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SUMMARY
Epiblast stem cells (EpiSCs) in mice and rats are primed pluripotent stem cells (PSCs). They barely contribute to chimeric embryos when

injected into blastocysts. Reprogramming of EpiSCs to embryonic stem cell (ESC)-like cells (rESCs) may occur in response to LIF-STAT3

signaling; however, low reprogramming efficiency hampers potential use of rESCs in generating chimeras. Here, we describe dramatic

improvement of conversion efficiency from primed to naive-like PSCs through upregulation of E-cadherin in the presence of the cytokine

LIF. Analysis revealed that blocking nuclear localization of b-CATENINwith small-molecule inhibitors significantly enhances reprogram-

ming efficiency of mouse EpiSCs. Although activation of Wnt/b-catenin signals has been thought desirable for maintenance of naive

PSCs, this study provides the evidence that inhibition of nuclear translocation of b-CATENIN enhances conversion of mouse EpiSCs

to naive-like PSCs (rESCs). This affords better understanding of gene regulatory circuits underlying pluripotency and reprogramming

of PSCs.
INTRODUCTION

Pluripotent stem cells (PSCs) can be classed as either naive

or primed (Nichols and Smith, 2009). Mouse embryonic

stem cells (ESCs) are naive PSCs derived from inner cell

mass (ICM) of preimplantation blastocysts (Evans and

Kaufman, 1981; Martin, 1981). Their naive state is main-

tained in an appropriate culture medium containing leuke-

mia inhibitory factor (LIF) together with serum or with

bone morphogenetic protein 4 (BMP4) (Smith et al.,

1988; Ying et al., 2003). Media without LIF and supple-

mented with inhibitors of GSK3b andMAPK suffice to sup-

port long-term maintenance of naive PSCs (Ying et al.,

2008). Epiblast stem cells (EpiSCs) are primed PSCs derived

from postimplantation epiblasts; their self-renewal ability

is maintained by activin A and basic fibroblast growth fac-

tor (bFGF) signaling (Brons et al., 2007; Tesar et al., 2007).

Naive and primed PSCs are distinguished from one another

by differences in signaling pathways that maintain plurip-

otency. In contrast to mouse ESCs, however, mouse EpiSCs

are barely able to contribute to chimeras when injected

into blastocysts, suggesting that a definitive difference be-

tween naive and primed PSCs exists with respect to ability

to contribute to chimeras.

Genetic manipulation by overexpression of exogenous

factors such asNanog, Klf2, and Prdm14 enables conversion

of mouse EpiSCs to ESC-like cells (rESCs) (Gillich et al.,

2012; Silva et al., 2009). Furthermore, transition of mouse

EpiSCs to rESCs rarely occurs even after stimulation with
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LIF-STAT3 signaling (Bao et al., 2009). However, the cellular

mechanisms that limit reprogramming efficiency remain

unclear.

Pluripotency in nonrodent PSCs is more like that in ro-

dent primed-PSCs (Nichols and Smith, 2009), so that

chimeric animals derived from PSCs are reported only in

work with rodents (Nichols and Smith, 2009). Nonrodent

PSCs thus are expected not to contribute to chimeras

(one reason why knockout or transgenic studies have not

been done using nonrodent mammals). We investigated

the conditions for efficient conversion of primed PSCs to

naive-like PSCs as part of generation of nonrodent naive

PSCs.

Forced expression of E-cadherin in mouse EpiSCs under

primed-PSC culture conditions promotes ICM develop-

ment after blastocyst injection and results in generation

of chimericmice without reprogramming to the naive state

(Ohtsuka et al., 2012). E-cadherin is a functional factor

that can cooperate with reprogramming factors to promote

generation of induced pluripotent stem cells (iPSCs) from

somatic cells under naive-PSC culture conditions (Chen

et al., 2010). These findings raised the possibility that E-cad-

herin upregulation under appropriate culture conditions

might enhance reprogramming of primed PSCs. We there-

fore investigated the effects of E-cadherin upregulation in

mouse EpiSCs under various culture conditions. We found

that combining E-cadherin upregulationwith LIF treatment

dramatically improves rates of conversion of mouse EpiSCs

to naive-like PSCs.
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E-CADHERIN specifically binds b-CATENIN and regu-

lates its nuclear translocation (Conacci-Sorrell et al.,

2003; Sasaki et al., 2000; Stockinger et al., 2001). We found

that nuclear translocation of b-CATENIN is negatively

regulated by E-cadherin overexpression in mouse EpiSCs.

