were validated for potential
clusters numbers of 2 to 8. We also conducted K-means
clustering analysis,17 another commonly used clus-
tering method, in the same dataset for comparison.
Detailed method for K-means clustering is available in
the Supplementary Methods.

The baseline characteristics, laboratory data, and
clinical outcomes were compared among the divided
clusters using Mann-Whitney U test for continuous
variables and by Pearson’s c2 test for categorical var-
iables. Comparisons between more than 2 clusters were
made through the Kruskal-Wallis test followed by the
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Figure 1. Patient flowchart.

Table 1. Variables included in the hierarchical analysis
Domain Variable (percentage of missing value, if not zero)

Demographic and physical
characteristics

Age, BMI (2.0%), systolic blood pressure before
hemodialysis

Blood test Complete blood count (white blood cell, neutrophil
percentage, monocyte percentage, eosinophil percentage,
basophil percentage, hemoglobin, platelet, reticulocyte,a

MCV, MCHC), total protein, ALT,a g-GTP,a uric acid, blood
urea nitrogen, creatinine, sodium, potassium, calcium,
phosphate, magnesium, glucose, HbA1c (1.0%), total
cholesterol (1.0%), triglyceride (1.0%),a high-density
lipoprotein (2.0%), iron,a ferritin,a UIBC, CRP,a BNP,a

iPTH,a b2-microglobulin (1.0%)

Urine test pH, sodium, calcium (4.0%), urea nitrogen, creatinine, uric
acid (1.0%), protein,a NAG,a a1-microglbulin, L-FABPa

(2.0%)

ALT, alanine transaminase; BMI, body mass index; BNP, B-type natriuretic peptide; CRP,
C-reactive protein; g-GTP, g-glutamyl transpeptidase; HbA1c, hemoglobin A1c; iPTH,
intact parathyroid hormone; L-FABP, liver-type fatty acid-binding protein; MCHC, mean
corpuscular hemoglobin concentration; MCV, mean corpuscular volume; NAG, N-
acetyl-b-D-glucosaminidase; UIBC, unsaturated iron binding capacity.
aLogarithmic transformation was conducted before clustering because of skewed
distribution.
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Steel-Dwass test, when appropriate. The patients were
subsequently followed up after the initiation of he-
modialysis therapy, and mortality within clusters was
compared using the Kaplan-Meier curve with log-rank
test. The Cox proportional hazards model was used to
assess the effect of clustering on mortality. Hospital
stays following the first dialysis dates also were
investigated; those who died without discharge and
those who transferred to another hospital were
excluded from the length of hospital stay analysis. As
sensitivity analysis, 2 additional analyses were con-
ducted. First, we performed agglomerative hierarchical
clustering only with variables without missing value
and no imputation. Second, in the survival analysis,
systolic blood pressure, serum creatinine, serum po-
tassium and B-type natriuretic peptide (BNP) were
added as explanatory variables to the base model of the
Cox proportional hazard model. We chose these vari-
ables based on previous literature6 and main reasons for
introducing hemodialysis in patients with ESRD. To
validate potential multi-collinearity in the models,
variance inflation factor18 was assessed.

We used JMP Pro software (version 14.0.0; SAS
Institute, Cary, NC) and “Nbclust” package from R
software (version 3.5.0, R Foundation, Vienna,
Austria)16 for validating the optimal number of
clusters.
RESULTS

Study Population and Variable Selection

During the observational period, 113 patients with
ESRD started maintenance hemodialysis therapy. With
12 patients meeting the exclusion criteria, we finally
came up with 101 patients in the present study
(Figure 1). Baseline demographic, physical, and labo-
ratory data were collected, and coefficients of correla-
tion for all possible pairs of the clinical continuous
variables were obtained. We removed potentially
correlated variables with coefficients of correlation
1190
larger than 0.6 from further analysis. Urine volume was
not adopted for clustering because of a relatively high
rate of missing values (12.9%). The 46 variables finally
adopted by the clustering analysis and percentages of
missing values are shown in Table 1.
Clustering and the Comparison of Patients in 3

