
Frontiers in Oncology | www.frontiersin.org

Edited by:
Riccarda Granata,

University of Turin, Italy

Reviewed by:
Justyna Magdalena Hermanowicz,

Medical University of Bialystok,
Poland

Steven A. Rosenzweig,
Medical University of South Carolina,

United States
Riccardo Vigneri,

University of Catania, Italy

*Correspondence:
Derek LeRoith

derek.leroith@mssm.edu

Specialty section:
This article was submitted to

Cancer Epidemiology
and Prevention,

a section of the journal
Frontiers in Oncology

Received: 09 October 2020
Accepted: 09 December 2020
Published: 02 February 2021

Citation:
Scully T, Ettela A, LeRoith D and

Gallagher EJ (2021) Obesity, Type 2
Diabetes, and Cancer Risk.
Front. Oncol. 10:615375.

doi: 10.3389/fonc.2020.615375

REVIEW
published: 02 February 2021

doi: 10.3389/fonc.2020.615375
Obesity, Type 2 Diabetes,
and Cancer Risk
Tiffany Scully1, Abora Ettela1, Derek LeRoith1,2* and Emily Jane Gallagher1,2

1 Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York City, NY,
United States, 2 Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York City, NY,
United States

Obesity and type 2 diabetes have both been associated with increased cancer risk and
are becoming increasingly prevalent. Metabolic abnormalities such as insulin resistance
and dyslipidemia are associated with both obesity and type 2 diabetes and have been
implicated in the obesity-cancer relationship. Multiple mechanisms have been proposed
to link obesity and diabetes with cancer progression, including an increase in insulin/IGF-1
signaling, lipid and glucose uptake and metabolism, alterations in the profile of cytokines,
chemokines, and adipokines, as well as changes in the adipose tissue directly adjacent to
the cancer sites. This review aims to summarize and provide an update on the
epidemiological and mechanistic evidence linking obesity and type 2 diabetes with
cancer, focusing on the roles of insulin, lipids, and adipose tissue.
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INTRODUCTION

An increase in obesity has been observed in children as well as adults, in both genders, and is
prevalent in both developed and developing countries (1–3). Obesity is associated with an increased
risk of overall mortality (4, 5) and constitutes a risk factor for diseases such as type 2 diabetes,
dyslipidemia, hypertension, fatty liver disease and cardiovascular disease. In addition, obesity has
been linked to increased cancer incidence and mortality (6–8). It has been estimated that 3.6% of all
of new cancer cases diagnosed worldwide in adults aged 30 years and older could be attributed to
high BMI (9). An assessment of temporal trends for cancer cases in the US suggests that
development of some obesity-related cancers in younger generations is becoming increasingly
common (10). Internationally, an increase in obesity-related cancers in adolescents and young
adults has also been noted (11), highlighting the influence of obesity on cancer risk across ages.
There is therefore, much interest in understanding how obesity-associated tumor growth is
mediated and might be therapeutically targeted. This review aims to provide an update on some
of the mechanisms proposed to underpin the relationship between obesity and cancer (Figure 1),
with a focus on breast cancer.

OBESITY AND TYPE 2 DIABETES

Obesity
Obesity has been defined as an accumulation of fat mass at levels sufficiently high to adversely
influence health (12). Body mass index (BMI) is one measurement used by the World Health
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Organization to define obesity, and is calculated as: body weight
(kg)/height (m)2. Overweight is considered to be a BMI of 25–
29.9 kg/m2 and obesity, a BMI of ≥30 kg/m2. Of note, lower BMI
cut-off points have been applied to Asian populations, due to the
increased percentage of body fat in these populations, compared
to non-Asian populations, for a given BMI (13, 14).

A number of studies have examined the links between cancer
and obesity, defined by BMI. Large cohort studies and meta-
analyses, have reported the association between obesity and
cancer to be gender-, site- and menopausal status-specific (6, 7).
The International Agency for Research on Cancer (IARC) and
World Cancer Research Fund/American Institute for Cancer
Research (WCRF/AICR) have reviewed the strength of the
evidence linking obesity with specific cancer types (15–17). The
IARC assessed the cancer-preventative effect of the absence of
excess adiposity. Both organizations found adequate evidence
supporting the association of excess body fatness with increased
risk of esophageal adenocarcinoma, colon and rectal, liver,
pancreatic, postmenopausal breast, endometrial, and renal cell
cancer (15–18). Additional cancers for which the WCRF/AICR
identified a greater risk were gastric cardia, gallbladder, ovary,
mouth, pharynx and larynx, and advanced prostate cancer (17, 18).

A study assessing the effect of adolescent obesity on cancer
risk and mortality later in life found that BMI at age 17 was
associated with an increased overall risk of cancer in men, but
not in women. Inverse relationships were reported for BMI and
both breast and cervical cancers in women (19). The cancer sites
most strongly connected to adolescent obesity for men in this
cohort were breast, pancreas and kidney, and in women, uterus,
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liver, bile duct, and pancreas. Increased BMI at adolescence was
also linked with a greater risk of mortality in cancer-bearing
individuals (19). Several studies suggest that accumulating
adiposity throughout adulthood influences cancer risk (20–23).
Weight gain (≥ 0.45 kg per year) over the course of 14 years
increased cancer risk by 38% compared to the maintenance of
constant weight (21).

The relationship between excess adiposity and breast cancer
appears to be modulated by menopausal status and by breast
cancer subtype, which is clinically based on the expression of the
estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor-2 (HER2). Weight gain and
elevated BMI have frequently been associated with an increased
risk of postmenopausal breast cancer, particularly ER-positive
and PR-positive invasive breast cancer (15, 17, 24). In contrast,
BMI has been inversely associated with premenopausal breast
cancer incidence. In a large pooled analysis of premenopausal
women, the negative relationship between BMI and breast cancer
risk was strongest in early adulthood (ages 18–24 years), and
for hormone receptor-positive cancer (25). The negative
relationship between breast cancer and premenopausal
adiposity was not found with ER/PR-negative or triple negative
(ER/PR negative, non-HER2 overexpressing) breast cancer in
individuals over 24 years of age (25). It has been reported in a
meta-analysis that a positive association exists between the
presence of obesity in premenopausal women and the risk of
triple negative breast cancer (TNBC) (26).

A large prospective cohort study following men and women
over the course of 16 years found that being overweight or obese
FIGURE 1 | Potential mechanisms linking obesity and type 2 diabetes and cancer. The relationship between type 2 diabetes, obesity, and cancer is potentially
mediated by multiple mechanisms, including metabolic conditions such as hyperinsulinemia and dyslipidemia as well as the alteration of adipose tissue which is
characterized by inflammation and a tumor growth-promoting secretory profile. Stars indicate factors discussed in this review. Adapted from: Gallagher, E.J., and
LeRoith, D (2015). Obesity and Diabetes: The Increased Risk of Cancer and Cancer-Related Mortality. Physiol. Rev. 95, 727–748.
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was associated with a higher risk of death from cancer (27). It has
however, been noted that inconsistency exists regarding the
relationship between obesity and increased cancer-specific
mortality (15, 16, 28). The inconsistency between studies stems
from multiple factors, including differences in study design and
setting, timing of obesity measurements in relation to cancer
diagnosis, cancer stage at diagnosis, presence of other risk factors
such as smoking (29, 30), genetic variants, choice of treatment,
and the effect of obesity on therapeutic dosing and adherence
(15, 16, 28). Obesity has been consistently linked with breast
cancer-specific mortality regardless of menopausal status or
subtype across meta-analyses (31–33).