Instead of upregulating E-cadherin expression, we used

small-molecule inhibitors of Wnt signaling to study the

role of such signaling in conversion of primed PSCs to

naive-like PSCs. Interestingly, as did overexpression of

E-cadherin, blocking nuclear localization of b-CATENIN

significantly enhanced the efficiency of mouse EpiSCs

conversion to naive-like PSCs in response to LIF. Our in-

vestigations thus provide insight into the significance of

E-cadherin and b-CATENIN as well as into approaches for

increasing efficiency of conversion of primed PSCs to

naive-like PSCs.
RESULTS

Overexpression of E-cadherin in the Presence of LIF

Signaling Affects Pluripotency of Mouse EpiSCs

Culture conditions affect aspects of mouse EpiSC pluri-

potency (Bao et al., 2009) and artificial upregulation of

E-cadherin enables chimera formation by mouse EpiSCs

(Ohtsuka et al., 2012). We inferred that E-cadherin upregu-

lation and appropriate culture conditions might in combi-

nation affect the pluripotentiality of primed PSCs (that is,

their capacity to shift between primed-pluripotent and

naive-pluripotent status). To test this hypothesis, we inves-

tigated the effect of upregulation of E-cadherin in mouse

EpiSCs under various culture conditions.
Figure 1. E-cadherin-Overexpressing Mouse EpiSCs Show Highly E
(A) Schematic diagram of doxycycline-inducible system for the expre
(B) Western blotting analyses for E-CADHERIN in mouse EB3DR ESCs (E
EB3DR EpiSCs cultured with or without doxycycline (2 mg/ml) for 2 d
(C) FACS analysis of E-CADHERIN expression levels in transgenic mo
doxycycline for 2 days.
(D) Time schedule of all experiments with or without doxycycline in mo
bFGF) and naive (N2B27 + LIF).
(E) FACS analysis of CD31-positive cells in mouse EB3DR EpiSC (DsRe
expressing cells after culturing with or without doxycycline for 7 day
(F) Average of PECAM1-expressing cells associated with (E). The fr
E-cadherin upregulated mouse EpiSCs in the presence of LIF (mean ±
(G) Timing and efficiency of PECAM1 expression. In the presence of
pressing status differ significantly from those seen under other condit
**p < 0.01).
(H) Photomicrograph of PECAM1-expressing cells obtained from E-ca
PECAM1-expressing cells occurred as dome-like compact colonies. Sca
(I) Live-born chimeric mice obtained from DsRed-marked mouse Ecad
(J) Chimeric mice obtained by injection of mouse E-cad-rESCs (ag
contribution from mouse E-cad-rESCs.
See also Figure S1 and Table S2.
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To generate E-cadherin-overexpressing mouse EpiSCs, we

constructed a E-cadherin inducible lentiviral vector. This

was derived from a doxycycline (Dox)-dependent in-

ducible vector (Yamaguchi et al., 2012) (Figure 1A). We

introduced this lentiviral vector into a mouse EpiSC line

obtained from DsRed-marked mouse EB3 ESCs (EB3DR

ESCs) (Niwa et al., 2002; Ogawa et al., 2004). We injected

EB3DR mouse ESCs into blastocysts and obtained a

DsRed-expressing mouse EpiSC line (EB3DR EpiSC) from

E6.5 epiblast. Established EB3DR-EpiSCs were confirmed

not to form chimeras when injected into blastocysts (Table

S2 available online). E-cadherin-inducible mouse EB3DR

EpiSCs were purified for green fluorescent protein (GFP)

expression by fluorescence-activated cell sorting (FACS).

We next assessed E-CADHERIN expression in these

mouse EpiSCs by western blotting and FACS analysis (Fig-

ures 1B and 1C). E-CADHERIN expression was upregulated

by Dox compared to a control without Dox and to wild-

type mouse EpiSCs (Figure 1B). FACS analysis also showed

that E-CADHERIN expression levels increased after Dox

treatment (Figure 1C).

To examine the effects of E-cadherin overexpression in the

reprogramming process, we explored the conversion of

mouse EpiSCs to rESCs (Bao et al., 2009) under various cul-

ture conditions such as ESM plus bFGF (typical expansion

medium for primed PSCs) and N2B27 plus LIF including

the MECK inhibitor PD0325901 (PD) combined with the

GSK3b inhibitor CHIR99021 (CHIR) (typical expansion

medium for naive PSCs) with or without Dox (Figure 1D).

Surface marker expression by naive PSCs was analyzed by

flow cytometry. Under naive-PSC culture conditions,

around 40% of E-cadherin upregulated mouse EpiSCs
fficient Conversion to Naive-like PSCs in the Presence of LIF
ssion of E-cadherin transgene.
SC), mouse EB3DR epiblast stem cells (EpiSC), and transgenic mouse
ays (Dox�, Dox+). b-ACTIN was used as a loading control.
use EB3DR EpiSCs cultured with (blue line) or without (red line)

use EB3DR EpiSCs. Culture conditions were defined as primed (ESM +

d) under various conditions. Shown are the percentages of CD31-
s under primed (ESM + bFGF) and naive (N2B27 + LIF) conditions.
equency of PECAM1-expressing cells is significantly increased in
SEM of three independent experiments, *p < 0.05).
LIF, shifts of E-cadherin upregulated mouse EpiSCs to PECAM1-ex-
ions (mean ± SEM of three independent experiments, *p < 0.05, and

dherin upregulated mouse EpiSCs in the presence of LIF. Almost all
le bar, 50 um.
-rESCs.
outi) into BDF1 3 C57BL/6 blastocysts (black) show coat-color
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converted to expression of the naive-PSC marker CD31