Clusters

Agglomerative hierarchical clustering in the 101
included patients was performed using these 46 vari-
ables. Clustering in variables was also conducted, and
both sets of results are presented as a mapping graphic
in Figure 2; each row represents 1 patient, and each
column represents 1 clinical variable. The heat map
shows several red zones, indicating relatively high
values, especially in upper left and lower right area.
The upper left area contains high values clinically
associated with diabetes (blood glucose, hemoglobin
A1c), hypertension (systolic blood pressure), dyslipi-
demia (cholesterol, triglycerides), and chronic kidney
disease (urinary protein, urinary pH, urinary liver-type
fatty acid-binding protein). In contrast, the lower right
area contains some markers associated with inflamma-
tion (white blood cell, neutrophil, C-reactive protein)
and fluid overload (BNP).

An optimal number of clusters were validated by 3
different indices. Using the cubic clustering criterion
produced a negative value and showed a monotonic
decreasing trend, suggesting that the cohort was of a
unimodal nature (Supplementary Figure S1).15 We
subsequently calculated the C- and SD-indices, for
which the minimum values generally indicate the
optimal number of clusters. As shown in
Supplementary Figure S1, local dips were observed
with a cluster number of 3.
Kidney International Reports (2020) 5, 1188–1195



Figure 2. Hierarchical clustering. Based on 46 standardized clinical variables, agglomerative hierarchical clustering was performed in 101
patients who had recently started hemodialysis. Each row represents 1 patient, and each column represents 1 clinical variable, the name of
which is shown in the bottom; prefix “B-” means data obtained from blood sample, and “U-” means data from urine sample. Hierarchical
clustering of both rows and columns yielded a heat map, in which colors red and blue reflect comparatively high and low value scaled by SD,
respectively. ALT, alanine transaminase; BMI, body mass index; BNP, B-type natriuretic peptide; CRP, C-reactive protein; g-GTP, g-glutamyl
transpeptidase; HbA1c, hemoglobin A1c; iPTH, intact parathyroid hormone; L-FABP, liver-type fatty acid-binding protein; MCHC, mean
corpuscular hemoglobin concentration; MCV, mean corpuscular volume; NAG, N-acetyl-b-D-glucosaminidase; SD, standard deviation; UIBC,
unsaturated iron binding capacity
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According to the aforementioned results of C- and
SD-indexing, we cut the dendrogram of patients at the
height that generated 3 clusters: 62 patients in cluster
1, 15 patients in cluster 2, and 24 patients in cluster 3.
The baseline characteristics, underlying renal disease
Kidney International Reports (2020) 5, 1188–1195
incidence, and laboratory data for each cluster are
shown in Table 2. Predialysis systolic blood pressure,
serum creatinine, and urinary liver-type fatty acid-
binding protein were significantly higher in clusters
1 and 2, when compared with those of cluster 3. Higher
1191



Table 2. Comparison of the 3 clusters
Variables Total cohort (n [ 101) Cluster 1 (n [ 62) Cluster 2 (n [ 15) Cluster 3 (n [ 24) P value

Age, yr 67.0 [52.5–76.0] 70.5 [54.0–77.3]a 54.0 [43.0–64.0]a 67.5 [52.8–75.0] 0.006b

Female, n (%) 34 (33.7) 20 (32.3) 10 (66.7) 4 (16.7) 0.005b

Height, cm 163 [154–169] 162 [154–169] 154 [151–168] 166 [160–170] 0.093

Body weight, kg 62.6 [52.1–74.6] 60.9 [54.1–71.8] 66.5 [42.3–78.0] 69.6 [52.4–87.2] 0.28

Systolic blood pressure, mm Hg 150 [130–163] 150 [140–170]a 160 [140–175]c 130 [120–140]a,c < 0.001b