Although obesity has been defined using BMI in the majority
of epidemiology studies, it does not always reflect metabolic
health. High body fat levels correlated with fasting insulin, leptin,
triglycerides and inflammatory markers (IL-6, C-reactive
protein), and increased breast cancer risk in postmenopausal
women with normal BMI (34). Waist circumference and
waist-to-hip ratio are other measures that are used to define
obesity (17, 35, 36). Waist circumference is one of the
criteria that defines the metabolic syndrome. Abdominal
obesity has a stronger correlation with insulin resistance
than BMI or gluteofemoral (gynoid) obesity (37, 38). The
metabolic syndrome, which is comprised of abdominal obesity,
dyslipidemia, dysglycemia and hypertension, is a syndrome of
insulin resistance (35). As discussed in subsequent sections, the
metabolic dysfunction associated with insulin resistance may
underlie the link between obesity and cancer.

The Metabolic Syndrome and
Insulin Resistance
Insulin resistance and hyperinsulinemia have been noted in
individuals for many years preceding the diagnosis of diabetes
(39). Obesity, specifically abdominal adiposity has been
correlated with insulin resistance (40, 41). Insulin resistance is
also considered to underlie the development of the metabolic
syndrome. Endogenous hyperinsulinemia occurs to compensate
for insulin resistance in order to maintain euglycemia. In clinical
studies fasting insulin levels, or the fasting concentrations of C-
peptide (a cleavage product of the insulin precursor that is
released at equal concentrations to insulin) have been used to
examine the links between hyperinsulinemia and cancer.

Studies have largely reported that the metabolic syndrome
increases the risk for developing cancers such as, breast,
colorectal, liver, bladder, endometrial and pancreatic cancer
(42–45). In particular, it was observed that women with insulin
resistance in comparision to insulin-sensitive women were at
greater risk of developing breast cancer, regardless of BMI-
defined obesity status (46). Circulating C-peptide (47), and
insulin levels have been associated with increased breast cancer
risk and cancer-specific mortality (48, 49), even after adjustment
for adiposity (46, 50). Likewise, increased C-peptide or insulin
levels have been linked with a greater risk of colorectal cancer,
independent of adiposity (51, 52). Studies examining the timing
of cancer diagnoses in individuals with diabetes found that the
risk of cancer was higher in the period before diabetes diagnosis
Frontiers in Oncology | www.frontiersin.org 3
(53, 54), when insulin resistance and hyperinsulinemia is likely to
be present. Overall, these observations support the hypothesis
that hyperinsulinemia promotes cancer development
and progression.

In addition to cancer incidence, insulin resistance has been
associated with both an increased risk of all-cause mortality and
cancer-specific mortality in postmenopausal women (55).
Insulin resistance has been further identified as a factor
mediating the relationship between race and poor breast
cancer prognosis (56). In a recent cross-sectional study, self-
identified Black women showed greater insulin resistance and
poorer prognosis for breast cancer compared to White women
(56). It is however, important to note that multiple factors
including socio-economic status, environmental exposures,
access to healthcare, tumor biology, genetic susceptibility and
systemic metabolism can all potentially contibute to the racial
disparities in cancer mortality (57).

Type 2 Diabetes and Hyperglycemia
Obesity is commonly observed in individuals with type 2
diabetes and the rising cases of obesity have been proposed to
explain the sharp increases in the prevalence and incidence of
type 2 diabetes (58). Large cohort studies and meta-analyses have
observed an increased risk of several types of cancer including
breast (59), intrahepatic cholangiocarcinoma (60), colorectal
cancer (59, 61) and pancreatic cancer (62) in individuals with
type 2 diabetes. An umbrella review of meta-analyses, which also
included an assessment of robustness and evidence of bias,
showed that the incidence of breast, endometrial, colorectal
cancers, and intrahepatic cholangiocarcinoma was greater in
individuals with type 2 diabetes, compared to those without
diabetes (63). A recent mendelian randomization study reported
that a genetic predisposition to type 2 diabetes conveyed higher
odds of cancer of the pancreas, kidney, uterus and cervix (64).
For breast cancer, a meta-analysis across forty studies found that
diabetes increased the risk of post-menopausal breast cancer by
16%, after adjustment for BMI (65). Subtypes of breast cancer
that carry a poorer prognosis, including PR/HER2-negative
breast cancers, TNBC, and the closely related basal-like breast
cancer molecular subtype have also been reported to occur at
greater frequency in women with diabetes than in those without
diabetes (66, 67).

Diabetes has also been associated with increased cancer
mortality (68, 69). One large cohort study followed individuals
without a history of cancer at enrolment for 16 years, and found
that diabetes was a significant predictor of mortality from liver,
pancreatic, bladder and colon cancer in men, and pancreatic,
colon, and breast cancer in women (68). The greater cancer
mortality in individuals with diabetes was also reported in a large
pooled analysis of 97 prospective studies with 820,900
participants and in many meta-analyses (61, 69–71). In
particular, a meta-analysis examining survival outcomes for
individuals with pre-existing diabetes and newly diagnosed
cancer, found that those with diabetes had a 41% increased
mortality compared to non-diabetic individuals (72). Although
the evidence linking diabetes and all-cause mortality in
February 2021 | Volume 10 | Article 615375
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individuals with cancer is strong, the evidence regarding cancer-
specific mortality has been inconsistent, as individuals with
diabetes have a greater mortality from non-cancer causes than
those without diabetes (73). Diabetes may also have an impact on
cancer treatment, as previously reported for breast cancer (74).
However, a recent study which accounted for co-morbidities
such as cardiovascular disease, found that cancer treatments
were similar for patients with breast cancer regardless of diabetes
status (75). Other possible factors relating to the increased
cancer-specific mortality in individuals with diabetes, include
presenting with advanced stage cancers at diagnosis (76), a
higher risk of chemotherapy-related toxicity (77), as well as
patient fragility resulting from chronic diabetes-associated
complications (78).

Glycated hemoglobin (HbA1c) levels have been used as an
indicator of glucose levels to examine possible associations
between hyperglycemia and cancer in the UK biobank cohort,
a large prospective population-based cohort study. Diabetes and
HbA1c levels were observed to be positively linked with cancer
risk across some organs, including liver and bladder (79).
Another population-based cohort study, which also drew data
from the UK biobank cohort, reported that with the exception of
pancreatic cancer, HbA1c levels did not correlate with higher
cancer risk, after adjustment for factors such as BMI, physical
activity, alcohol consumption and ethnicity (80). A lack of
association was also observed in a mendelian randomization
study examining the relationship between breast and prostate
cancer risk with glycemic traits (81).

Dyslipidemia
Dyslipidemia is frequently associated with obesity and type 2
diabetes. Elevated levels of triglycerides and decreased high-
density lipoprotein (HDL) are components of the metabolic
syndrome and are often observed in conjunction with high
levels of low-density lipoprotein (LDL) cholesterol, and small
dense LDL (82). Triglycerides are transported in the circulation
in the form of chylomicrons and very low density lipoprotein
(VLDL), which is synthesized and secreted by the liver along
with apolipoproteins (ApoB-100, ApoC-I, ApoC-II, ApoC-III,
ApoE), which bind the non-polar lipids and aqueous plasma,
facilitating the transport of non-polar lipids through the
circulation (83). Dyslipidemia has been associated with
increased cancer risk in some studies (84–87). Meta-analyses
have examined dietary cholesterol intake, and found that high
dietary intake of cholesterol increased the risk of esophageal
cancer (88), pancreatic cancer (8% increased risk per 100 mg
cholesterol/day) (89) and ovarian cancer (1% increased risk per
15 mg cholesterol/day) (90). In breast cancer, a dose-response
analysis found that a non-linear relationship existed between
dietary cholesterol and breast cancer, and was statistically
significant when cholesterol intake was greater than 370 mg/
day (91).

