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A B S T R A C T   

Gliomas observed in medical images require expert neuro-radiologist evaluation for treatment planning and 
monitoring, motivating development of intelligent systems capable of automating aspects of tumour evaluation. 
Deep learning models for automatic image segmentation rely on the amount and quality of training data. In this 
study we developed a neuroimaging synthesis technique to augment data for training fully-convolutional net
works (U-nets) to perform automatic glioma segmentation. We used StyleGAN2-ada to simultaneously generate 
fluid-attenuated inversion recovery (FLAIR) magnetic resonance images and corresponding glioma segmentation 
masks. Synthetic data were successively added to real training data (n = 2751) in fourteen rounds of 1000 and 
used to train U-nets that were evaluated on held-out validation (n = 590) and test sets (n = 588). U-nets were 
trained with and without geometric augmentation (translation, zoom and shear), and Dice coefficients were 
computed to evaluate segmentation performance. We also monitored the number of training iterations before 
stopping, total training time, and time per iteration to evaluate computational costs associated with training each 
U-net. Synthetic data augmentation yielded marginal improvements in Dice coefficients (validation set +0.0409, 
test set +0.0355), whereas geometric augmentation improved generalization (standard deviation between 
training, validation and test set performances of 0.01 with, and 0.04 without geometric augmentation). Based on 
the modest performance gains for automatic glioma segmentation we find it hard to justify the computational 
expense of developing a synthetic image generation pipeline. Future work may seek to optimize the efficiency of 
synthetic data generation for augmentation of neuroimaging data.   

1. Introduction 

Gliomas are cancerous tumors that predominantly originate within 
the brain and sometimes occur in the spinal cord. They represent 33% of 
all brain tumors and 80% of malignant brain tumors (Ostrom et al., 
2015). Patients with glioma require immediate medical attention, and 
time is a crucial aspect of successful treatment (Ostrom et al., 2019). 
Surgical options and other therapeutic courses of action vary widely due 
to heterogeneity in glioma presentation among patients (Wu et al., 
2021). Analysis of tumor morphology, density and regional distribution 
observed from medical images forms a key component of treatment 
planning and monitoring. Fast and accurate volumetric assessments of 
glioma are desirable for these purposes, leading to the development of 
computational tools for automatic analysis of neuroimaging data that 
are capable of evaluating gliomas. 

Deep learning models are studied for analyzing gliomas in magnetic 

resonance (MR) images. These have been employed to extract features, 
analyze patterns, and classify neuroimaging data with high accuracy 
(Dang et al., 2022; Shaver et al., 2019). They have been used 
pre-treatment to analyze tumor genotype, perform grading or severity 
checks, and predict the best course of action; they have also been used 
post-treatment to monitor progress and predict survivability (Shaver 
et al., 2019). Unfortunately, data availability limits the development of 
fully-generalizable deep learning approaches for glioma analysis. Suf
ficient quantities of labelled neuroimaging data from glioma patients are 
difficult to obtain due to privacy-related concerts, scarcity of qualified 
annotators, time required to label data, and heterogeneity of tumor 
presentation, which can also lead to imbalanced datasets (Anaya-Isaza 
et al., 2021; Perone and Cohen-Adad, 2019). 