Underlying renal disease, n (%) 0.21

Diabetic kidney disease 36 (35.6) 22 (35.5) 6 (40.0) 8 (33.3)

Nephrosclerosis 14 (13.9) 9 (14.5) 3 (20.0) 2 (8.3)

Chronic glomerulonephritis 11 (10.9) 7 (11.3) 2 (13.3) 2 (8.3)

ADPKD 7 (6.9) 7 (11.3) 0 (0) 0 (0)

IgA nephropathy 4 (4.0) 4 (6.5) 0 (0) 0 (0)

Others 29 (28.7) 13 (21.0) 4 (26.7) 12 (50.0)

Blood test

Total protein, g/dl 6.0 [5.5–6.5] 6.2 [5.5–6.5] 5.8 [5.4–6.2] 6.2 [5.5–6.7] 0.53

Blood urea nitrogen, mg/dl 92.7 [77.0–108.4] 91.6 [75.6–102.1] 90.5 [78.7–119.4] 102.0 [86.0–118.5] 0.077

Creatinine, mg/dl 8.49 [6.98–10.97] 8.89 [7.28–11.70]a 10.81 [7.84–12.66]c 6.74 [5.92–8.65]c < 0.00b

Potassium, mmol/l 4.2 [3.8–4.8] 4.1 [3.8–4.5]a 4.9 [4.4–5.3]a,c 4.3 [3.8–4.7]c 0.001b

White blood cell, �103/mm3 5.9 [4.9–8.4] 5.5 [4.6–6.1]a,c 9.3 [7.9–11.5]a 7.2 [5.4–9.4]c < 0.00b

Hemoglobin, g/dl 8.9 [7.9–9.6] 9.2 [8.4–9.9] 7.9 [7.0–9.3] 8.4 [7.5–9.3] 0.020b

CRP, mg/dL 0.24 [0.09–1.85] 0.14 [0.05–0.34]a,c 0.75 [0.24–3.89]a 2.20 [0.41–5.64]c < 0.001b

Hemoglobin A1c, % 5.7 [5.3–6.2] 5.7 [5.3–6.3] 5.6 [5.1–5.9] 5.6 [5.3–6.4] 0.56

BNP, pg/ml 221 [76–954] 206 [80–480]a 1686 [613–2063]a,c 148 [43–1175]c < 0.001b

b2-microglobulin, mg/l 17.2 [14.5–20.5] 17.5 [14.9–20.1] 20.6 [17.6–23.6]a 14.9 [13.4–18.3]a 0.014b

Urine test

pH 6.0 [5.0–7.0] 6.5 [6.0–7.0]a 6.5 [5.5–7.0]c 5.0 [5.0–5.5]a,c < 0.001b

Creatinine, mg/dl 59.2 [44.8–78.4] 53.1 [45.7–74.2]a 50.8 [35.4–65.1]c 92.1 [56.5–112.8]a,c 0.002b

Protein, mg/dl 167 [66.6–329] 212 [81.8–325]a 345 [139–510]c 75.0 [36.3–186]a,c 0.001b

NAG, IU/L 7.3 [4.8–11.9] 6.8 [4.6–10.4]a 7.8 [4.6–15.5] 9.7 [7.1–13.6]a 0.005b

a1-microglbulin, mg/l 52.2 [34.4–73.3] 51.3 [36.6–68.3] 69.1 [42.8–80.2] 48.3 [15.6–74.6] 0.23

L-FABP, ng/ml 77.6 [39.2–110.8] 89.0 [42.1–114.6]a 77.8 [64.1–119.7]c 46.7 [18.1–91.7]a,c 0.008b

Urine volume, ml/d 1120 [743–1510] 1100 [740–1530] 1200 [630–2000] 1030 [748–1313] 0.77