In a cohort of 3,278 adults from the Framingham Offspring
study, individuals with high VLDL and low HDL levels had a
greater incidence of cancer (92). Higher incidence of prostate
and colon cancer in men, and breast cancer in women were
Frontiers in Oncology | www.frontiersin.org 4
reported in individuals with high cholesterol (≥ 240mg/dL),
compared with those with cholesterol <160mg/dL in a large
prospective study from Korea (93). A lower incidence of lung,
liver and stomach cancers were found in individuals with high
total cholesterol in this cohort (93). A meta-analysis of twelve
prospective studies examining cancer risk irrespective of site
found an inverse relationship between total cholesterol and
cancer risk (94). It is important to note the distinction between
total and HDL cholesterol, where low HDL is a component of the
metabolic syndrome. In the context of breast cancer, an inverse
association with cancer risk has been observed for HDL
cholesterol (95). Menopausal status may impact upon the
influence of cholesterol on breast cancer. For example, low HDL
has been associated with increased risk of postmenopausal breast
cancer in some studies (96, 97), but has been linked with
premenopausal breast cancer in other studies (98). A few studies
have looked at cancer incidences and mortality rates in individuals
with familial hypercholesterolemia (FH). Though no difference was
found in total cancer mortality rate (99), a strong association was
found with death rates from pancreatic cancer (100). In contrast,
lower incidences of smoking-related cancers in individuals with FH
have been observed, which may be attributed to decreased smoking
as a lifestyle modification (101).

The presence of many variables may explain the conflicting
results that have been reported in epidemiological studies. In the
setting of hepatocellular carcinoma or hepatic metastasis,
impaired liver function may result in aberrant lipid synthesis,
decreasing cholesterol levels (102). Similarly, individuals with
pancreatic cancers and other gastrointestinal cancers may have
decreased dietary absorption of lipids that would affect systemic
lipid levels (103, 104). A relationship between circulating lipid
levels and cancer risk may also be obscured by a decrease in lipid
levels arising from the low nutritional intake associated with
advanced cancer and cachexia (105). Increased cholesterol
uptake by cells in some hematological malignancies has been
described, and may also account for low lipid levels, increasing
the difficulty in establishing a direct relationship between
cholesterol and cancer risk (106). Furthermore, dyslipidemic
individuals are often treated with lipid-lowering medications
(107) as cardiovascular disease constitutes a co-morbidity of
dyslipidemia. This in turn, might mask a direct association
between cholesterol levels and cancer risk. Individuals with
untreated high cholesterol levels are also at an increased risk of
pre-mature cardiovascular disease-related mortality (107, 108).
Therefore, cardiovascular disease may be a competing risk factor
for mortality independent of cancer.

Cholesterol lowering 3-hydroxy-3-methylglutaryl-coenzyme
A (HMG CoA) reductase inhibitors (“statins”) may have
therapeutic value as anticancer agents. Although the evidence
regarding statin use and its effect on cancer risk and mortality is
not unanimous, many studies have reported a strong inverse
relationship between advanced prostate cancer and longer
duration of statin use (109–111). A large Danish population
study found lower incidences of prostate and breast cancer in
statin users compared with those who did not use statins (112).
However, meta-analyses did not find a link between statin use
February 2021 | Volume 10 | Article 615375
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and the occurrence of lung (113) and breast cancer (114). The
majority of the studies examining statin use and breast cancer
recurrence and prognosis suggest statins improve recurrence-
free and cancer-specific survival (115–117).
MECHANISMS UNDERLYING THE
OBESITY–CANCER RELATIONSHIP:
HYPERGLYCEMIA AND INSULIN
SIGNALING

Insulin/Insulin-Like Growth Factor
Signaling and Cancer
At a cellular level, activation of insulin/IGF signaling pathway
has been hypothesized to contribute to tumor initiation and/or
progression through tumor cell-specific mechanisms including
the promotion of cell division, glucose metabolism (118) and
epithelial-to-mesenchymal transition (EMT) (119). In addition
to activating mitogenic and pro-tumorigenc metabolic pathways
via the induction of endogenous hyperinsulinemia, insulin
resistance might also contribute to tumor growth by other
mechanisms including: modulating sex hormone bioavailability
by decreasing sex hormone binding globulin; reducing of levels
of certain circulating IGF binding proteins (IGFBP-1) resulting
in free IGFs that activate the cell surface receptors; raising
circulating triglycerides by enhancing hepatic lipid synthesis
and decreasing clearance; increasing circulating and tissue free
fatty acids from adipose tissue lipolysis, and altering expression
of adipokines (Figure 1) (82).

Insulin, insulin-like growth factor-1 (IGF-1), and insulin-like
growth factor-2 (IGF-2) are ligands for the transmembrane
tyrosine kinase receptors, insulin receptor (IR), and IGF-1
receptor (IGF-1R), which have important roles in growth,
development, cancer, and metabolic disease (120, 121). The IR
is the preferential receptor for insulin and is comprised of two
heterodimeric hemi-receptors, of which there are two isoforms,
IR-A and IR-B (120). IR-A, in comparison with IR-B, displays an
increased affinity for IGF-2 and as such, also acts a receptor
for circulating and locally produced IGF-2 (122). Activation
of the receptors via ligand binding results in trans auto-
phosphorylation within the intracellular subunits of the
receptors. This leads to the activation and recruitment of
various substrates including the IR substrates (IRS) 1-4 and
adaptor proteins. Pathways that are activated as a result of IR/
IGF-1R activation include the Phosphatidylinositol 3-kinase
(PI3K)/Akt/mechanistic target of rapamycin (mTOR) and Ras/
extracellular signal-regulated kinase (ERK)1/2 pathways
(121, 123).

The circulating levels of IGF-1 are positively associated with
both increasing BMI up to 27 kg/m2 (124, 125) and increased risk
of pre- and post-menopausal breast cancer (126, 127). The
contribution of IGF-1 to the obesity-cancer link is not simple,
as the positive relationship between IGF-1 levels and BMI exists
only up to 27 kg/m2 and becomes negative thereafter (124),
secondary to hyperinsulinemia inhibiting growth hormone
Frontiers in Oncology | www.frontiersin.org 5
secretion (128). In contrast to total circulating IGF-1, most of
which exists in complexes with IGFBPs, the actual bioavailability
of IGF-1 at a tissue level in vivo is difficult to determine (129),
which complicates the contribution of IGF-1 to the relationship
between obesity and cancer (124).

Rodent studies found that reduced circulating IGF-1
levels led to decreased tumor development (130) and that
increased signaling through the IGF-1R signaling pathway
promoted tumor growth (131, 132). The stimulation of an
ER-positive breast cancer cell line (MCF7) with IGF-1 led to
the identification of an IGF-1 gene signature, which was
enriched for signaling pathways that are involved in
mitogenesis such as ER, Ras/ERK1/2, and PI3K/Akt/mTOR.
This IGF-1 gene signature was, in turn, associated with poorer
survival (133). Increased activation of the IGF-1R signaling
pathway led to reduced E-cadherin expression, and the
potentiation of response to IGF-1R inhibition in the context of
invasive lobular breast cancer, which is largely ER-positive (134).
In the context of TNBC, low IGF-1R expression has been found
and linked to worse overall survival (135). In Wnt-driven
tumors, the inhibition of IGF-1R signaling led to increased
mammary tumor development (136), potentially through a loss
of protection from cellular stress and the development of a pro-
metastatic tumor microenvironment (135). These observations
suggest that the effect of IGF-1R signaling on breast cancer
progression may be context-dependent.

Insulin Signaling in Cancer
Relative to normal breast tissue, increased expression of the IR
has been demonstrated in breast cancer tissue (137). The
phosphorylation of the IR/IGF-1R has been noted across breast
cancer sub-types, with 48.1% IR/IGF-1R phosphorylation in
luminal, 64.3% in HER2-overexpressing, and 41.9% in TNBC
cases examined (138). The IR has also been noted to be resistant
to down-regulation in the setting of hyperinsulinemia (139). The
stimulation of non-small cell lung, pancreatic and breast cancer
cell lines, which express the IR, with insulin led to proliferation in
vitro (140–142). Conversely proliferation was decreased with
silencing of the IR (141–145). The tumor growth-promoting
effect of endogenous hyperinsulinemia have also been shown in
rodent models across several obesity-associated cancer
types (118).