Geometric and synthetic data augmentation are two strategies for 
overcoming data availability limitations for training deep neural net
works (Dang et al., 2022; Shorten and Khoshgoftaar, 2019). Geometric 
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data augmentation involves randomly altering images in the training 
dataset with geometric transformations (e.g., translation, rotation, 
zooming and shear), thereby amplifying the number of unique pixel 
arrangements used for training, which can improve generalization to 
out-of-sample data. These were implemented by leading entries in the 
Multimodal Brain Tumor Segmentation (BraTS) Challenge 2018 (Nalepa 
et al., 2019b), which highlighted affine, pixel-level and elastic de
formations as particularly effective for application to glioma segmen
tation (Isensee et al., 2019; McKinley et al., 2019; Myronenko, 2019). 
However, it has been argued that these traditional image processing 
techniques generate augmented data with limited diversity (Basaran 
et al., 2022; Shin et al., 2018; Zhang et al., 2023). In contrast, synthetic 
data augmentation involves generating a set of new artificial images, 
rather than simply altering existing ones, that are added to the training 
dataset, potentially yielding more diverse augmented images. Synthetic 
data augmentation is an area of active research, with differences in 
implementation details (e.g., method of synthetic image generation, and 
data management) potentially yielding variable results (Carver et al., 
2021; Cha et al., 2019; Foroozandeh and Eklund, 2020; Larsson et al., 
2022; Subramaniam et al., 2022). However, synthetic and geometric 
data augmentation are not mutually exclusive, and can be combined in 
an effort to improve their value for training deep neural networks. 

Generative adversarial networks (GANs) were proposed by Good
fellow et al. (2014). These are generative models designed to produce 
artificial data, closely associated with synthetic image generation. The 
concept of GAN training is based on game theory, whereby a generator 
network outputs artificial images and a discriminator network classifies 
them as either genuine or counterfeit. Generator and discriminator are 
trained in competition such that they both gradually become proficient. 
After training the generator can be used to synthesize data. In the 
domain of image generation, both generator and discriminator are 
generally convolutional neural networks (CNNs), whose design is 
inspired by the hierarchical organisation of the visual cortex (LeCun 
et al., 1998). Interestingly, GANs might also have a neurobiological 
counterpart as postulated by predictive coding theory (Friston, 2005; 
O’Reilly, 2022, 2021; Rao and Ballard, 1999). These artificial neural 
networks have been reciprocally applied to support research in the field 
that inspired their development, including application to neuroimaging 
data for image synthesis, segmentation, pathology diagnosis, and image 
reconstruction (Ali et al., 2022; Chen et al., 2021; Dang et al., 2022; 
Nguyen et al., 2022). 

Several studies have employed GANs for assisting in glioma seg
mentation for volumetric analysis. Yu et al. (2018) used a conditional 
GAN (cGAN) to generate T2 fluid-attenuated inversion recovery (FLAIR) 
images from T1-weighted MR images, and then used the higher-contrast 
generated images to segment brain tumors. A somewhat similar 
approach was taken by Hamghalam et al. (2020a), who trained a 
CycleGAN (Zhu et al., 2017) to translate low-contrast MR images into 
high-contrast equivalent images to enhance brain tumour segmentation. 
The same group also used a cGAN to enhance data for pixel-wise seg
mentation, achieving a Dice coefficient of 0.89 (Hamghalam et al., 
2020b). Lee et al. (2020) attempted to address the issue of data scarcity 
by using a CycleGAN to transfer the style of MR images to brain tumour 
segmentation masks, and then evaluate the benefits of using that syn
thetic data for automatic segmentation. Carver et al. (2021) later trained 
GANs to generate four types of brain MR image (T1, post-contrast T1, 
T2, and FLAIR) to accompany manually altered tumour segmentation 
masks. These were used for synthetic data augmentation for a U-net 
(Ronneberger et al., 2015) trained to perform automatic tumour seg
mentation, reportedly improving Dice coefficient by 4.8%. The 
human-in-the-loop requirement for manual manipulation of segmenta
tion masks introduces a potential source of bias and greater workload 
that limits the practicality of this approach. 

In this study, we aimed to develop a fully-automatic synthetic data 
augmentation and segmentation pipeline for volumetric assessment of 
gliomas in FLAIR neuroimaging data. We investigated the 

computational costs and benefits of synthetic data augmentation with 
state-of-the-art StyleGAN2-ada (Karras et al., 2020, 2019), and 
compared this with and without geometric data augmentation. This 
research therefore provides evidence concerning appropriate data 
augmentation strategies for automatic glioma segmentation. 

