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Abstract
Background: Isotope-coded affinity tags (ICAT) is a method for quantitative proteomics based on
differential isotopic labeling, sample digestion and mass spectrometry (MS). The method allows the
identification and relative quantification of proteins present in two samples and consists of the following
phases. First, cysteine residues are either labeled using the ICAT Light or ICAT Heavy reagent (having
identical chemical properties but different masses). Then, after whole sample digestion, the labeled
peptides are captured selectively using the biotin tag contained in both ICAT reagents. Finally, the
simplified peptide mixture is analyzed by nanoscale liquid chromatography-tandem mass spectrometry
(LC-MS/MS). Nevertheless, the ICAT LC-MS/MS method still suffers from insufficient sample-to-sample
reproducibility on peptide identification. In particular, the number and the type of peptides identified in
different experiments can vary considerably and, thus, the statistical (comparative) analysis of sample sets
is very challenging. Low information overlap at the peptide and, consequently, at the protein level, is very
detrimental in situations where the number of samples to be analyzed is high.

Results: We designed a method for improving the data processing and peptide identification in sample
sets subjected to ICAT labeling and LC-MS/MS analysis, based on cross validating MS/MS results. Such a
method has been implemented in a tool, called EIPeptiDi, which boosts the ICAT data analysis software
improving peptide identification throughout the input data set. Heavy/Light (H/L) pairs quantified but not
identified by the MS/MS routine, are assigned to peptide sequences identified in other samples, by using
similarity criteria based on chromatographic retention time and Heavy/Light mass attributes. EIPeptiDi
significantly improves the number of identified peptides per sample, proving that the proposed method has
a considerable impact on the protein identification process and, consequently, on the amount of potentially
critical information in clinical studies. The EIPeptiDi tool is available at http://bioingegneria.unicz.it/~veltri/
projects/eipeptidi/ with a demo data set.

Conclusion: EIPeptiDi significantly increases the number of peptides identified and quantified in analyzed
samples, thus reducing the number of unassigned H/L pairs and allowing a better comparative analysis of
sample data sets.
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Background
Mass Spectrometry (MS) [1] is a powerful technique used
to analyze biological samples, and it has been used to
identify potentially important biomarkers in several
human diseases. In short, it consists in associating a spec-
trum containing pairs of values [m/z, intensity] to the input
biological sample [2]. Figure 1 shows an example of a MS
spectrum where each [m/z, intensity] pair may be related to
the presence of a biomolecule, e.g. a protein or portion of
it (called peptide), present in the sample with mass to
charge ratio m/z and abundance expressed by the intensity
value [3,4].

Currently, there exist many instruments and techniques
for generating spectra from biological samples as well as
many software platforms for managing experiments and
identifying proteins contained in the original samples. An
MS-based methodology which is being extensively

applied in biological research is the shotgun LC-MS/MS
approach. It consists of three main steps: i) enzymatic
digestion of a protein mixture; ii) separation of generated
peptides through single or multiple steps of chromato-
graphic separation; iii) MS analysis through tandem mass
spectrometry (MS/MS). Enzymatic digestion activity
breaks down the starting proteins in small portions (pep-
tides), which can be more efficiently separated by chro-
matography. Furthermore, peptides are much more
suitable for MS/MS sequencing than their corresponding
intact proteins.

The MS/MS process consists in performing multiple steps
of mass spectrometric analysis by generating a mass spec-
trum of the fragments derived from a selected peptide
peak isolated in a previous MS stage. The fragments, pro-
duced via breakdown of the parent peptide through gas
collisions, can be correlated to amino acid sequences by

Mass spectrumFigure 1
Mass spectrum. Mass spectrum of a biological sample (ICAT labeled peptide mixture).
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dedicated search programs [5]. Protein/peptide identifica-
tion from MS/MS spectra consists in the computation of
qualitative information and is performed by querying pub-
licly available databases (e.g. the SwissProt database [6]
queried using Mascot [7]). Proteomics literature presents
an excessive fragmentation of repositories and tools used
for storing and handling large scale MS/MS protemoics
results. In order to meet requirements for more systematic
analysis and representation of proteomics data, the Pro-
teomics Standards Initiative (PSI) [8] has been created by
the Human Proteome Organisation (HUPO) with the aim
of defining community standards and, thus, facilitating
data exchange and public availability of data.

Increasing attention has also been devoted to fully
exploiting the quantitative information, such as protein
abundance in complex mixtures, obtained by LC-MS/MS
experiments [9-11]. Recently developed tools, such as
MSight [12] and Pep3D [13], transform LC-MS full scan
data into two-dimensional (2D) images and then manage
them using 2D gel electrophoresis analysis techniques.
Other tools, such as msInspect [14], LCMS-2D [15] and
MZmine [10,16], locate peptide signals within LC-MS
data, calculate signal intensities/peak areas and compare
multiple data files. All these tools provide a graphical
interface for data visualization and analysis.