The stimulatory effect of endogenous hyperinsulinemia on
breast cancer progression has been modeled through the use of a
transgenic mouse model (MKR), in which a kinase-inactive
form of the IGF1R is overexpressed in skeletal muscle under
the muscle creatine kinase promoter (146). The female MKR
mice display insulin resistance, as well as endogenous
hyperinsulinemia in the absence of obesity (147). The
stimulatory effect of hyperinsulinemia on both primary tumor
growth and metastasis was demonstrated across a variety of
breast cancer models employing different oncogenes (147–151)
with tumors showing activation of the IR/IGF-1R and Akt (147).
Tumors from the MKR mice, relative to wild-type mice, had
increased levels of phosphorylated IR but not IGF-1R (152),
thereby identifying the activation of the IR as a major contributor
February 2021 | Volume 10 | Article 615375
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to hyperinsulinemia-associated tumor growth. The tumor
promoting effects of hyperinsulinemia were ameliorated by
either lowering circulating insulin levels with a b3-adrenergic
agonist (153), or with inhibitors of the IR/IGF-1R, PI3K, and/or
mTOR (147, 154, 155). These inhibitors while effective for
reducing tumor growth, were shown to exacerbate the systemic
metabolic abnormalities associated with insulin resistance:
(hyperglycemia, hypertriglyceridemia, and hyperinsulinemia)
in the MKR and wild-type mice (147, 154, 155). PI3K
inhibitors contribute to hepatic glycogenolysis and reduced
glucose disposal into adipose tissue, leading to greater secretion
of insulin from the pancreas and hyperinsulinemia (123, 142).
Insulin was observed to result in the re-activation of the PI3K
signaling pathway and restoration of growth across a variey of
cell lines including pancreatic and breast (142), ultimately
reducing efficacy of PI3K inhibition in pre-clinical models. The
use of PI3K inhibitors, in combination with insulin-lowering
therapies, such as a ketogenic diet or sodium glucose co-
transporter-2 (SGLT2) inhibition, resulted in sustained
suppression of tumor growth in pre-clinical studies (142).

Insulin enhances glucose uptake in tissues such as muscle and
adipose tissue by inducing the translocation of glucose
transporter 4 (GLUT4) (82). The expression of the GLUT
proteins, which comprise a family of 14 members, differs
across tissues and tumor types, with the expression of GLUT1
and GLUT3 commonly being identified as elevated in cancer
(156). Hyperglycemia is a defining feature of diabetes and has
been postulated to mediate cancer progression through a variety
of mechanisms including the promotion of DNA damage and
accumulation of mutations, pro-tumorigenic post-translational
protein modifications, acting as a metabolic substrate for cancer
cells and by altering immune cell recruitment and activity (157–
160). In particular, glucose is crucially involved in the Warburg
effect which is commonly observed in cancer cells where the rate
of glucose uptake is elevated and aerobic glycolysis occurs. The
Warburg effect has been proposed to support cancer progression
by allowing for the rapid generation of ATP and enhanced flux
through biosynthetic pathways for cell proliferation and
modulation of cell signaling and the tumor microenvironment,
in part through acidification arising from lactate accumulation
(161). Insulin has been suggested to influence tumor cell
metabolism and anabolism by directing the utilization of
glucose through PI3K-Akt signaling, leading to (1): enhanced
glycolytic flux resulting in the generation of ATP (2); the
promotion of aerobic glycolysis with the generation of lactate
and the regeneration of NAD+ (3); increased production of
ribose-5-phosphate, the precursor for purine and pyrimidine
nucleotide synthesis, through the pentose phosphate pathway,
and (4) increased lipid synthesis (162). In addition, insulin has
also been shown to influence glucose metabolism through the
regulation of cyclin D1-cyclin dependent kinase (Cdk) 4 activity
(163), rendering hyperinsulinemia-associated tumor growth
susceptible to CDK4 inhibitors in the context of liver
cancer (164).

SGLT2 inhibitors are used to treat diabetes in clinical practice.
SGLT2 inhibiton has also been examined in obesity-associated
Frontiers in Oncology | www.frontiersin.org 6
tumor studies in pre-clinical models of breast and colorectal
cancer (165). The presence of hyperinsulinemia together with
increased tumor proliferation and glucose uptake observed in
obese rodents, was reduced with therapies with insulin-lowering
effects, such as an SGLT2 inhibitor or a liver-specific
mitochondrial uncoupler of oxidative phosphorylation.
Treatment with insulin abrogated the tumor-suppressive effect
associated with these therapies (165, 166). These observations
taken together, suggest that insulin promotes tumor growth
which is in turn, associated with increased glucose uptake, in
some cancers. Interestingly, a positive association between
glucose uptake into tumors and BMI has been found in the
context of breast cancer, while glucose uptake in non-small cell
lung cancer was inversely associated with BMI (167). In addition
to increased tumor growth, the presence of elevated endogenous
insulin levels and IR signaling have also been postulated to
encourage metastasis through the promotion of EMT in both
human (151) and mouse tumor models (149, 168) in the context
of breast cancer and prostate cancer (169).
MECHANISMS UNDERLYING THE
OBESITY–CANCER RELATIONSHIP: THE
CONTRIBUTION OF LIPIDS

Cholesterol Uptake
In non-cancer cells, cholesterol and related sterols contribute to
essential physiological functions and are crucial components in
the membranes of eukaryotic cells, reducing permeability
and influencing protein assembly (170). Cholesterol is also
an essential molecule for the synthesis of other sterols,
including steroid hormones and oxysterols (171). Cholesterol
can be absorbed from extraneous sources, or synthesized
intracellularly by the mevalonate pathway utilizing the
rate-limiting enzyme, HMG CoA reductase. In addition to
synthesizing cholesterol, the mevalonate pathway also gives
rise to non-sterol isoprenoids, such as dolichol, coenzyme
Q, farnesyl-pyrophosphate (FPP) and geranylgeranyl-
pyrophosphate (GGPP) (172). Isoprenoids can prenylate many
molecules important for carcinogenesis such as Ras GTPases that
can lead to proliferation, migration, and metastasis (173).

Free cholesterol in cells is maintained at a constant level by
homeostatic processes involving sensors like sterol regulatory
element binding protein (SREBP) and liver X receptor (LXR).
Nuclear translocation of SREBP leads to the enhanced expression
of enzymes such as HMG CoA reductase, and the LDL receptor
(LDLR), which contributes to increased exogenous lipid uptake
(174). Enhanced activation of the SREBPs has been observed in
cancers such as prostate (175), and breast cancer (176).
Activation of the SREBP–mevalonate pathway sustained the
proliferation and self-renewal of breast cancer cells in the
setting of p53 mutations (177). The nuclear translocation of
SREBP in the context of cancer is mediated by multiple factors
such as the loss of the tumor suppressor p53, low pH of the
tumor microenvironment, proinflammatory cytokines such as
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TNFa, and endoplasmic reticulum stress (178). LXRs are
nuclear receptors that also modulate intracellular cholesterol
levels by up-regulating the transcription of efflux protein such
as ATP binding cassette subfamily A member 1 (ABCA1) and
ATP binding cassette subfamily G member 1 (ABCG1).
Upregulation of these efflux proteins by LXR agonists have
induced apoptosis in prostate and breast cancer cell lines (179).