2. Materials and Methods 

2.1. Data 

The dataset used in this study was originally derived from The 
Cancer Imaging Archive (TCIA) (Clark et al., 2013; Pedano et al., 2016). 
It consists of multi-sequence MR images of lower grade glioma patient 
brains with corresponding manual segmentation masks. Genetic cluster 
information included with this dataset was not used in the present study. 
Collectively, there were 110 scans from different patients. Two of the 
MR sequences (T1 and T2) were unavailable for some patients, although 
the FLAIR sequences were completed for all patients. The same dataset 
has been used previously for identifying genetically influenced 
morphological subtypes of gliomas (Buda et al., 2019; Mazurowski et al., 
2017). 

The FLAIR sequence images (8-bit) were extracted and paired with 
their binary tumor segmentation masks. These were uniformly sized 
256 × 256 pixels. The masks encoded tumor and non-tumor pixels with 
values 0 and 1, respectively. Images that did not contain tumor tissue 
initially did not have corresponding masks, so these were produced 
automatically by populating matrices of equal size with zeros. For pre
processing, scans were loaded and standardized before clipping in the 
range [− 2, 7] then normalizing to the range [0,255]. From 110 scans 
there were 3929 images. These were listed consecutively in scan order 
and the first 2751 (70%) were assigned for training, the next 590 (15%) 
were assigned for validation, and the remaining 588 (15%) were set 
aside for testing. This approach mitigates data leakage that could 
otherwise occur with random image splitting; importantly, this excluded 
the possibility of data leakage between training and testing datasets. 

2.2. Generative model 

2.2.1. Data pre-processing 
The aforementioned training dataset was used to train a generative 

model (StyleGAN2-ada; Karras et al., 2020). Validation and test sets 
were not used to avoid potential data leakage that could affect perfor
mance of segmentation models subsequently trained with synthetic data 
augmentation and evaluated using the same validation and test sets. 
Three-channel images were prepared from the training dataset to train 
the GAN, as illustrated in Fig. 1. The FLAIR sequence images were 
copied into green and blue channels, while the corresponding masks 
were inserted into red channels. This approach allows the GAN to 
simultaneously generate neuroimaging and labelling data after training, 
rather than requiring manually manipulated tumour segmentation 
masks (Carver et al., 2021). When it was time to augment data for 
training the segmentation model, these three-channel GAN-generated 
images were separated into greyscale FLAIR and mask images. Green 
and blue channels were averaged to produce artificial FLAIR images, 
and binary thresholding (>128) was applied to red channels to obtain 
binary segmentation masks. 

2.2.2. Model architecture 
StyleGAN2 is a generative model that gives state-of-the-art results in 

image synthesis tasks (Karras et al., 2019). Its generator comprises two 
main components; a mapping network and a synthesis network. The 
mapping network consists of 8 fully connected layers. It generates a 
disentangled style vector of size 512 from a random latent vector of the 
same size, which is then used to control the styles of the generated 
feature maps through CNN operations in the synthesis network (Karras 
et al., 2019). Our synthesis network consisted of five blocks, each of 
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which doubles the resolution of feature maps, producing output images 
at the requisite size of 256 × 256. There are two “style blocks” within 
each block, except for the first one. The first style block contains an 
upsampling layer to increase the resolution of feature maps, followed by 
two convolutional layers with 3 × 3 filters, one of which is included in 
the second style block. The weights of the convolutional layers are 
modulated using the style vector and normalized through weight 
demodulation. Random Gaussian noise and biases were added to feature 
maps after every style block. Skip connections between blocks are used 
to generate high-resolution images while avoiding phase artifacts caused 

by a progressively growing approach (Karras et al., 2019). 
The discriminator consisted of five convolutional blocks with resid

ual connections. Each block had two 3 × 3 convolution layers and a 
downsampling layer. Feature maps get downsampled by multiples of 
two. Towards the classification end of the network, two blocks before 
flattening the feature maps, a mini-batch standard deviation layer is 
applied to calculate the standard deviation of each feature map across a 
mini-batch. The average of all the standard deviations is then appended 
to the feature maps as an additional feature. The last feature map gets 
flattened and fed through a fully connected layer to produce a scalar 
value representing the probability of the “realness” of the input image. 