(PECAM1) in 7 days (Figure 1E). In the presence of LIF,

the frequencies of PECAM1-expressing cells were signifi-

cantly increased among E-cadherin upregulated mouse

EpiSCs compared to those cultured under other conditions

for 7 days (Figures 1F and 1G). These data suggest that over-

expression of E-cadherin considerably increases the effi-

ciency with which primed mouse EpiSCs convert to naive

PSCs upon activation of the LIF signal. PECAM1-expressing

cells obtained from E-cadherin upregulated EpiSCs formed

dome-like compact colonies (Figure 1H). We call these cells

mouse EpiSCs reprogrammed to ESC-like status by E-cad-

herin overexpression (mouse E-cad-rESCs).

Wenext examined the developmental potential ofmouse

E-cad-rESCs. After injection into mouse blastocysts, mouse

E-cad-rESCs from mouse EB3DR-EpiSCs (DsRed-marked

EpiSCs) contributed to chimeric live-born mice (Figure 1I).

We also succeeded in generation of chimeric mice by in-

jection of mouse E-cad-rESCs (normally giving rise to

agouti-furred mice) into BDF1 3 C57BL/6 mouse blasto-

cysts (normally giving rise to black-furred mice). The chi-

meras showed coat-color contributions from the mouse

E-cad-rESCs (Figure 1J; Table S2), indicating that mouse

E-cad-rESCs contributed extensively to development.

We also tested effect of E-cadherin overexpression in a

‘‘standard’’ mouse EpiSC line (Tesar et al., 2007) to confirm

reproducibility (Figure S1). The ‘‘standard’’ mouse EpiSCs

were labeled with tdTomato to distinguish with mouse em-

bryonic fibroblasts (MEFs). The cells were infectedwith len-

tiviral vector, which expresses tdTomato under CAG pro-

moter. Flow-cytometry analyses showed that ‘‘standard’’

mouse EpiSCs overexpressing E-cadherin converted to

CD31-expressing naive-like cells within 7 days (Figures
Figure 2. Wnt Signaling Inhibitor Facilitates Generation of Naive
(A) Western blots of b-CATENIN and active b-CATENIN in wild-type
cultured with or without doxycycline (2 mg/ml) for 2 days (Dox�, Do
HISTON H3 were used as loading controls in cytoplasmic and nuclear fr
(upper-right panel) and proportion of b-CATENIN in cytoplasmic and
(B) Western blotting analyses for phospho-STAT3 in mouse EB3DR E
EB3DR EpiSCs cultured with or without doxycycline (2 mg/ml) for 2 d
(C) Western blots of b-CATENIN and active b-CATENIN in mouse EpiS
Cytoplasmic and nuclear fractions were analyzed. b-ACTIN and HIST
fractions, respectively.
(D) Timeline of naive-like cell induction using 5 nM IWP-2 and 1 m
Treatment was maintained for 7 and 14 days.
(E) Morphological observation of colonies derived from treated mous
colonies (black arrowheads). Efficiency of generation of naive-like co
naive-like compact colonies was calculated as the ratio of seeded cell n
four independent experiments, *p < 0.05). Scale bar, 100 mm.
(F) FACS analysis of PECAM1 expression levels in mouse EpiSCs cultur
(G) Average of PECAM1-expressing cells associated with (F). The frequ
treatment (mean ± SEM of three independent experiments, **p < 0.0
See also Figure S2.
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S1B and S1C), as did EB3DR-EpiSCs. Because ‘‘standard’’

EpiSCs were a female line, we sorted CD31-expressing cells

and established an E-cad-rESC line and then analyzed X

chromosome inactivation (XCI) state immunocytoche-

mically (Figure S1D). Although XCI was observed in

nontreated EpiSCs (marked by dot-like expression of

H3K27me3), no XCI was observed in converted cells.

These results suggest that upregulation of E-cadherin in

the presence of LIF enables highly efficient derivation of

naive-like PSCs.

Ohtsuka et al. (2012) reported that 2 days of E-cadherin

overexpression enabled chimera formation with mainte-

nance of primed-state pluripotency; however, the EpiSC

lines that we used did not contribute to chimeras when

cultured ‘‘ESM plus bFGF’’ medium or ‘‘N2B27 plus LIF’’

medium (Table S2). In our hands, reprogramming was

necessary for EpiSCs into which the E-cadherin tet-on sys-

tem had been introduced to form chimeras with preim-

plantation embryos.