As regards the quantitative aspects, the simple detection of
the ion intensity of peptide peaks in MS is not usually an
accurate way of acquiring information about its abun-
dance. MS quantification can be improved by using iso-

topic labeling methods [17] which allow to measure the
relative abundance of Heavy-labeled peptides with respect
to Light-labeled peptides of a reference sample. Isotope-
coded affinity tags (ICAT) [18] is currently one of the most
widely adopted isotopic labeling approaches.

The ICAT protocol, reported in Figure 2, consists in mark-
ing two protein mixtures (sample S1 and sample S2) with,
respectively, Heavy (H) and Light (L) labels having iden-
tical chemical properties but different masses. The ICAT
label marks all cysteines present in the samples by relying
on a thiol-reacting group. After mixing the two samples
(S1 and S2) and performing enzymatic digestion, the
ICAT-labeled peptides are selectively captured by affinity
chromatography using the biotin tag present in the ICAT
reagent. LC-MS/MS analysis of the purified peptide mix-
ture (peptides containing cysteine) allows the detection of
hundreds to thousands of peak pairs corresponding to
peptides marked with either label L or label H. Identical
peptides belonging to the same protein, but originating in
different samples (either sample S1 or S2) are detected at
different m/z values because of the difference in mass
between the L and the H reagents. For instance, in Figure
1 the peak pairs (463.76, 459.25), (555.05, 550.53) and
(748.89, 739.86), where the first two pairs are doubly
charged ions, whereas the third one is singly charged, cor-
respond to H/L pairs and they have delta masses equal to
9.02 (= (463.76 - 459.25) × 2), 9.04 (= (555.05 - 550.53)
× 2) and 9.03 (= 748.89 - 739.86) Da, respectively. The
ratio of MS intensities between the H and L forms within
a peak pair (H/L ratio) provides accurate relative quantita-
tive information on the abundance of a particular peptide,
and thus the corresponding protein, in sample S2 with
respect to its abundance in sample S1. In ICAT-based
experiments, LC-MS/MS analysis is normally performed
in data-dependent mode. This means that, during the
chromatographic separation of peptides, the mass spec-

Peptide discoveryFigure 3
Peptide discovery. The ProICAT and EIPeptiDi protein iden-
tification processes.

ICAT protocolFigure 2
ICAT protocol. Schematic representation of the ICAT pro-
tocol.
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trometer automatically switches from full scan MS mode,
which allows the detection of H/L pairs at a particular
chromatographic retention time t, to MS/MS mode on the
most abundant peaks (typically 2–5 peaks) present in the
MS spectrum at time t.

After database search, qualitative information (peptide
sequence identification via MS/MS) is correlated to quan-
titative information (H/L ratios) in order to produce tables
of proteins/peptides (quality sample contents) with their
relative expression levels (quantity sample contents). Fig-
ure 3 shows the protein/peptide identification process
performed using the Applied Biosystems (AB) ProICAT
module [19] which is in charge of identifying proteins/
peptides by querying a protein database. Furthermore,
ProICAT generates a list of H/L pairs by treating the full
scan information of the LC-MS/MS data as an intensity
image and then detecsting chemical species through the

3D LCMS Reconstruct algorithm present in the BioAnalyst
software. For each isotope series, the algorithm checks for
the other isotope series separated by the neutral mass dif-
ference of the two forms of the ICAT reagent.

The table shown on the upper, right of Figure 3 depicts a
simplified example of a ProICAT result, where the rows
denote peptides, columns denote samples and each entry
value corresponds to an H/L ratio (quantitative informa-
tion). A significant disadvantage of the ICAT LC-MS/MS
protocol is that the number of identified peptides varies
from experiment to experiment (see missing values in the
upper right table of Figure 3), making the statistical anal-
ysis of sample sets very challenging. Experimental obser-
vations showed us that, at least in the case of plasma/
serum samples, the missing values are almost always
caused by the variability of the peptide identification
process rather than by the absence of a particular protein