The influence of elevated circulating cholesterol on cancer
growth has been modeled using rodents. Adiponectin knockout
mice which have glucose intolerance, insulin resistance, and
hyperlipidemia were observed to develop larger transgenic
polyoma virus middle T antigen (PyMT) mammary tumors
than control mice, and the effect was enhanced by high fat diet
feeding (180). Similarly, syngeneic breast cancers in ApoE-/-,
LDLR-/-, and APOE3+/+ mice, which are all models of
hyperlipidemia, demonstrated increased growth compared to
controls; ER-negative tumors in ApoE-/-and LDLR-/- mice, and
ER-positive tumors in APOE3+/+ (181–183). The tumor growth-
promoting effect of hyperlipidemia has also been recapitulated in
human breast cancer xenografts in immunodeficient mice
models of hyperlipidemia (182).

An increased uptake of cholesterol into cancer cells has been
observed (184–186) with LDLR expression being upregulated in
certain breast cancer cell lines (182, 187). The scavenger receptor,
SR-B1, is another means by which tumor cells may take up
cholesterol. An increased expression of SR-B1 in breast and
prostate cancer cells has been associated with increased cell
proliferation and tumor growth in vivo (188, 189). Higher LDL
metabolism has been observed in gynecological cancer cell lines
compared non-neoplastic cells (190). The tumor cell expression
of LDLR plays a crucial in the uptake of circulating LDL and the
growth of pancreatic adenocarcinoma and prostate cancer (184,
191). Silencing the LDLR in breast cancers reduced tumor
growth, particularly in the setting of high circulating LDL
(182). Furthermore, in human breast cancers a high expression
of LDLR was associated with decreased recurrence-free survival
in patients who have received systemic therapy (182).
Interestingly, LDL uptake through the LDLR on cancer cells is
being studied as a mechanism of targeted drug delivery to
tumors, using lipidic emulsions. These molecules were reported
to localize heavily in human breast cancer cells that were
removed during surgery compared with normal cells (192).
LDLR could therefore, be a potential drug target. Taken
together these observations suggest that the increased
cholesterol uptake and metabolism by cancer cells may support
rapid cell division and growth.

Stored cholesterol in the form of cholesteryl esters (CE)
may contribute to proliferation and aggressiveness of breast
(193), prostate, and colon cancer (194), as well as leukemia
(195). Increased activity of Acetyl-coenzyme acetyltransferase-1
(ACAT1), an enzyme that can catalyze cholesterol esterification
(196) as well as lipase activity (197) has also been seen in cancer
cells, suggesting that CE may allow cancer cells to store and
quickly access energy when needed. Cholesterol is also located
in lipid rafts, which are crucial for cell signaling, adhesion and
migration of cancer cells. The depletion of cholesterol from lipid
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rafts using methyl-b-cyclodextrin (MbCD) resulted in the
disruption of lipid rafts and increased apoptosis of breast
cancer cells (198). Although high intracellular cholesterol levels
appear to be conducive for cancer cell growth and survival, it
has also been noted that low concentrations in some cases,
facilitate metastasis by enhancing membrane fluidity and the
consequent development of a migratory phenotype (199).

Cholesterol lowering statins may exert anti-cancer effects by
lowering circulating cholesterol levels or targeting the
mevalonate pathway in cancer cells leading to decreased
cholesterol synthesis (200). Statins can either be hydrophilic,
which are predominantly taken up by the liver, or lipophilic,
which can be taken up by all cells by passive diffusion (201).
Lipophilic statins have been found to reduce cancer risk
suggesting that their beneficial effect may be by acting on
tumor cells directly (202). Statins also confer pleiotropic
benefits, such as improved endothelial function, antioxidant
properties and anti-inflammatory properties (203). Their anti-
inflammatory role is suggested by a reduction in C-reactive
protein (204) and may occur in part, by lowering levels of pro-
inflammatory cytokines such as TNFa and IFNg (205). These
effects are beneficial in treating cardiovascular disease. In breast
cancer models, statins blocked tumor growth by: 1) inducing cell
cycle arrest by cyclin D1-CDK4; 2) decreasing cell proliferation
through inhibiting prenylation and activation Rho/Ras family of
proteins; 3) modulating pro- and anti-apoptotic proteins such as
Bcl2 and Bax, and by inducing reactive oxygen species (ROS)
(202), and 4) contributing to oxidative stress by inhibiting
coenzyme Q synthesis (206). Statins have also been shown to
suppress angiogenesis, invasion and metastasis through reducing
the expression of MMP2, MMP9 and VEGF (202).

Oxysterols: 27-Hydroxycholesterol
27-Hydroxycholesterol (27-HC) is the most abundant circulating
oxysterol in humans (207). 27-HC is produced when cholesterol
is hydroxylated by cytochrome P450 27A1 (CYP27A1) to yield
27-HC in both the liver and extrahepatic tissues. Levels of 27-HC
are decreased by cytochrome P450 family 7 subfamily B member
1 (CYP7B1), which metabolizes it to produce an intermediate for
bile acid synthesis in the liver (208, 209). 27-HC was the first
discovered endogenous selective estrogen receptor modulator
(SERM) (210). Though 27-HC binds to both ERa and ERb, it
binds to ERb with >100 more affinity than ERa (211). In the
breast it shows partial agonist activity to ERa, but has lower
efficacy than 17b-estradiol (210, 212). However, in other tissues
such as cardiovascular or bone, it acts as an antagonist and can
attenuate the protective effects of estrogen (209, 213, 214). It is
also a LXR agonist and has the ability to bind to both LXRa and
LXRb to modulate LXR dependent genes that are involved in
lipid homeostasis such as ABCA1, ABCG1, and SREBP-1c. The
expression of LXR-related genes can be modulated with
cholesterol loading, suggesting that 27-HC may act as a
cholesterol sensor (208).

Plasma levels of 27-HC have been shown to correlate with
circulating cholesterol levels (215) and has been hypothesized
to explain the link between hypercholesterolemia and cancer
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(216, 217). 27-HC content in normal breast tissue from individuals
with cancer was increased compared with cancer-free controls, and
was observed tobe further elevated in tumors (218). 27-HCwas also
observed to be elevated in exosomes from ER-positive but not ER-
negative breast cancer or other non-cancerous cell lines (219).
Decreased expression of the enzyme, CYP7B1, has been linked to
poorer cancer prognosis (218). Silencing of CYP7B1 can occur
epigenetically by hypermethylation of the gene (220). In contrast,
the relationship between the expression ofCYP27A1 in tumors and
cancer prognosis has been inconsistent. Intratumoral expression of
CYP27A1 was linked to high grade cancer cells and ER-positive
breast tumors (183). However, in three independent cohorts of
breast cancer patients, elevated levels of CYP27A1 correlated with
longer recurrence-free survival in women with ER-positive breast
cancer who were less than 50 years of age (221). In a recent
evaluation of a cohort from the European Investigation into
Cancer and Nutrition (EPIC) study, no association between
circulating 27-HC levels and premenopausal breast cancer risk
was found, and an inverse correlation was reported in
postmenopausal women (222, 223). These results suggest that the
estrogen levels may influence the association between 27-HC and
breast cancer risk and survival (224).

27-HC stimulates the proliferation of ER-positive breast
cancer cells by increasing cyclin D activity (212) and by
reducing p53 transcriptional activity by facilitating its
interaction with MDM2 (225). The growth-promoting effect
of 27-HC has also been re-capitulated in vivo, where ER-
positive tumor xenografts displayed accelerated growth in the
presence of 27-HC (183). Increased levels of 27-HC were also
found to promote metastasis. Inhibition of Cyp27a1 with a small
molecule inhibitor, or by genetic ablation resulted in reduced
Frontiers in Oncology | www.frontiersin.org 8
lung metastasis (226). 27-HC induced EMT in MCF7 cells
by reducing the expression of E-cadherin and b-catenin
and increasing the expression of MMP9 (227, 228). In both
MCF7 and MDA-MB-231 breast cancer cell lines, 27-HC
increased ROS production that led to increased migration of
the cells via STAT3/VEGF signaling (229, 230). In addition to
affecting tumor cells directly, 27-HC induced endothelial to
mesenchymal transition in endothelial cell lines via STAT3
signaling and aided breast cancer cell migration (231). It also
influenced the tumor immune microenvironment in the lung,
where 27-HC increased recruitment of polymorphonuclear
neutrophils (PMNs) and gd T-cells, which suppresed the
recruitment of anti-tumorigenic effector T-cells (226).