Inhibition of Nuclear Translocation of b-CATENIN

Enhances Reprogramming Efficiency

E-CADHERIN specifically binds to b-CATENIN and regu-

lates its nuclear translocation (Conacci-Sorrell et al.,

2003; Sasaki et al., 2000; Stockinger et al., 2001). Accumu-

lation of nonphosphorylated b-CATENIN in the nucleus is

required for b-CATENIN-mediated transcription (Staal

et al., 2002). Thus, we hypothesized that E-CADHERIN

overexpression trapped b-CATENIN in cytoplasm, thereby

preventing intranuclear b-catenin signaling. To examine

this, we quantitated b-CATENIN and nonphosphorylated

b-CATENIN (active form) in cytoplasmic and nuclear

fractions by western blotting (Figure 2A). Images and
Pluripotency Marker-Positive Cells from Mouse EpiSCs
mouse EpiSC and mouse EpiSC with inducible E-cadherin transgene
x+). Cytoplasmic and nuclear fractions were analyzed. b-ACTIN and
actions, respectively (left panel). Relative expression of b-CATENIN
nuclear fractions (right-lower panel) in each condition are shown.
SCs (ESC), mouse EB3DR EpiSC (wild-type), and transgenic mouse
ays (Dox�, Dox+). b-ACTIN was used as a loading control.
Cs cultured with or without 5 nM IWP-2 for 2 days (DMSO, IWP-2).
ONE H3 were used as loading controls in cytoplasmic and nuclear

M PD0325901 in the presence of LIF. DMSO was used as control.

e EpiSCs (upper panel). Note the appearance of naive-like compact
mpact colonies at 14 days (lower panel). Efficiency of generation of
umber to the number of naive-like compact colonies (mean ± SEM of

ed with (blue line) or without (red line) IWP-2 for 7 and 14 days.
ency of PECAM1-expressing cells increased significantly with IWP-2
1, and ***p < 0.001).
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Figure 3. Developmental Potential of
Mouse wit-rESCs
(A) Photomicrograph of PECAM1-expressing
cells obtained from IWP-2-treated mouse
EpiSCs in the presence of LIF (wit-rESCs).
Almost all PECAM1-expressing cells occurred
as dome-like compact colonies. Scale bar,
100 mm.
(B) DsRed-marked mouse wit-rESCs
contribute to chimeric embryos at E12.5. An
embryo lacking DsRed expression is shown
as a nonchimera.
(C) Live-born chimeric mice were obtained
from DsRed-marked mouse wit-rESCs. A pup
lacking DsRed expression is shown as a
nonchimera.

(D) Chimeric mice obtained from injection of mouse wit-rESCs (agouti) into BDF1 3 C57BL/6 blastocysts (black) show coat-color
contribution from mouse wit-rESCs.
(E) Germline-transmitted agouti coat color is shown in pups born to mice obtained from wit-rESCs.
See also Figure S3 and Table S2.
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calculated relative expression results indicated that b-CAT-

ENIN in the nuclear fraction is decreased in Dox-treated

EpiSCs into which the E-cadherin tet-on system had been

introduced. (Such cells manifested an intermediate phe-

notype even without Dox treatment, reflecting leaky re-

gulation of the tet-on system.) These results showed that

overexpression of E-cadherin inhibits nuclear translocation

of b-CATENIN in mouse EpiSCs.

E-CADHERIN reportedly also is responsible for LIF signal

integration (del Valle et al., 2013). We therefore tested the

effect of E-cadherin overexpression on LIF-STAT3 signaling

in EpiSCs. We quantitated phospho-STAT3 (p-STAT3) by

western blotting analysis with or without E-cadherin over-

expression (Figure 2B). In the presence of LIF, EpiSCs over-

expressing E-cadherin showed higher expression of p-STAT3

than control cells. This suggests that E-cadherin overexpres-

sion not only blocks nuclear translocation of b-CATENIN,

but also enhances LIF-STAT3 signaling when EpiSCs are

cultured with LIF.

We wondered whether attenuation of b-catenin signaling

or enhancement of LIF-STAT3 signaling was mainly respon-

sible for the promotion of reprogramming. To answer this

question, we used the small-molecule inhibitor IWP-2,

which interferes with the ability of cells to produce WNT

proteinsbyblockingPorcupine, an enzymeessential for acyl-

atingWNT proteins, and results in suppression of accumula-

tion of b-CATENIN (Chen et al., 2009). As was the case for

E-cadherin overexpression, we found that IWP-2 inhibits

nuclear translocation of b-CATENIN in mouse EpiSCs (Fig-

ure 2C). We then investigated whether IWP-2 can induce

efficient reprogramming. For thispurpose,wechosea combi-

nationofLIF andPD(NicholsandYing,2006),withDMSOas

acontrol, andcompared itwithacombinationofLIF, PD,and

IWP-2 (Figure2D).Morphological examination founddome-
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like compact colonies derived from mouse EpiSCs treated

with IWP-2. After 14 days in culture, the frequency of

naive-like colonies was significantly increased in the IWP-

2-treated mouse EpiSCs compared with the DMSO-treated

control and with CHIR-treated mouse EpiSCs (Figure 2E).