Example of missing valueFigure 4
Example of missing value. Selected Ion Chromatograms (SICs) illustrate how an H/L pair having the same m/z and reten-
tion time values of peptide QRQEELCLAR, identified in Sample 1 is also present in the LC-MS/MS data of Sample 3.
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in a given sample. Indeed, in experiments performed on
different samples we noted that expected peptides were
not always identified by the ProICAT routine. In a 7 sam-
ple human serum data set (denoted by Sample 1, ..., Sam-
ple 7), the peptide QRQEELCLAR, belonging to plasma
retinol-binding protein, was identified in only two of the
seven samples by ProICAT (see Table 1), while the protein
was expected to be present in all samples and its presence
was also confirmed by manual inspection of LC-MS/MS
full scan raw data. Figure 4 shows Selected Ion Chromato-
grams (SICs) for the L labelled QRQEELCLAR peptide
identified in Sample 1 and the corresponding SIC
obtained from Sample 3. The H/L pair present in the LC-
MS/MS data of Sample 3, having the same m/z values and
retention time as peptide QRQEELCLAR, is strongly sus-
pected of corresponding to the same peptide identified in
Sample 1. In our experience, proteins detected by ICAT
LC-MS/MS analyses were, in all cases, already known to be
present in blood plasma/serum. For some of these pro-
teins, laboratory reference values are also available [20],
whereas other proteins have been less investigated, but
nevertheless have been identified in previous studies on
serum/plasma proteome [21]. All these observations con-
firmed that, concerning ICAT-based LC-MS/MS plasma/
serum analyses, missing values are mostly due to variabil-
ity in the MS/MS identification process. The main weak-
ness in current ICAT-based proteomics platforms, when
dealing with a considerable number of samples, lies in the
insufficient overlap of information between the different
samples. Moulder et al. [22] have compared some ICAT
data analysis software and have shown that ProICAT, Spec-
trum Mill and SEQUEST give comparable results in terms
of protein quantification, but different, and in some cases
complementary, results in terms of protein identification.
Nevertheless, none of these three data analyses softwares
have proposed a solution to improve data overlap. Cross-
talk between LC-MS/MS data has not been applied to data
generated after isotopic labeling, even though the concept
of cross-talk has already been introduced in [23] and [24].
The systematic evaluation of qualitative and quantitative
information of LC-MS/MS data in multiple experiments

was addressed as an open topic in a recent bioinformatics
review [25]. Indeed, recent works on LC-MS data analysis
do not make use of the precious qualitative information
given by MS/MS spectra [10,26]. In particular, the impor-
tance of merging MS/MS identifications when a high
number of samples is analyzed, has been underestimated
and never applied to the ICAT pipeline process or to any
other LC-MS/MS-based quantitative proteomics approach
(e.g., Stable isotope labeling with amino acids in cell cul-
ture, SILAC [27]). The technique proposed here fills this
gap and its implementation is freely available on line.

Implementation
In this paper we present a technique, implemented in a
tool called EIPeptiDi (for Enhanced ICAT Peptide Discov-
ery), that improves protein identification in ICAT based
experiments. The main module is based on a cross valida-
tion algorithm that tries to associate Heavy (H) or Light
(L) peaks, quantified by the ProICAT software [19], but not
assigned by the MS/MS routine and thus not identified, to
peptide sequences identified in other experiments of the
same sample set.

EIPeptiDi is composed of the following main modules: (i)
the database wrapper, (ii) the data calibration module,
(iii) the cross validation module and (iv) the graphical
user interface (GUI). Starting from the ProICAT results, the
database wrapper extracts data consisting of peak meas-
ures, which may be (or may not be) assigned to peptides.
The data calibration module is in charge of aligning chro-
matographic retention time information to improve the
cross validation phase. The cross validation module
allows to increase the number of peak measures assigned
to peptides, and, consequently, to increase the number of
identified proteins. Finally, the GUI, based on Java web
start technology [28], allows EIPeptiDi to be run in a web
browser. In the following the structure of the source data
and the algorithms used by the main modules of EIPeptiDi
are described. To facilitate the understanding of the pro-
tein identification boosting method, the cross validation
algorithm is described before the calibration one.

Table 1: Example of ICAT results. Real-life example of an ICAT results table; seven serum samples (labelled H) were analysed against 
a reference serum sample (labelled L).

Protein name ICAT peptide sequence H/L 
Sample 1

H/L 
Sample 2

H/L 
Sample 3

H/L 
Sample 4

H/L 
Sample 5

H/L 
Sample 6

H/L 
Sample 7

Alpha-2-macroglobulin VTAAPQSVCALR 0.46 0.56 1.02 0.38 0.44 0.90 0.82
Alpha-1-antitrypsin LGMFNIQHCK 1.11 1.82 2.01 1.01 0.98 0.93 1.54
Alpha-2-HS-glycoprotein EHAVEGDCDFQLLK 1.16 - 1.07 0.82 0.98 1.05 0.78
Alpha-1-acid glycoprotein 2 EQLGEFYEALDCLR 1.12 1.96 0.97 0.99 - 1.81 -
AMBP protein precursor TVAACNLPIVR 1.12 1.22 1.02 - 1.44 1.21 1.48
Apolipoprotein A-II EPCVESLVSQYFQTVTDYGK 1.61 - 1.21 1.04 1.08 0.92 1.32
Vitamin D-binding protein HQPQEFPTYVEPTNDEICEAFR - 1.45 1.23 1.14 1.06 0.94 1.12
Plasma retinol-binding protein QRQEELCLAR 1.68 1.55 - - - - -
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The cross validation algorithm
The ProICAT software produces a Microsoft Access data-
base instance containing information about the per-
formed experiments. In particular, the database contains
information about peak measures, identified peptides and
proteins, samples, instruments used and their setting
parameters, and others. The role of the wrapper is to
extract information which are useful for the next tasks.
More specifically, the wrapper builds a new "integrated"
database containing information about

• proteins, e.g. protein name and species;

• peptides, e.g. peptide amino acid sequence;

• samples, e.g. sample identifier, description, date in
which the analysis has been performed;

• ICAT measures, e.g. mass, measure type (H or L), starting
and ending chromatographic times;

• associations between ICAT measures and peptides, ICAT
measures and samples, and peptides and proteins.