Since the discovery of the role of 27-HC in breast cancer
progression, new research shows that its effect is not restricted to
breast cancer. 27-HC increased the proliferation of lung,
endometrial and melanoma cancer cell lines (232–234). In
contrast, 27-HC suppressed the proliferation of gastric, and
colon cancer cell lines. (236–237). In DU145 prostate cancer
cells, 27HC inhibited proliferation by disrupting lipid rafts (235),
but increased the proliferation of LNCaP and PC3 cells via an
ERb-mediated pathway (238). However, lower CYP27A1
transcript levels were associated with shorter disease-free
survival and higher tumor grade in patient samples (239).
Therefore, 27-HC may mediate some of the pro-tumorigenic
effects of cholesterol through direct effects on tumor cells, and
indirectly by its effects on the tumor microenvironment (Figure 2).
However, a greater understanding of its tumor promoting and
inhibiting properties is needed, in addition to understanding
whether circulating or locally produced 27-HC has a greater
influence on tumor growth and metastasis.
FIGURE 2 | Role of 27-Hydroxycholesterol in breast cancer. 27-HC is synthesized from cholesterol by CYP27A1 in the liver and other peripheral tissues. It can be
further metabolized for bile acid synthesis by CYP7B1. 27-HC can be taken up by tumor cells from the circulation where it exerts ERa agonistic activity, inducing the
expression of Cyclin D1 which leads to cell cycle progression and proliferation. It can also enhance the association of tumor suppressor p53 protein with MDM2
leading to its degradation. 27-HC has also been shown to promote EMT by reducing E-Cadherin and b-Catenin expression and by inducing an LXR-mediated
increase in Snail and Vimentin expression. It can also activate Stat3 signaling, resulting in increased expression of MMP9 and cell invasion. 27-HC in the lungs can
promote the recruitment of polymorphonuclear cells and T cells which favors the development of an immunosuppressive microenvironment that facilitates metastatic
seeding and growth of breast cancer cells.
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Fatty Acid Transfer
Insulin resistance in adipose tissue leads to lipolysis and the
release of fatty acids may also support tumor growth (240). Fatty
acid uptake and metabolism has been reported to promote tumor
cell proliferation, survival, invasion, and tumor-initiating
capacity (241–247). The expression of fatty acid translocase,
CD36, was identified as a characteristic of metastasis-initiating
cells (243). CD36 expression was induced in cancer cells co-
cultured with adipocytes in the context of ovarian cancer, leading
to increased tumor cell fatty acid uptake, invasion and
proliferation (248). Fatty acid transfer and the expression of
genes associated with lipid metabolism and inflammation were
enhanced when tumor cells were cultured with hypertrophied
adipocytes isolated under obesity-associated conditions
compared to adipocytes from non-obese conditions (249, 250).

The enhanced provision of fatty acids in the context of adipose
tissue lipolysis may also influence immune cells. In natural killer
(NK) cells, obesity was associated with enhanced expression of
lipid transport genes, such as Ldlr, Cd36, and fatty acid binding
proteins (Fabp), along with decreasedmTOR-associated glycolysis,
which was related to activation of PPARa/d signaling. These
metabolic changes in NK cells resulted in reduced cytotoxic
activity (251). While not studied directly in the context of obesity,
macrophages, myeloid-derived suppressor cells (MDSCs) and
regulatory T-cells (Treg), have also been shown to up-regulate
lipid transport receptors and increase lipid uptake in lipid-enriched
tumor microenvironments, leading to pro-tumorigenic effects
(252–254). In particular, CD36 was shown to mediate lipid
accumulation and fatty acid oxidation in tumor-associated
macrophages, resulting in a pro-tumorigenic gene expression
profile (253). In MDSCs, the expression of lipid transporters
including Cd36, Vldlr, Ldlr, and Fabp were induced by
cytokines, through STAT3/5 signaling, leading to enhanced
immunosuppressive capacity (252). Tregs are associated with the
suppression of anti-tumor immune responses (255). Tregs were
shown to utilize fatty acid oxidation during their development and
possess an enhanced capacity for fatty acid oxidation through the
expression of the Treg-specific transcription factor, Foxp3, which
has been proposed to afford them protection from fatty acid
toxicity (256, 257). Tregs situated in tumors increased both
the expression of the fatty acid receptor, CD36, and lipid uptake,
leading to a PPARb-driven increase in capacity to survive in
lactic acid-rich tumor microenvironments (254). Ablation or
neutralization of CD36 led to the loss of suppressive function
and reduced tumor growth in mice, demonstrating the
importance of fatty acid uptake by Tregs (254).

Effector T-cell numbers were observed to be reduced in
tumors of mice with diet-induced obesity. Inhibiting fatty acid
oxidation or the ablation of STAT3, increased effector T-cell
glycolysis and T-cell numbers, resulting in decreased tumor
growth (258). However, fatty acid oxidation has been found to
be important for effector T-cell function under hypoxic and
hypoglycemic conditions in melanoma models (259). Enhancing
fatty acid oxidation concurrently with glycolysis with a PGC-1a/
PPAR agonist improved responses to immunotherapy in models
of colon cancer and skin sarcoma (260).
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A lipid-enriched environment may therefore, promote
tumor growth by reducing NK cell cytotoxic function and
effector T cell numbers, and enhancing the accumulation and
immunosuppressive function of macrophages, MDSCs, and Tregs.
MECHANISMS UNDERLYING THE
OBESITY–CANCER RELATIONSHIP:
OBESITY-ASSOCIATED ADIPOSE
TISSUE EXPANSION

Adipose Stromal Cells
Adipose tissue is composed of a variety of cell types in addition to
adipocytes, such as adipocyte progenitor cells, fibroblasts,
endothelial cells, and immune cells, that contribute to its
behavior and diverse adipocytokine secretion profile (261,
262). The expansion of adipose tissue with the development of
obesity occurs due to a combination of adipogenesis and
lipogenesis, processes that are regulated by insulin/IR signaling
(263–265).

The obese phenotype has been found to promote breast cancer
growth through an enhanced provision of adipose tissue progenitor
cells (also knownas adipose stromal cells), which expressCD34and
can be differentiated into multiple cell types such as chondrocytes,
osteocytes and adipocytes (266). These adipose tissue progenitor
cells are detectable in the circulation of both rodents (267) and
humans and are present at increased levels with obesity (268, 269).
Co-injection experiments involving adipose tissue-derived CD34+

progenitor cells and tumor cells resulted in increased tumor growth
andmetastasis inmice compared to injections of tumor cells alone,
demonstrating the potential for adipose tissue progenitor cells to
contribute to the tumor vasculature and promote tumor growth
(270). In rodent models, diet-induced obesity resulted in both an
elevation in the levels of adipose stromal cells in the circulation and
increased engraftment of these stromal cells in tumors, with an
increased number of actively proliferating tumor cells positioned
closer inproximity to the adipose tissue-derived structures (267).C-
X-Cmotif chemokine ligand 1 (CXCL1) signaling has been shown
to recruit C-X-C motif chemokine receptor (CXCR)1/2 expressing
progenitor cells into prostate cancers (266, 267, 271). The
recruitment of adipose stromal cells has also been associated
with increased levels of GM-CSF and MMP9 levels in tumors,
which promote the development of a tumor-supportive
microenvironment (272). In addition to contributing to the
development of the tumor microenvironment and vasculature,
the recruitment of adipose stromal cells has also been linked to
the promotion of EMT and chemo-resistance of prostate cancer
cells, where the ablation of adipose stromal cells was shown to
augment the efficacy of chemotherapy (273).