Flow-cytometry analyses revealed that IWP-2-treated mouse

EpiSCs convert to cells that express the naive-ESC marker

CD31 (PECAM1-expressing cells) within 7 days (Figures 2F

and2G).PECAM1-expressingcellsobtained fromWnt inhib-

itor-treated mouse EpiSCs formed mouse ESC-like colonies

(Figure 3A). We called these cells Wnt inhibitor-treated

mouse EpiSCs reprogrammed to ESC-like cells (mouse wit-

rESCs). Next, we examined the developmental potential of

mouse wit-rESCs. When injected into mouse blastocysts,

mouse wit-rESCs from EB3DR-EpiSCs, which are DsRed-

marked, contributed to chimeric embryos at E12.5 (Fig-

ure 3B). Furthermore, live-born and adult chimeric mice

were obtained from mouse wit-rESCs (Figures 3C and 3D),

indicating that mouse wit-rESCs contributed extensively to

development. Those wit-rESC-derived chimeras also showed

germline transmission (Figure 3E).

To assess reprogramming quantitatively, we next used

Rex1GFPd2 cells, in which GFP is expressed via the Rex1

(Zfp42) locus (Wray et al., 2011). Rex1 is specifically ex-

pressed in naive-state pluripotent cells and is downregu-

lated at the onset of differentiation (Toyooka et al., 2008;

Wray et al., 2010). We injected Rex1-GFP mouse ESCs

into tetraploid (4N) embryos and obtained a GFP-negative

Rex1-GFP mouse EpiSC line from postimplantation em-

bryos (E6.5) (Figures S2A–S2C). In the reprogramming

process, the frequency of cells expressing both GFP and

PECAM1 (‘‘double-positive’’ cells) was significantly

increased among IWP-2-treated mouse EpiSCs compared

to the DMSO-treated control (Figures S2D and S2E).
hors



Figure 4. Gene Expression Profiling of
Various Mouse Stem Cell Lines
(A) RT-PCR of pluripotency genes. Note
naive marker gene expression by mouse
E-cad rESC and wit-rESC lines.
(B) Real-time PCR of primed pluripotency
genes in mouse E-cad-rESCs, wit-rESCs, and
EpiSCs. Expression levels of pluripotency
genes are compared to those in mouse ESCs.
Expression values are normalized to Gapdh.
Data are represented as mean ± SEM of three
independent experiments.
(C) Real-time PCR analysis for naive plurip-
otency genes in mouse E-cad-rESCs, wit-
rESCs, and EpiSCs. Expression levels of
pluripotency genes are compared to those in
mouse ESCs. Relative expression values are
normalized to Gapdh.
Data represent mean ± SEM of three inde-
pendent experiments, *p < 0.05, **p < 0.01,
and ***p < 0.001. Note that expression
patterns in mouse E-cad-rESCs and wit-rESCs
resemble those in mouse ESCs, but not those
in mouse EpiSCs.
See also Figure S4 and Table S1.
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Furthermore, we inhibited tankyrase via XAV939, another

small-molecule inhibitor that promotes degradation of

b-CATENIN (Huang et al., 2009), to confirm that enhance-

ment of reprogramming efficiency was reproducible. Upon

XAV939 treatment in the presence of LIF, the configuration

ofmouse EB3DR EpiSCs indeed changed to that of ESC-like

compact colonies expressing PECAM1 (Figures S3A and

S3B). Moreover, PECAM1-expressing cells reprogrammed

byXAV939 treatment contributed to chimeras (Figure S3C).

These results clearly indicate that blocking nuclear localiza-

tion of b-CATENIN significantly enhances conversion effi-

ciency of mouse EpiSCs to naive-like PSCs.

Mouse E-Cad-rESCs and wit-rESCs Express Naive

Pluripotency Genes

To gain insight into the processes bywhich reprogramming

occurs inmouse EpiSCs, we examined gene-expression pro-

files by RT-PCR analysis. We found that the naive pluripo-
Stem Ce
tency genes Stella and Rex1 are expressed in all lines of

mouse E-cad-rESC and wit-rESC that we established (Fig-

ure 4A). Furthermore, real-time PCR analysis revealed that

mouse E-cad-rESCs and wit-rESCs showed high expression

of the naive pluripotency genes Pecam1, Rex1, and Kit (also

called c-kit) (Figure 4C). However, expression of the primed

pluripotency genes Lefty1 and Fgf5 was scant (Figure 4B).