Using this information ProICAT computes, for each sam-
ple, a list of measures which can be associated to peptides
and proteins. Upper right part of Figure 3 shows a simpli-
fication of the output where only the H/L ratio of assigned
peptides to samples is reported. Nevertheless, ProICAT
result contains many quantified peaks that are not associ-
ated to identified peptides. Indeed, by using ProICAT we
observed that the number of quantified peaks from a LC-
MS/MS run on one biological sample is typically much
higher than the number of peptides identified, meaning
that many quantified peaks have not been assigned to any
peptide (see missing values in Table 1). According to [14]
the output of an ICAT-based LC-MS/MS experiment con-
tains thousands of quantified peak pairs. Nevertheless, by
performing several experiments, we observed that, usu-
ally, only few hundreds of them can be successfully iden-
tified. Moreover, running multiple experiments on the
same sample, we noted that the overall number of identi-
fied peptides increases, meaning that each LC-MS/MS
result contains many more features than what can be
identified by the MS/MS routine. Thus, it is feasible to
design a framework that increases the number of identi-
fied peptides by comparing qualitative and quantitative
information of multiple LC-MS/MS results.

In order to assign identified peptides to quantified peaks,
the similarity of peaks belonging to different samples is
computed. The similarity measure is based on the com-
parison of mass values and chromatographic retention
times which characterize uniquely peaks. For instance, let
us consider the LC-MS/MS data shown in Figures 5 and 6

(only full scan information is displayed) and assume that
peak P1, detected in the LC-MS/MS run of sample S1, is
successfully identified by MS/MS, whereas in sample S2
the peak P2 is detected (but not identified) at the same m/
z, retention time as the peak P1. Then, we can assign the
same peptide sequence of P1 to the peak P2. Since peak
matching has to take into account experimental errors,
appropriate tolerance intervals have to be defined for both
m/z and retention time. We call such intervals mass toler-
ance and retention time tolerance. Peak P2 in Figure 6 is thus
assigned to the same peptide sequence of P1, if its m/z and
retention times are equal to the m/z and retention time
values of P1 within an error defined by the two tolerance
values.

The accuracy of the method varies with the definition of
such tolerance values. Large tolerance windows may lead
to false hits. In our initial tests we used a delta retention
time tolerance between 3 and 5 minutes and a mass toler-
ance of 0.003% (30 parts per million). Experiments have
shown that such values considerably reduce the risk of
false hits, while maximizing the newly detected proteins/
peptides (see Section EiPeptiDi tolerance value evaluation).
In the following we sketch the identification algorithm
implemented in EIPeptiDi to boost the ProICAT peptide
identification, by exploiting the experimental observa-
tions reported above.

Let F be the set of identified (found) peptides in all sam-
ples. F is the set of tuples t = (p, St, Et, m, mty, Sid) where p
is the peptide name detected (found) in the sample Sid at
retention time interval (St, Et), where St stands for start
time and Et for end time, and at mass (m, mty) where m
stands for the mass value and mty may assumes respec-
tively Heavy or Light value. Analogously, NF is the set of
(not found) tuples t = (⊥, St, Et, m, mty, Sid) of measured
peaks, i.e. masses and retention times measures, in the

MS/MS SampleFigure 5
MS/MS Sample. In Sample S1 the peptide P1 is identified.
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sample Sid which are not associated with any peptide (the
null value ⊥ states that the measure is not assigned to any
peptide). Moreover, given a tuple t belonging to either F
or NF, the notation t[ai, ..., ak] denotes the projection of t
over the attributes ai, ..., ak. In the following we present a
simplified version of the algorithm.

procedure Peptides_Discovery(F, NF)

// F contains the peptides found

// NF contains masses and retention times not assigned to
any peptide

const MAX_ MT = 0.00003; // mass tolerance 30 ppm

const MAX_ RTT = 3; // retention time tolerance in min-
utes

const minSup = 0.75; // minimum support to assign not
found measures

var Δm, ΔSt, ΔEt: real;

begin

for i = 1 to |NF| do begin

// for all tuples in NF try to assign a peptide

TMPi = ∅;

// TMPi is a multiset containing temporarily assigned
peptides

for j = 1 to |F| do begin

//search in all tuples in F

//calculate mass tolerance for ti[m]

Δm := MAX_ MT * tj[m];

ΔSt := abs(ti[St] - tj[St]);

ΔEt := abs(ti[Et] - tj[Et]);

// Verify mass and retention time falls in Δtime inter-
vals.