Hospital stay, d 8 [5–20] 6 [5–11]a,c 20 [12–42]a 21 [7–48]c < 0.001b

90-d mortality, n (%) 6 (5.9) 1 (1.6) 0 (0) 5 (20.8) 0.002b

1-yr mortality, n (%) 14 (13.9) 3 (4.8) 2 (13.3) 9 (37.5) < 0.001b

ADPKD, autosomal dominant polycystic kidney disease; BNP, B-type natriuretic peptide; CRP, C-reactive protein; L-FABP, liver-type fatty acid-binding protein; N-acetyl-b-D-
glucosaminidase.
a,cStatistically significant difference (P < 0.05) in comparing 2 groups using the Steel-Dwass test for multiple comparison.
bP < 0.05 by the Kruskal-Wallis test or Pearson’s c2 test.
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values of serum potassium and BNP were observed in
cluster 2. Cluster 3 showed significantly higher serum
C-reactive protein than cluster 1, whereas urinary pH
and urinary protein excretion in cluster 3 remained the
lowest of all 3 clusters. In terms of underlying renal
disease, there was not a significant difference in the
cluster percentages of diabetic kidney disease and
nephrosclerosis; however, cluster 1 included all the
patients with autosomal dominant polycystic kidney
disease and IgA nephropathy. In K-means clustering,
most patients in original cluster 1 and 3 remained, but
patients in cluster 2 were divided into new cluster 1
and 3 (Supplementary Figure S2).

Prognosis of the Patients in Each Cluster

Follow-up was carried out for all participants for at
least 1 year. There was a significant difference in
overall survival among the 3 clusters (P < 0.001,
Figure 3), with the difference between cluster 3 and
1192
cluster 1 still significant after Bonferroni’s correction
for multiple comparisons (P < 0.001). The age- and sex-
adjusted hazard ratio of mortality, for cluster 3 over
cluster 1, was 10.2 (95% confidence interval: 2.94–46.8;
P < 0.001). Hospital stay duration, since initiation of
dialysis, was significantly longer in cluster 2 (20 [12–
42] days) and cluster 3 (21 [7–48] days), when compared
with cluster 1 (6 [5–11] days; P < 0.001 and P ¼ 0.014
for cluster 2 vs. 1 and cluster 3 vs. 1, respectively;
Supplementary Figure S3). Although some patients
were reclassified into different clusters in K-means
clustering, the survival difference in the resulting
clusters by K-means was still significant (P ¼ 0.007,
Supplementary Figure S2).

Sensitivity Analysis

There were 15 missing values of 4646 observations
(Table 1). With the remaining 37 variables without
imputation, we again performed agglomerative
Kidney International Reports (2020) 5, 1188–1195



Table 3. Cox proportional hazard model for 1-year mortality in
patients initiating hemodialysis

Variable
Model 1 HR
[95% CI] Model 2 Model 3 Model 4 Model 5

Age 1.07a

[1.01–1.13]
1.06a

[1.01–1.13]
1.07a

[1.02–1.13]
1.07a

[1.01–1.13]
1.07a

[1.01–1.14]

Sex: women 0.31
[0.04–1.43]

0.22
[0.03–1.14]

0.26
[0.03–1.18]

0.25
[0.03–1.33]

0.38
[0.05–1.51]

Cluster 3
(cluster 1 as
reference)

10.2b

[2.94–46.8]
6.44a

[1.55–34.4]
8.02b

[2.19–38.2]
11.8b

[3.33–55.3]
10.5b

[3.02–48.3]

Systolic blood
pressure

0.98
[0.95–1.01]

Serum creatinine 0.76a

[0.57–0.99]

Serum
potassium

0.49
[0.20–1.18]

BNP 1.00
[0.99–1.00]

BNP, B-type natriuretic peptide; CI, confidence interval; HR, hazard ratio.
aP < 0.05.
bP < 0.01.
Model 1 (base model): age þ sex þ cluster; model 2: model 1 þ systolic blood pressure;
model 3: model 1 þ serum creatinine; model 4: model 1 þ serum potassium; model 5:
model 1 þ BNP.