Expression of the major pluripotency genes Nanog and

Sox2 was also increased in mouse E-cad-rESCs and wit-

rESCs compared to expression inmouse EpiSCs (Figure 4C).

These results indicate that the gene expression profiles of

mouse E-cad-rESCs and wit-rESCs are similar to those of

mouse ESCs and differ from those of mouse EpiSCs.

TCF/LEF Activity in E-cadherin-Overexpressing or

Inhibitor-Treated EpiSCs

To investigate whether blocking nuclear localization of

b-CATENIN result in downregulation of TCF transcriptional
ll Reports j Vol. 4 j 103–113 j January 13, 2015 j ª2015 The Authors 109
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activity, we measured TCF/LEF activity by TOPFlash assay

(Veeman et al., 2003). Upon overexpression of E-cadherin,

luciferase activity did not differ significantly between the

tet-on E-cadherin construct-carrying EpiSCs and their

parental EB3DR EpiSCs, regardless of Dox treatment (Fig-

ure S4A). Furthermore, we examined the effect of luciferase

activity on EB3DREpiSCs treatedwithWnt signaling inhib-

itors (Figure S4B). Luciferase activity did not differ signifi-

cantly in IWP-2- or XAV939-treated cells from that in

DMSO-treated controls. Although E-cadherin overexpres-

sion or IWP-2 treatment blocked b-CATENIN localization

in nuclei (Figures 2A and 2C), downregulation of TCF/LEF

activity was not detected. These results may suggest that

improvement of reprogramming efficiency (Figures 1E,

2E, and 2G) was achieved via an unknown signaling

pathway that was stimulated by blocking b-CATENIN

translocation.
DISCUSSION

Conversion of mouse EpiSCs to ESC-like cells in response

to LIF-STAT3 signaling rarely occurs under ordinary cell

culture conditions (Bao et al., 2009). Indeed, a recent

study has shown that upregulation of E-cadherin expres-

sion does not induce conversion from primed to naive

state under culture in media containing bFGF and activin

A (Ohtsuka et al., 2012). However, we demonstrated that

overexpression of E-cadherin in combination with the

cytokine LIF yields highly efficient derivation of cells

that express naive-PSC markers and that can contribute

to chimeras. We then extended these data by confirming

E-cadherin-dependent induction of naive PSC markers

and repression of primed PSC markers in the presence of

LIF. These results suggest that overexpression of E-cadherin

induces conversion of mouse EpiSCs toward the ESC-like

naive state.

Ohtsuka et al. (2012) showed that 2 days of E-cadherin

overexpression enabled chimera formation by EpiSCs

without any evident conversion to ESC-like cell status.

However, the EpiSC lines that we used did not acquire

the ability to form chimeras after short-term (2 days) over-

expression of E-cadherin. To explain this discrepancy, two

possibilities can be considered. One is differences in culture

conditions. Ohtsuka et al. maintained EpiSCs with activin

and FGF2 under feeder-free conditions, whereas we main-

tained EpiSCs in a different medium supplemented with

bFGF and on feeder cells. Different culture conditions

might set EpiSCs at slightly different stages within the

primed pluripotent state and might result in different out-

comes with respect to chimera formation after E-cadherin

overexpression. The other is use of different vector systems

to induce E-cadherin overexpression.We used the all-in-one
110 Stem Cell Reports j Vol. 4 j 103–113 j January 13, 2015 j ª2015 The Aut
tet-on lentiviral vector system (Yamaguchi et al., 2012),

whereas Ohtsuka et al. used the piggyBack transposon sys-

tem. Of importance may be that they described E-cadherin

expression levels in EpiSC-line cells into which the tet-on

system had introduced E-cadherin as ‘‘slightly higher’’

than those in ESCs, whereas cells in our line showed

much higher expression than did ESCs after Dox treatment

in a ‘‘standard’’ mouse EpiSC line. This may suggest that E-

cadherin expression levels must be similar to those in ESCs

to permit integration into the ICM.

As with reprogramming factors (Oct4, Klf2, Sox2, and

c-Myc), overexpression of E-cadherin enhances the effi-

ciency of iPSC generation from mouse embryonic fibro-

blasts (Chen et al., 2010). We demonstrated that E-cadherin

overexpression affects both attenuation of b-catenin

signaling and enhancement of LIF-Stat3 signaling. These

changes might underlie efficient reprogramming. We

consider blocking nuclear localization of b-CATENIN to

be a major factor because Wnt inhibitors also promoted

reprogramming.

We also demonstrated that although innate E-cadherin

expression levels vary among EpiSC lines, E-cadherin overex-

pression supported reprogramming independent of innate

expression levels. This may suggest that, rather than abso-

lute b-catenin signal intensity, the relative change in b-cate-

nin signaling is important.