Obesity-Associated Extracellular
Matrix Deposition
The expansion of adipose tissue also involves the synthesis and
deposition of extracellular matrix proteins (fibrosis) (274), which
has been proposed to contribute to the development of
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dysfunctional adipose tissue in obesity and cancer (275).
Compared to lean individuals, breast tissue from obese
individuals contain a greater number of myofibroblasts, a cell
type implicated in fibrotic remodeling, and stiffer extracellular
matrices (276). These changes resulted in increased tumor cell
growth in vitro (276).

Extracellular matrix (ECM) proteins such as collagen VI have
been implicated in the link between obesity and cancer. Collagen
VI expression in human subcutaneous adipose tissue was
observed to be elevated in obese individuals compared to lean
individuals, and has been associated with decreased insulin
sensitivity and adipose tissue inflammation (277). Collagen VI,
which is secreted by adipocytes, has been shown to stimulate
cancer growth, while collagen VI-null mice had reduced tumor
growth in the context of breast cancer (278, 279).

The expression of endotrophin (ETP), a collagen VI
fragment, is higher in the adipose tissue of obese mice and has
been implicated in both obesity-associated inflammation and
metabolic dysfunction (280). ETP was also present at greater
levels in the circulation of women with breast cancer relative to
cancer-free women (281). ETP promoted EMT and chemo-
resistance in human breast cancer cell lines (281) and
enhanced primary and metastatic tumor growth in mice (279).
Neutralization of endotrophin with a humanized anti-ETP
antibody reduced tumor growth in a preclinical model (281).
Taken together, these observations illustrate how excess ECM
protein deposition, which is linked to obesity-associated adipose
tissue inflammation and metabolic health, promotes
tumor growth.
Adipose Tissue Macrophages
Macrophages are an essential part of the tumor microenvironment
with the ability to influence various processes that are involved in
cancer development and progression, such as the promotion of
tumor cell migration, angiogenesis, and regulation of the tumor
immune response (282–284). Increased levels of the cytokines, C-C
motif chemokine ligand 2 (CCL2) and Interleukin (IL)-1b, in
adipose tissue from obese mice induced macrophage secretion of
CXCL12, a cytokine that promotes angiogenesis (283).
Accumulation of tumor-infiltrating macrophages with activated
NOD-like receptor C4 (NLRC4) inflammasomes in the obese
tumor microenvironment has been linked to increased IL-1b
activation (284). IL-1b has been shown to promote tumor
angiogenesis by stimulating adipocyte secretion of the
proangiogenic cytokines, VEGF-A and ANGPTL4 (284, 285).
Changes in adipose tissue ECM proteins associated with obesity
skewed macrophage function towards a tumor-associated
macrophage-like phenotype (286). The role of macrophages in
obesity-associated cancer growth is however, complex. In a pre-
neoplastic model, the depletion of macrophages in diet-induced
obese mice led to greater numbers of mammary epithelial cells
exhibiting DNA damage and increased mammary epithelial cell
progenitor activity, suggesting that macrophages potentially play a
modulatory role in the early stages of cancer development (287).

The accumulation of crown-like structures (CLS), which are
dying (necrotic-like) adipocytes surrounded by macrophages,
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has been used as an indicator of inflammation and macrophage
infiltration in adipose tissue (288). Breast adipose tissues from
women with the metabolic syndrome have increased numbers of
CLS. This association has been observed in both obese and non-
obese women (BMI < 25 kg/m2), suggesting a link between
insulin resistance and breast adipose tissue inflammation (289,
290). Breast adipose tissue CLS have been correlated with
increased breast cancer risk (291–294), and decreased relapse-
free survival (289). The relationship between the increased CLS
formation and BMI (295) has been reported in African
American, Hispanic/Latina, Asian, and White populations
(290, 296). In prostate cancer, inflammation in periprostatic
white adipose tissue was associated with higher grade, suggesting
adipose tissue inflammation may have tumor-promoting effects
in a number of cancers (297).

The accumulation of CLS in breast adipose tissue has been
linked to increased ER-positive breast cancer risk through the
increased secretion of aromatase inducers (TNF a, IL-1b and
prostaglandin E2) by macrophages (298), and higher circulating
concentrations of IL-6, leading to greater aromatase expression
in pre-adipocytes (299). Aromatase is the enzyme that converts
androgens to estrogens (292). In postmenopausal women,
greater levels of breast adipose tissue inflammation and
aromatase expression have been observed, potentially
explaining the high incidence of ER-positive breast cancer
compared to other breast cancer subtypes after menopause
(300, 301).

The Role of Leptin
In addition to the obesity-associated influence on macrophage
behavior, the altered anti-tumor immune response observed in
obesity has been proposed to be mediated by other mechanisms,
some of which are linked to leptin.

Leptin is an adipokine that affects various physiological
processes, including metabolism, reproduction and body
weight regulation (302). Due to the development of leptin
resistance, the circulating levels of leptin increase with BMI in
both rodents and humans (303). Leptin has largely been reported
to have a tumor growth-promoting influence in rodent models of
breast cancer (304). Leptin-deficient obese mice had decreased
mammary tumor growth relative to wild type in syngeneic
models, and leptin receptor (ObR)-deficient mice (with high
leptin levels), showed greater mammary tumor growth with
syngeneic cancer models (305). Of note, tumor growth in the
A-ZIP/F-1 mice, which are fatless and do not have detectable
levels of leptin, was enhanced compared to wild-type mice. The
A-ZIP/F-1 mice had increased levels of pro-inflammatory
cytokines, and were also hyperinsulinemic and hyperglycemic,
highlighting the pro-tumorigenic influence of these conditions
even in the absence of leptin (306). In addition to stimulating
tumor cell proliferation and invasion (307–309), leptin signaling
was also reported to promote EMT and the generation of cancer
stem cells (310, 311). Leptin can also modulate the behavior of
immune cells.

The ObR is present in multiple types of leukocytes such as
bone marrow CD34+ hematopoietic precursor cells, monocytes,
macrophages, T- and B-cells (312), as well as a sub-population of
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NK cells (313). Leptin stimulation has been reported to affect the
function of these immune cells, although the duration of
exposure to leptin results in different effects. In human NK
cells, short-term exposure to leptin led to increased anti-tumor
activity and long-term exposure resulted in impaired anti-tumor
function (313), suggesting that NK cell activity in the context of
obesity might be impaired in the setting of chronic
hyperleptinemia. Blocking the ObR decreased the number of
circulating MDSCs (314).

Studies have found that the response to immunotherapies
such as anti-CTLA-4 monoclonal antibodies (mAb), or
recombinant adenoviral-encoded TNF-related apoptosis-
inducing ligand Ad(TRAIL) combined with the TLR agonist,
CpG, was impaired in obese mice compared to lean mice (315).
The neutralization of leptin in obese mice potentiated the
response to AdTrail/CpG immunotherapy leading to increased
dendritic cell function and intratumoral T-cell accumulation,
resulting in decreased tumor growth (315). In contrast to the
response to immunotherapies involving AdTrail/CpG or anti-
CTLA-4 mAb, the response to anti-PD-1 mAb was augmented in
the context of obesity preclinical models (316). The favorable
response was shown to be leptin-mediated. Exposure to
chronically elevated levels of leptin in the context of obesity
led to the development of an exhausted phenotype in T-cells,
concomitant with an increased expression of PD-1. In contrast,
PD-1 expression was not increased in T-cells from leptin-
deficient or ObR-deficient mice, providing a mechanistic
explanation for how response to this form of immunotherapy
is potentially enhanced in the setting of obesity (316).