// and that both masses are Heavy or Light

if ((tj[m] - Δm <ti[m] <tj[m] + Δm) and ti[mty] = tj[mty]
and

ΔSt ≤ MAX_ RTT/2 and ΔEt ≤ MAX_ RTT/2) then
begin

// Assign (temporarily) the peptide tj[p] to ti

TMPi = TMPi ∪ {tj[p].ti[St, Et, m, mty, Sid]};

NF = NF - {ti};

end;

end;

if ∃ peptide  s.t. |t|t ∈ TMPi ∧ t[p] = }| > |TMPi| ×

minSup then

F = F ∪ { .ti[St, Et, m, mty, Sid]};

end;

Return F, NF, ∪i = 1...|NF|TMPi;

end Peptides_Discovery;

The constants MAX_ MT and MAX_ RTT represent the
mass and retention time tolerances, whereas minSup is a
constant whose value is contained in the interval [0..1]
and defines the minimum threshold to assign a peptide to
a not found measure. Such parameters may be defined by
the user (via a dialog box), taking into account the MS
instrument resolution and chromatographic perform-

p̂ p̂

p̂

Peptide results comparisonFigure 6
Peptide results comparison. Comparing MS/MS results 
on two samples: in Sample S2, the peptide P2 is not identified 
through MS/MS database search. Nevertheless, it can be 
identified via (retention time, m/z) matching with peptide P1 
in Sample S1 (see Figure 5).
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ance. In our experiments we used, respectively, MAX_ MT
= 30 ppm and MAX_ RTT = 3 minutes. Such parameters
have been validated by several experiments on the EIPep-
tiDi tool. Moreover, the tolerance parameters may be opti-
mized if input spectra are calibrated, with respect to
retention time and mass values. As input spectra produced
by MS instruments are already calibrated with respect to
mass values, in the next section we present the algorithm
implemented in EIPeptiDi performing the calibration of
spectra with respect to retention time.

Data calibration
EIPeptiDi implements a simple retention time calibration
module based on a linear interpolation algorithm. The
basic idea consists in considering the set of peptides found
in all samples and selecting a small subset (e.g. 10 meas-
ures) chosen across the whole chromatographic time
interval, that are used for evaluating interpolated lines.
The calibration is performed with respect to a selected
input sample, e.g. S1, that becomes the reference sample
for realigning chromatographic time of the remaining
samples. Let N be the number of samples, and let M be the
number of selected peptides found in all samples. The
algorithm consists in evaluating N - 1 interpolated lines of
equation fi(x) : y = αix + βi for each sample Si (i = 2..N),
where the x axis represents the reference chromatographic
time for the sample S1 and the y axis represents the chro-
matographic time for the sample Si that must be cali-
brated. The αi and βi coefficients of the ith linear equation
are evaluated by interpolating the retention times of the M
peptides respectively for the samples S1 and Si. Then, the
chromatographic retention time information relative to
all the quantified (but not identified) peptides in the sam-
ple Si are recalculated according to the calibration linear
function.

For instance, let us consider an experiment performed on
N = 7 samples, denoted by S1 ... SN, and let S1 be the refer-

ence sample; let p1, ..., pM, with M = 10, be the reference
peptides quantified and identified in all N samples. The
calibration algorithm performs in N-1 iterations evaluat-
ing N-1 calibration linear equations. Table 2 reports data
used to calibrate the sample S2 with respect to S1. The first
column contains the amino acid sequences of the selected
common peptides, called landmark peaks; the second and
third columns contain retention times of landmark peaks
found in S1 and S2. Such times differ on average by 3.33%.
The calibration linear equation is the following f2(x) : y =
1.0445x - 0.2829 (see Figure 7). Such an equation is used
to calibrate retention times for all Heavy/Light peak pairs
in sample S2. For instance, the calibrated retention time
for the DYFMPCPGR peptide is now 28.39 minutes,
which is very close to the retention time of DYFMPCPGR
in S1 (28.36 minutes), whereas the retention time before
calibration was 29.28. The average difference among the
M landmark peaks is now reduced to 0.56%.

In the following we present the calibration algorithm
implemented in EIPeptiDi.

procedure LinearDataCalibration(F, NF, S)

// F contains the peptides found within samples with
masses, retention times

// NF contains masses and retention times not assigned
within samples

// Let S = {S1, ..., SN} be the set of samples

const NB_PEPT = 10; //number of points (peptides) for
calibration

begin

//Select NB_ PEPT peptides among the set of found F

PEPT_SET = SelectPeptides(F, NB_PEPT) identified in
all samples

for i = 2 to N do begin

//evaluate the interpolation line fi(x) = αix + βi;

fi(x) = EvaluateLinearInterpolation(S1, Si, PEPT_SET);

//calibrate all retention times of all Heavy-Light pairs
in Si

S'i = Calibrate(fi(x), Si);

Return {S1, S'i, ..., S'N};

end;

end Linear DataCalibration;

Table 2: Retention times used for data calibration. Retention 
times of landmark peaks used to calibrate sample S2 with respect 
to reference sample S1.