Consistent with reports indicating such a role for

E-CADHERIN (Conacci-Sorrell et al., 2003; Sasaki et al.,

2000; Stockinger et al., 2001), our data confirmed negative

regulation of nuclear translocation of b-CATENIN through

E-cadherin overexpression in mouse EpiSCs. As expected,

we could also demonstrate that blocking nuclear localiza-

tion of b-CATENIN by the small-molecule inhibitors

IWP-2 or XAV939 confers high efficiency in conversion

of mouse EpiSCs to naive-like PSCs that can contribute

to chimeras. This suggests that, as was the case with upre-

gulation of E-cadherin expression, the combination of

blocking nuclear localization of b-CATENIN and LIF

signaling activation primes mouse EpiSCs for reprogram-

ming. Absent upregulation of E-cadherin, small-molecule

inhibitors of Wnt signaling can significantly amplify re-

programming frequency. One can infer that upregulation

of E-cadherin leads efficient reprogramming by blocking

nuclear localization of b-CATENIN. In this way, we suc-

ceeded in establishing culture conditions for efficient con-

version of primed PSCs to naive-like PSCs. To our surprise,

we demonstrated that E-cadherin overexpression and Wnt

inhibitor treatments did not affect to TCF/LEF-mediated

transcriptional activity though nuclear localization of

b-CATENIN was significantly blocked. Kim et al. (2013)

previously reported that subcellular localization of b-CAT-

ENIN does not implicate Wnt-downstream transcriptional

activity but has some role in maintenance of self-renewal.
hors
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Our results suggested that TCF/LEF-independent b-catenin

signaling is stimulated by blocking nuclear localization or

subcellular localization of b-CATENIN, thereby also pro-

moting conversion from primed state to naive state

pluripotency.

Pluripotentiality in primate PSCs resembles pluripoten-

tiality in mouse EpiSCs; primate PSCs are not thought to

contribute to chimeras (Nichols and Smith, 2009). For

this reason, the use of primate PSCs for knockout and trans-

genic studies is rare. Although our work was done only in

mice, our findings, with efficient conversion of primed to

naive PSCs, may provide the key to establishing naive

PSCs derived from other animals. We consider that require-

ments for b-catenin signaling must be reassessed, because

the culture conditions employed in reports of establish-

ment of human naive PSCs all were set to promote b-cate-

nin signaling (Gafni et al., 2013; Hanna et al., 2010; Li

et al., 2009; Ware et al., 2014). Further study would be

required to clarify the effect of b-catenin signaling for the

conversion to naive-like state in other animals and human

PSCs.

Our studies indicate that blocking nuclear localization of

b-CATENIN can enhance conversion of primed mouse

PSCs to naive-like PSCs. Further studies of this phenome-

non may not only provide better understanding of gene

regulatory circuits underlying pluripotency, but perhaps

also provide processes to induce reprogramming in primed

PSCs.
EXPERIMENTAL PROCEDURES

Lentiviral Vector Construction and Preparation
An E-cadherin inducible lentiviral vector was derived from the self-

inactivating lentiviral vector CS-TRE-PRE-Ubc-tTA-I2G (Yamagu-

chi et al., 2012). Mouse E-cadherin was amplified by PCR using

the primers 50-CGTACGCCACCATGGGAGCCCGGTGCCGCAG-

30 and 50-GAATTCCTAGTCGTCCTCACCACCGC-30 (restriction

sites are underlined). Amplified E-cadherin was cloned into the

PCR-Blunt II-TOPO cloning vector (Invitrogen), and its incorpora-

tion was confirmed by sequencing. A BsiWI-EcoRI fragment of

TOPO E-cadherin was then inserted into BsiWI-EcoRI sites of CS-

TRE-PRE-Ubc-tTA-I2G, resulting in CS-TRE-mouse E-cadherin-

PRE-Ubc-tTA-I2G.
Derivation of DsRed-Marked EpiSC Lines and Culture

Conditions of PSCs
This study used the three mouse EpiSC lines EB3DR EpiSC, Rex1-

GFP EpiSC, and the EpiSC reported by Tesar et al. (2007) and the

two mouse ESC lines EB3DR ESC (Niwa et al., 2002; Ogawa et al.,

2004) and Rex1-GFP ESC (Toyooka et al., 2008; Wray et al., 2010,

2011). To generate DsRed-marked mouse EpiSCs, we injected

EB3DR ESCs into blastocyst embryos and established an EpiSC

line from E6.5 embryos as described (Tesar et al., 2007). The endo-

dermal layers of E6.5 embryos collected from the uterus were
Stem Ce
peeled off manually with glass needles and were transferred onto

mitomycin-C-treated mouse embryonic fibroblasts (MEFs) in

primed PSCs medium consisting of DMEM-F12, 20% knockout

serum replacement, 1 mM sodium pyruvate, 1 3 nonessential

amino acids, 0.66 mM 2-mercaptoethanol (all Gibco), and

5 ng/ml human basic FGF (bFGF, PeproTech) (‘‘ESM plus bFGF’’).