Follow-up (days)

Cluster 1
Cluster 2
Cluster 3

Cluster 1 62 61 60 60 59
Cluster 2 15 15 14 14  13
Cluster 3 24 19 17 17 15

No. at risk

P < 0.001

*
S

u
rv

iv
al
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at

e

Figure 3. Survival analysis of the 3 clusters suggested by the hier-
archical clustering. Patients in cluster 3 showed a significantly
worse survival rate compared with cluster 1, in the Kaplan-Meier
analysis of the follow-ups 1 year after hemodialysis therapy was
initiated. The difference between cluster 3 and cluster 1 was still
significant after Bonferroni’s correction for multiple comparisons
(P < 0.001). *P < 0.05.
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hierarchical clustering. All patients in cluster 1 remained
in their original cluster, although 8 and 12 patients in
cluster 2 and 3 moved to the new cluster 1, respectively.
Kaplan-Meier survival analysis based on the new classi-
fication still showed significant difference in the 3 clusters
(P< 0.001, Supplementary Figure S4). Finally, we added
potential covariates (systolic blood pressure, serum
creatinine, serum potassium, and BNP) to the base model
of the Cox proportional hazards model. Even in these
additional models, the effect of clustering on 1-year
mortality remained significant for the survival outcome
(Table 3). Variance inflation factors for the resulting
cluster group in each model, model 1–5 in Table 3, were
1.12, 1.39, 1.28, 1.25, and 1.24, respectively. These values
were not indicative of serious collinearity.

DISCUSSION

In this pilot study, agglomerative hierarchical clustering
was applied to 101 patients with ESRD newly starting
maintenance hemodialysis, with 46 standardized
continuous variables per person. Validating the optimal
number of clusters by several existing indices, we
finally identified 3 clusters (cluster 1, n ¼ 62; cluster 2,
n ¼ 15; cluster 3, n ¼ 24) within this heterogeneous
population. The 3 clusters differed in their clinical data.
Patient data for 1 year showed a significantly lower
survival rate within cluster 3 compared with those in
cluster 1. This is also supported by the Cox proportional
hazards model adjustment for age and sex. Although
hospital stays after initiation of dialysis therapy were
significantly longer in cluster 2 than cluster 1, the sub-
sequent survival rates of the 2 groups were similar.
Kidney International Reports (2020) 5, 1188–1195
Importantly, the resulting clusters presented valu-
able clinical implications; physicians should be aware
of the remarkably high mortality of the patients in
cluster 3 and should provide rapid interventions to
mitigate potentially modifiable risk factors, when
required for the high-risk population. In the heat map
of Figure 2, cluster 1 corresponded to patient group
with the upper left red zone, and cluster 3 corre-
sponded to those with the lower right red zone. Cluster
2 contained both features of clusters 1 and 3, but hot
spot on high BNP and serum potassium level was
remarkable. We interpreted the individual cluster re-
sults as follows. The largest group, cluster 1, might be
composed of patients with gradual progressions of
chronic kidney disease, leading to the initiation of
hemodialysis with fewer complications, requiring the
shortest hospital stay. Characteristics of cluster 2,
which include longer hospital stays than cluster 1,
suggested that the accumulation of fluid and small
molecules such as potassium and creatinine might have
frequently occurred. Despite the longer hospitaliza-
tions, it was notable that the 1-year survival rate of
cluster 2 was comparable to that of cluster 1. Patients in
cluster 3 had features distinctive from the other 2
clusters and showed the worst mortality in the study
cohort. It might be possible that these patients had
higher levels of inflammation and other organ compli-
cations. This speculation was supported by the higher
serum C-reactive protein levels and lower systolic
blood pressures observed in cluster 3, both of which
were reportedly associated with poorer outcome in
patients with ESRD.6,19 Moreover, urine acidification
1193
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ability and barriers for proteinuria were rather pre-
served in cluster 3. Our study also confirmed an earlier
observation: the 1-year follow-up of the 3 clusters
revealed that most mortal events occurred in the first
half of the year (Figure 3). This corresponded to the
previous report based on an international survey.5