Peptide sequences Retention 
Times in S1

Retention 
Times in S2

VANPCVK 11.87 12.22
WCALSHHER 15.76 16.21
KPVDEYKDCHLAQVPSHTVVAR 19.99 20.42
FSGQLNSHGCFYQQVK 25.68 26.32
CLVEKGDVAFVK 26.10 27.06
DYFMPCPGR 28.37 29.28
GPSVFPLAPCSR 32.01 33.48
KGDTFSCMVGHEALPLAFTQK 38.43 39.75
DLYSGLIGPLIVCR 50.59 52.61
EPCVESLVSQYFQTVTDYGKDLMEK 67.07 69.74
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Even if there exist several proposals for chromatographic
time realignment of LC-MS data based on landmark
peaks, [29-31], we used a linear calibration function
which has given good results and allows to validate results
in a simple way. Moreover, as data calibration is an inde-
pendent task, more sophisticated alignment strategies
could be used.

Logical functionalities described above have been fully
implemented in the EIPeptiDi tool using the Java pro-
gramming language. Figure 3 shows how the EIPeptiDi
tool fits in the MS/MS data enhancement process. It takes
in input ProICAT results and enriches them with addi-
tional identified peptides (see table in the lower, right side
of Figure 3). Figure 8 reports the graphical user interface
of an EIPeptiDi execution, where the highlighted rows rep-
resent the discovered peptides associated to biological
input samples. Users may define the Delta RT and the
Delta mass tolerances using expected chromatographic
reproducibility and instrument mass accuracy.

Results
This section presents some of the performed experiments.
Firstly, used data sets are described, then parameters set-
ting is presented and, finally, experimental results are
reported.

Data sets description and preparation
EIPeptiDi has been tested on two data sets containing
seven and ten collection of LC-MS/MS generated samples
(denoted, respectively as data set A and data set B). A third
data set has been made available on-line for testing. In all
cases, samples were human sera subjected to albumin/IgG
depletion, ICAT-labeling and tryptic digestion before LC-
MS/MS analysis. Concerning the immunodepletion step,
it is a widely accepted approach to remove highly abun-

dant proteins from serum before proteomic analysis. This
step may contribute to increase the experimental error and
it might also cause a specific loss of some proteins [32].
Nevertheless, the increase of dynamic range obtained by
such a procedure dramatically improves proteome cover-
age in serum, as demonstrated by [33]. Furthermore,
removal of high abundance proteins is highly recom-
mended [34], in cases where the analytical strategy is
based on enrichment of cysteine containing peptides.

The two data sets A and B contain serum samples kindly
provided by clinical colleagues of University Magna Grae-
cia Medical School. In both data sets, Heavy (H) labeled
samples were generated either from healthy individuals or
diseased patients; they all were compared with a reference,
Light (L) labeled sample. In the following, sample prepa-
ration and analysis is described.

Blood samples were collected after informed consent.
Approximately 8 ml of blood was drawn by venipuncture
and placed on ice. The samples were centrifuged within 2
hours of collection at 1.400 × g for 10 minutes, and serum
was aliquoted into Nalgene tubes and stored at -80°C.
Sera were depleted of albumin and immunoglobulins by
using ProteoExtractTM HSA/IgG (human serum albumin/
immunoglobin G) Removal Kit (Calbiochem). Albumin
and IgG-depleted serum fractions were precipitated at -
20°C with cold-acetone in 1:7 v/v ratios. The protein pel-
let was then dissolved in 50 mM Tris and 0,1% SDS buffer
pH 8.5, labeled with the Cleavable ICAT Reagent Kit for
protein Labeling [19] (either H or L), digested and puri-
fied according to manufacturer's instructions.

Chromatography was performed on an Ultimate nano LC
system from Dionex [35]. All chromatographic columns
used were also from Dionex. The ICAT-labelled peptide
mixture was dissolved in 200 μL of loading pump solvent,
consisting of water/acetonitrile/trifluoroacetic acid (TFA)
98/2/0.1 (v/v/v). 10 μL of the peptide solution were then
injected for LC-MS analysis. Peptides were loaded onto a
0.3 × 5 mm Pepmap C18 trapping column, using the
loading solvent at constant flow rate of 30 μL/min, and
subsequently eluted through an analytical nanoLC col-
umn, 0.075 × 150 mm, packed with Pepman C18 3 μm
silica particles. For gradient elution of peptides, mobile
phase A was water/acetonitrile/formic acid (FA)/TFA
97.9:2:0.08:0.02 (v/v/v/v) and mobile phase B was water/
acetonitrile/FA/TFA 4.9:95:0.08:0.02 (v/v/v/v). Gradient
was from 5 to 45% B in 80 minutes at 300 nL/min flow
rate.

MS detection was performed on a QSTAR XL hybrid LC-
MS/MS from Applied Biosystems [19] operating in posi-
tive ion mode, with nanoelectrospray potential at 1800 V,
curtain gas at 15 units, CAD gas at 3 units. Information-

Retention time calibration by linear interpolationFigure 7
Retention time calibration by linear interpolation. 
The interpolation line used to calibrate retention time in 
Sample S2 with respect to S1.
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dependent acquisition (IDA) was performed by selecting
the two most abundant peaks for MS/MS analysis after a
full TOF-MS scan from 400 to 1600 m/z lasting 2 seconds.
Both MS/MS analyses were performed in enhanced mode
(2 seconds/scan). Threshold value for peak selection for
MS/MS was 20 counts. Qualitative and quantitative LC-
MS/MS information was processed by the ProICAT soft-
ware. The Swiss Prot database was queried for protein
identification using the following settings: peptide mass
tolerance at 0.05 Da; MS/MS tolerance at 0.5 Da; mod. tol-
erance 1 Da; confidence level greater than 95%.