Consistent with the pre-clinical studies, an obesity paradox
has been described for treatment responses to immune check-
point inhibitors where high BMI has been associated with greater
treatment efficacy (316–319). This effect has been described for
cancers such as melanoma (319) and non-small cell lung cancer
(318). It has also been noted that obesity was associated with the
development of immune-related adverse effects (320–322),
which in turn, was associated with better response to therapy
(323, 324).
DISCUSSION

The obesity-cancer relationship is mediated by multiple
mechanisms which are inter-related. Dysfunctional adipose
tissue, characterized by increased inflammation and fibrosis
plays a major role in driving obesity-associated cancer
progression. Evidence from both preclinical studies and cross-
sectional human clinical studies (261, 262, 325, 326) suggest
that there is substantial interaction between adipose tissue and
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tumor cells, contributing to the obesity-associated promotion
of tumor growth. In addition to a direct influence on tumor
cells, the secretion of cytokines and fatty acids from adipose
tissue may also promote tumor progression by modulating
the accumulation and function of tumor-infi ltrating
leukocytes. As discussed, factors comprising metabolic health,
such as dyslipidemia, insulin resistance and its corollary,
hyperinsulinemia, promote cancer progression, largely through
their effects on tumor cell growth and invasiveness. Further
understanding how dyslipidemia and hyperinsulinemia might
influence the development of the tumor microenvironment is
an important area requiring futher investigation.

Therapeutic approaches to target different aspects of the
obesity-cancer link have been reviewed recently (119, 261).
These include targeting adipose tissue inflammation, reducing
circulating insulin levels through dietary, pharmacological or
surgical means (119, 261, 327), and decreasing circulating and
tumor cell lipid synthesis, uptake and metabolism (244, 328).
Given the complex relationship between systemic metabolic
disease and the tumor immune microenvironment, it seems
important that we not only consider how the anti-tumor
immune response can be augmented with therapies targeting
systemic metabolism, but also consider systemic metabolic
conditions as variables in determining response to immune-
based therapies in clinical trials.

In conclusion, characterizing and understanding the cross-
talk between adipose tissue and tumors, the effect of obesity on
immune cell function, and the effect of metabolic health on
cancer progression will be key to improving responses to current
therapies, and developing novel therapies that target systemic
metabolic disease and cancer.
AUTHOR CONTRIBUTIONS

TS and AE drafted sections of the manuscript and edited it for
cohesion. DL and EG conceived the project, reviewed and edited
the manuscript. All authors contributed to the article and
approved the submitted version.
FUNDING

EG received research support from the National Institutes of
Health/National Cancer Institute K08CA190770, Alkeon Capital,
the Department of Medicine and the Tisch Cancer Institute
at Mount Sinai. DL received research support from National
Institutes of Health/National Cancer Institute R01CA200553
and R01CA128799.
REFERENCES
1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al.

Global, regional, and national prevalence of overweight and obesity in
children and adults during 1980-2013: a systematic analysis for the Global
Burden of Disease Study 2013. Lancet Lond Engl (2014) 384(9945):766–81.
doi: 10.1016/S0140-6736(14)60460-8

2. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-
mass index, underweight, overweight, and obesity from 1975 to 2016: a
pooled analysis of 2416 population-based measurement studies in 128·9
February 2021 | Volume 10 | Article 615375

https://doi.org/10.1016/S0140-6736(14)60460-8
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Scully et al. Obesity, T2D, and Cancer
million children, adolescents, and adults. Lancet Lond Engl (2017) 390
(10113):2627–42 doi: 10.1016/S0140-6736(17)32129-3

3. NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass
index in 200 countries from 1975 to 2014: a pooled analysis of 1698
population-based measurement studies with 19·2 million participants.
Lancet (2016) 387(10026):1377–96. doi: 10.1016/S0140-6736(16)30054-X

4. Xu H, Cupples LA, Stokes A, Liu C-T. Association of Obesity With
Mortality Over 24 Years of Weight History: Findings From the
Framingham Heart Study. JAMA Netw Open (2018) 21(7):e184587–
e184587. doi: 10.1001/jamanetworkopen.2018.4587

5. Bhaskaran K, dos-Santos-Silva I, Leon DA, Douglas IJ, Smeeth L.
Association of BMI with overall and cause-specific mortality: a
population-based cohort study of 3·6 million adults in the UK. Lancet
Diabetes Endocrinol (2018) 16(12):944–53. doi: 10.1016/S2213-8587(18)
30288-2

6. Bhaskaran K, Douglas I, Forbes H, dos-Santos-Silva I, Leon DA, Smeeth L.
Body-mass index and risk of 22 specific cancers: a population-based cohort
study of 5·24 million UK adults. Lancet Lond Engl (2014) 384(9945):755–65.
doi: 10.1016/S0140-6736(14)60892-8

7. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index
and incidence of cancer: a systematic review and meta-analysis of
prospective observational studies. Lancet Lond Engl (2008) 371
(9612):569–78. doi: 10.1016/S0140-6736(08)60269-X

8. Parr CL, Batty GD, Lam TH, Barzi F, Fang X, Ho SC, et al. Body-mass index
and cancer mortality in the Asia-Pacific Cohort Studies Collaboration:
pooled analyses of 424,519 participants. Lancet Oncol (2010) 11(8):741–
52. doi: 10.1016/S1470-2045(10)70141-8

9. Arnold M, Pandeya N, Byrnes G, Renehan PAG, Stevens GA, Ezzati PM,
et al. Global burden of cancer attributable to high body-mass index in 2012:
a population-based study. Lancet Oncol (2015) 16(1):36–46. doi: 10.1016/
S1470-2045(14)71123-4

10. Sung H, Siegel RL, Rosenberg PS, Jemal A. Emerging cancer trends among
young adults in the USA: analysis of a population-based cancer registry.
Lancet Public Health (2019) 14(3):e137–47. doi: 10.1016/S2468-2667(18)
30267-6

11. Gupta S, Harper A, Ruan Y, Barr R, Frazier AL, Ferlay J, et al. International
trends in the incidence of cancer among adolescents and young adults. J Natl
Cancer Inst (2020) 112(11):1105–17. doi: 10.1093/jnci/djaa007

12. van der Klaauw AA, Farooqi IS. The hunger genes: pathways to obesity. Cell
(2015) 26161(1):119–32. doi: 10.1016/j.cell.2015.03.008

13. Seo MH, Lee W-Y, Kim SS, Kang J-H, Kang J-H, Kim KK, et al. Korean
Society for the Study of Obesity Guideline for the Management of Obesity in
Korea. J Obes Metab Syndr (2019) 28(1):40–5. doi: 10.7570/
jomes.2019.28.1.40

14. WHO Expert Consultation. Appropriate body-mass index for Asian
populations and its implications for policy and intervention strategies.
Lancet Lond Engl (2004) 363(9403):157–63. doi: 10.1016/S0140-6736(03)
15268-3

15. IARC. Absence of excess body fatness. IARC Handb Cancer Prev (2018)
16:1–646. Available at: http://publications.iarc. fr/570.

16. Lauby-Secretan B, Scoccianti C, Loomis D, Grosse Y, Bianchini F, Straif K.
Body Fatness and Cancer— Viewpoint of the IARCWorking Group. N Engl
J Med (2016) 375(8):794–8. doi: 10.1056/NEJMsr1606602

17. World Cancer Research Fund/American Institute for Cancer Research.
Diet, Nutrition, Physical Activity and Cancer: a Global Perspective.
World Cancer Res Fund (2018). [cited 2020 Sep 5]. Available from:
dietandcancerreport.org.
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