Clustering analysis is generally heuristic, and different
clustering methods often generate different results.17 In
our dataset, the clustering result by agglomerative hier-
archical method was not consistent with the result by K-
means method. Both clustering methods contain their
strengths over the other. Hierarchical clustering offers
comprehensive process of classification and the result
allows us to speculate unknown shared features within
each cluster. On the other hand, K-means method can
analyze large sample size and is less susceptible to
outlier.20 In the present study, we selected agglomerative
hierarchical clustering due to the sample size and inter-
pretability; the comprehensive process of hierarchical
clustering led to our discussion on the resulting clusters
with Figure 2, but dataset with more outliers or larger
sample size may be appropriate to the K-means method. It
is noteworthy that some other machine learning algo-
rithms, including neural network, also require a much
larger sample size, and understanding the reasons behind
their prediction is usually difficult.

Several recent studies have applied unsupervised ma-
chine learning–derived classification technique to
restratisfy some established disease definitions, such as
heart failure8 and obstructive pulmonary diseases.10 Still
others have suggested a valuable use of machine learning
to be for the optimization of care for septic patients.9

These approaches have also been applied in other fields.
Nephrology, via computer-based pathological evaluation
of kidney biopsy images,21,22 artificial intelligence–based
anemia management programs,23 and the predictions of
acute kidney injuries by deep learning approaches24 have
formed part of this innovative movement.

Unsupervised machine learning enables us to
discover intrinsic patterns in multidimensional data25;
our subjective impression, otherwise, is easily affected
by limited numbers of remarkable data; it is almost
impossible to evaluate several clinical parameters at
once. With increasing numbers of multidimensional
clinical data available, due to the recent advent of
electronic medical records, hierarchical clustering
analysis has great potential for developing personalized
therapies and realizing better patient care. In conven-
tional analysis, in contrast, we must select important
variables from a large dataset based on previous pub-
lication, experience, and clinical rationale.

To the best of our knowledge, the present study is the
first to report a clinical application of hierarchical clus-
tering to patients with ESRD. In addition, we performed
1194
intervariable clustering for patients. This dual-direction
clustering yielded a color map of the results (Figure 2),
which visually represents the characteristics of the
participants; this technique was recently named as
“phenomapping.”8,26 We applied this method to the
data of the patient newly starting hemodialysis to assist
our visual perception of individual patients. Moreover,
the clustering may indicate similarities or redundancies
among the clinical variables and provide an optimal
method of variable reduction. Thus, with further
studies, it would be possible to select a core clinical
dataset, obtained at the initiation of hemodialysis, for
risk stratification of patients with ESRD.

We acknowledge several limitations. First, the pre-
sent study was conducted on a single-center basis with
a modest sample size, which may limit the generaliz-
ability of the results. Second, prognoses of the patients
over a longer period than observed were unknown,
because we predefined the follow-up plan to include
the time period of highest risk for patients starting
dialysis, according to the previous report.5 Third, the
clinical management, including dialysis modality and
medication after discharge, depended on each hemo-
dialysis clinic. Fourth, other machine learning tech-
niques may be better for larger populations; some
preceding application of hierarchical clustering implied
that several dozen to several hundred patient data is
appropriate to this clustering method,8,11 and it may
not be applicable to analyze a much larger sample size.
Further study is required to validate the results of our
study in external dataset, and investigating the optimal
clustering method for a larger dataset.

In conclusion, we have demonstrated a proof of
concept that agglomerative hierarchical clustering, an
unsupervised machine learning technique, can be
applied to a population of patients newly starting
maintenance hemodialysis. Using the intrinsic nature of
the methodology, we found that the resulting classifi-
cation was associated with 1-year mortality and length
of hospital stay. With future investigations, clinical
application of this technique may give a better un-
derstanding for risk stratification approaches to sup-
port patients with ESRD about to start hemodialysis.
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