EIPeptiDi tolerance value evaluation
In order to assess the best tolerance for mass and retention
time values in a systematic way, we performed experi-
ments on data sets A and B. For each distinct data set, the
subset of peptides found in all samples was selected (43
peptides for data set A and 34 peptides for data set B).
Then, for both data sets, the first sample was taken as ref-
erence. For all remaining samples in each data set, and for

each selected peptide, the differences in mass and reten-
tion time values with respect to the mass and retention
time of the corresponding peptide in the reference sample
(of the data set) were calculated.

The average difference between mass values of peptides,
equal to 7 ppm (parts per million) has been calculated for
both data sets A and B. The standard deviation on this
measurement was 6 ppm, while the maximum difference
observed was 25 ppm for both data sets. Considering that
the subsets under consideration represented high quality
data (i.e. high intensity peaks denoting a better mass accu-
racy than the rest of the mass measurements in the data
sets), we chose a value of 30 ppm as default mass toler-
ance. As regards retention time, results confirmed the
importance of the calibration step performed as discussed
in Section Data calibration. Results are summarized in
Table 3 where the values obtained concerning maximum
difference and average difference (plus its associated
standard deviation), indicated that the optimal retention

Discovered peptides by using EIPeptiDi toolFigure 8
Discovered peptides by using EIPeptiDi tool. Discovered peptides are highlighted.
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time tolerance to be used after chromatographic time
alignment was in the range 0.7–1.5 min. Instead, not-cal-
ibrated data would have required much higher tolerance
values (3–4 min). We chose a tolerance of 1.5 minutes for
subsequent experiments, also taking into account the
compromise between the number of new peptides found
and the rate of false positive.

The tolerance values found for data sets A and B prove that
it is possible to calculate such values reliably by using the
subsets of peptides found in all samples of the data set
itself.

EIPeptiDi on data sets A and B
The improvements in data analysis can be appreciated in
Figure 9, where the whole matrix of peptides found in
data set A is schematized. Black colored rectangles indi-
cate missing values. The top part of the Figure shows the
peptides identified by the ProICAT procedure, while the
bottom one shows those identified by EIPeptiDi. The bot-
tom part of Figure 9 shows a significant decrease in the
occurrence of missing values, where peptides having their
associated H/L ratio are indicated as green rectangles (gray
for black and white printed paper). Moreover, the number
of peptides identified and quantified in all the 7 samples
(full colored in Figure 9), increased dramatically using
EIPeptiDi. Considering the experimental results without
EIPeptiDi, 53 identified and quantified peptides were
common to all samples, belonging to 19 distinct proteins.
Using EIPeptiDi, this number raised to 139 peptides corre-

sponding to 40 distinct proteins. This performance boost
is also shown in Figures 10 and 11 that report the incre-
ment in the number of identified and quantified peptides
per sample for the data set A and B. For data set A, the aver-
age number of identified peptides per sample raised from
129 to 196. For data set B, the average number of identi-
fied peptides per sample raised from 97 to 144. Thus, an
improvement of about 50% was observed in both cases.

Estimation of false positives
We validated our method by testing EIPeptiDi on data set
A, to which 3 LC-MS/MS data from ICAT-labeled HCC-
1937 cellular proteins were added. Protein composition
in HCC-1937 cells is expected to be totally different from
serum protein composition (i.e. the A data set). Thus, any
match between found peptides from the serum samples
and not found peptides in the cell lysate (evaluated by
EIPeptiDi) has to be considered a false positive. False pos-
itives were calculated at several tolerance values. The aver-
age number of new peptides found in data set A (without
considering the cell lysates samples) was evaluated by var-
ying both the mass tolerance and chromatographic reten-
tion time tolerance values and are reported in Table 4.
Table 5 contains the average number of false positives (in
3 observations) found by running EIPeptiDi on the dataset
obtained merging the data set A with the three samples
composing the data set HCC-1937. Values in the Table 5
refer to the same tolerance values used for Table 4. Let
T(i,j) indicate the numbers reported in the Table 4 and let
FP(i,j) be the numbers of false positives reported in Table
5. Table 6 reports the false positive rate expressed (in per-
centage) as the ratio FP(i,j)/T(i,j) at the considered toler-
ance values. Note that while T(i,j) obviously decreases by
narrowing the tolerances, FP(i,j) decreases at an even
higher pace, generally causing the false positive rate to
decrease constantly by moving down to lower tolerance
values. The only exception has been noted for retention
time tolerance set at 0.75 min, which, in most cases,
caused an increase in the false positive rate. This addi-
tional experiment proves that the tolerance values of 30
ppm on mass and 1.5 min on retention time (that are the
default tolerances used in our experiments) represent a
good compromise between high number of peptides

Result data matrixFigure 9
Result data matrix. Missing values decrease using EIPeptiDi. Each column represents a different peptide sequence, while each 
row represents a sample. Colored boxes indicate that a H/L ratio is available for the corresponding peptide.