Growing colonies were observed within a few days. Colonies

expressing DsRed were picked up and passaged with 10 mM Y-

27632. After several passages, mouse EpiSCs usually were stably

self-renewing. All mouse ESC lines were cultured on gelatin-coated

plates in N2B27medium (Ying et al., 2008) containing 1,000 U/ml

of mouse leukemia inhibitory factor (LIF; Millipore) (‘‘N2B27 plus

LIF’’). The effects of 1 mM PD0325901 (Axon), of 3 mMCHIR99021

(Axon), of 5 nM IWP-2 (Wako), and of 10 mM XAV939 (Sigma-Al-

drich) on the conversion of mouse EpiSCs to naive-like status

were examined.

Flow-Cytometry Analysis
For FACS analysis, single-cell suspensions were stained with APC-

conjugated anti-mouse CD31 antibody (BD Biosciences) and

anti-CD324 (E-CADHERIN) antibody (BD Biosciences). The

stained cells were analyzed and sorted by FACSCalibur (BD Biosci-

ences) and FACSAria II (BD Biosciences), respectively.

Western Blot Analysis
Whole-cell lysates were prepared using lysis buffer (complete Lysis-

M, EDTA-free; Roche), and nuclear and cytoplasmic fractions were

prepared by using a Nuclear/Cytosol Fractionation Kit (BioVision

Technologies) in accordance with the manufacturer’s instructions.

After centrifugation, the supernatants were dissolved in Laemmli

Sample Buffer (Bio-Rad) for SDS-PAGE. Cell lysates were separated

by SDS-PAGE, electroblotted onto polyvinylidene fluoride (PVDF)

transfer membranes (Millipore), and probed with primary anti-

bodies. After incubation with horseradish-peroxidase-conjugated

secondary antibody (GE Healthcare UK), labeled proteins were de-

tected using SuperSignal West Pico Chemiluminescent Substrate

(Thermo Scientific). Primary antibodies against b-CATENIN

(1:1000), nonphospho (active) b-CATENIN (1:1,000), E-CADHERIN

(1:1,000), STAT3 (1:2,000), p-STAT3 (1:2,000), b-ACTIN (1:1,000),

andHISTONEH3 (1:2,000) were employed (all Cell Signaling Tech-

nology). For quantification of protein expression levels, blotted im-

ages were captured by LAS 4000 equipment (GE Healthcare) and

determined by ImageQuant TL software (GE Healthcare). Relative

value was calculated the ratio of signal intensity of loading control

to signal intensity of b-CATENIN in cytoplasmic and nuclear frac-

tions, respectively.

Embryo Manipulation for Chimera Formation Assay
Chimera formation was assayed as described (Kobayashi et al.,

2010). Mouse 8-cell/morula-stage embryos collected in M2 me-

dium (Millipore) from the oviduct and the uterus of BDF1 3

C57BL/6 mice 2.5 days postcoitum (dpc) were transferred into

KSOM-AA medium (Millipore) and were cultured for 24 hr before

blastocyst injection. For micromanipulation, trypsinized PSCs

were suspended in PSC culture medium. A piezo-driven microma-

nipulator (Prime Tech) was used to drill zona pellucida and tro-

phectoderm under the microscope, and ten PSCs were introduced
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into blastocyst cavities near the inner cell mass. After blastocyst in-

jection, embryos underwent follow-up culture for 1–2 hr, after

which they were transferred into the uteri of pseudopregnant

recipient ICR mice (2.5 dpc).
RT-PCR and Quantitative Real-Time PCR Analysis
Total RNA was isolated using an RNAeasy kit (QIAGEN) followed

by cDNA synthesis using SuperScript III reverse transcriptase (Invi-

trogenCA). PCR was performed using rTaq (Takara Bio) with con-

ditions of 94�C for 1 min, followed by 30 cycles of 94�C for 30 s,

annealing temperature (55�C) for 30 s, and 72�C for 1 min, with

a final extension at 72�C for 7min. The primer sequences are listed

in Table S1. Pluripotency gene profiles were assayed by quantita-

tive real-time PCR using TaqMan Mouse Stem Cell Pluripotency

Array v2.0 (Applied Biosystems) according to the manufacturer’s

instructions.
Statistical Analysis
The results are presented as the mean ± SEM. Student’s two-tailed

nonpaired t test was used to determine the statistical significance

of differences. Significant differences were defined as *p < 0.05,

**p < 0.01, and ***p < 0.001.

All experiments were performed under institutional guidelines.

Animal experiments were performed with approval of the Insti-

tutional Animal Care and Use Committee of the Institute of Med-

ical Science, University of Tokyo.
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