Table 3: Retention time differences. Maximum and average 
retention time differences between peaks of reference peptides 
(sample S1) and the corresponding peaks of peptides in samples 
S2 to S7 in data set A (subset of peptides found in all samples).

Data 
set A

Data set A 
recalibrated

Data 
set B

Data set B 
recalibrated

Maximum RT 
difference

3.36 1.66 3.68 1.28

Average RT 
difference

1.24 0.67 1.80 0.32

Standard 
deviation

0.31 0.19 1.29 0.15
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found and a low false positive rate (i.e., 6%). As it can be
seen in Table 6, more precise calibration on the mass
would improve results even more. For example, 15 ppm
mass accuracy or better could be readily achieved by Q-
TOF-based MS instrumentation making use of internal
calibration or by instrumentation with even higher reso-
lution (e.g. Fourier transform ion cyclotron resonance
mass spectrometers, FT ICR, or Orbitrap mass spectrome-
ters). By relying on such mass accuracy, false positives rate
is expected to be kept well below 1% (see Table 6), thus in
principle allowing peptide matching with no require-
ments of manual editing, an essential point for undertak-
ing large-scale proteomics experiments. Further

experimenting with EIPeptiDi may validate this assump-
tion.

Discussion
The technique proposed in this paper presents several
advantages over existing software tools available for the
data analysis of isotopically labeled samples. First of all, it
filters the data, by identifying a quantified peak pair in at
least one sample in order for this peak to be considered in
further data analysis. In this way, only the most reliable
subset of information is exploited. Secondly, the chroma-
tographic retention time alignment step relies exclusively
on peaks correctly identified in all samples as calibration
points. This way of setting the landmark peaks reduces the
risk of peak mismatching to a minimum. Thirdly, MS/MS
identifications from several aligned LC-MS/MS data files
can be shared, so allowing a results table which contains
a considerably higher number of identified peptides and
a reduced instance of missing values. The current version
of the software has been implemented for ICAT-based
platforms. Nevertheless, applications could be expanded
in the future to other quantitative MS-based proteomic
platforms such as the one based on SILAC [27]. Proteomic
approaches using SILAC at the moment rely on the Pro-
QUANT software tool for data analysis, or on the more
recently developed AYMUS algorithm [36]. Both tools can

Table 5: False positive in data set HCC-1937. Average number of 
false positives at various tolerances found in the data set HCC-
1937. The average is evaluated from the three samples 
composing the data set HCC-1937.

Mass 
tolerance: 
100 ppm

Mass 
tolerance: 

50 ppm

Mass 
tolerance: 

30 ppm

Mass 
tolerance: 

15 ppm

RT tolerance: 
5 min

24.7 17.0 10.3 3.3

RT tolerance: 
3 min

13.7 10.7 6.3 1.7

RT tolerance: 
1.5 min

9.0 7.3 4.0 0.3

RT tolerance: 
0.75 min

3.3 3.0 1.0 0.3

Data set resultsFigure 11
Data set results. Number of identified and quantified pep-
tides per sample with and without the use of EIPeptiDi in the 
10 samples data set B.
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Data set resultsFigure 10
Data set results. Number of identified and quantified pep-
tides per sample with and without the use of EIPeptiDi in the 
7 samples data set A.
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Table 4: Peptides found in data set A at different tolerances. 
Average number of peptides found in data set A at different 
tolerances. The average is evaluated among the seven samples.

Mass 
tolerance: 
100 ppm

Mass 
tolerance: 

50 ppm

Mass 
tolerance: 

30 ppm

Mass 
tolerance: 

15 ppm

RT tolerance: 
5 min

111.8 107.7 100.9 78.9

RT tolerance: 
3 min

86.9 86.3 81.9 61.7

RT tolerance: 
1.5 min

68.5 68.2 66.2 50.4

RT tolerance: 
0.75 min

20.8 20.2 18.4 13.6
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perform operations similar to the ones available in
ProICAT. Although retention time alignment is feasible
with ProQUANT, no clustering of MS/MS data is allowed
to the user. This dramatically complicates the analysis of
sample sets comprising more than only a few samples.

Conclusion
We designed a framework, called EIPeptiDi, that consider-
ably improves information overlap in ICAT-based LC-MS/
MS studies. The implemented software has been tested
and is freely available on line with a user guide and a data
set at [37].

Availability and requirements
Project name: EIPeptiDi. The software tool is available at
the project home page http://bioingegneria.unicz.it/~vel
tri/projects/eipeptidi/ and runs on any operating system
equipped with a Java Virtual Machine. Instructions on
how to run the tool and a database to test it, are published
on the project web site.
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