StyleGAN2 requires a large training dataset to avoid overfitting the 
discriminator, which limits its practicality. Karras et al. (2022) intro
duced adaptive discriminator augmentations (StyleGAN2-ada), 
designed to overcome this limitation. They effectively prevented the 
leakage of augmentations used on the training images into the generated 
images by applying stochastic discriminator augmentation, in which a 
set of augmentations are applied to images only before they are fed to 
the discriminator. Using this approach, the discriminator learns to 
identify real and fake images with the same augmentation. Meanwhile, 
the generator learns to produce images without these augmentations. 
Eighteen different image manipulations are applied to a certain per
centage of input images to the discriminator, which has empirically been 
found to not compromise the quality of generated images. To avoid 
manually tuning the strength of each augmentation, heuristics are used 
to detect overfitting in the discriminator and adjust the percentage of 
images that augmentations are applied to during training (Karras et al., 
2020; Situ et al., 2021). 

2.2.3. Model hyperparameters and training scheme 
We trained the StyleGAN2-ada model on an NVIDIA Tesla T4 GPU 

with CUDA version 11.2 and 25 GB of RAM, using PyTorch library 
version 1.8.1 and torchvision version 0.9.1. The training dataset con
sisted of 2751 images, each sized 256 × 256 pixels, as described above. 
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Fig. 1. FLAIR images and associated glioma segmentation masks were com
bined to produce colour images. The FLAIR image was copied and inserted into 
green and blue channels, while the segmentation mask was inserted into the red 
channel. This was applied to the training dataset to produce a set of 2751 colour 
images for generative modelling with StyleGAN2-ada. 
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Fig. 2. Study method overview. The initial dataset contained FLAIR images and glioma segmentation masks, illustrated in the upper-left. After preprocessing scans 
(standardising, clipping and normalising) these were split into training, validation and test sets. Colour images were produced from the training data, as illustrated in 
Fig. 1, and then used to train StyleGAN2-ada. After training, artificial images produced by the GAN were split into grayscale FLAIR (average of green and blue 
channels) and mask (thresholded red channel) images used for synthetic data augmentation. Fourteen batches of 1000 synthetic images and masks were generated 
using the trained StyleGAN2-ada; as such, they can be viewed as coming from the same distribution. A U-net was trained solely using real images from the training set 
to establish baseline performance. The same architecture was also trained for 14 rounds with consecutive addition of batches of synthetic data. All of the U-nets were 
trained with early stopping, using peak validation set dice coefficient as the monitoring criteria, and a patience of 50 iterations. Out-of-sample performance was 
evaluated with the withheld test set. 
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We employed the Adam optimizer with a learning rate of 0.0025, 
betas= [0, 0.99]. The loss function was StyleGAN2Loss with r1_gamma 
parameter of 0.8192. During the training process, we applied a custom 
data augmentation pipeline that included flipping, rotation, scaling, and 
colour adjustments. We implemented transfer learning with a network 
that was previously trained on FFHQ dataset images with a resolution of 
256 × 256 (Karras et al., 2020). The batch size used was 32 and the 
model was saved every 3 ticks, with a snapshot of the generated images 
taken for visual inspection. 

2.2.4. Model evaluation criteria 
The GAN was evaluated using a combination of subjective and 

objective methods. Firstly, we visually examined a sample of 100 
generated images to subjectively evaluate their appearance; a repre
sentative, randomly selected sub-sample is shown in Fig. 3. Additionally, 
we thoroughly searched all of the generated data to identify any lower- 
quality generated images, which are shown in Fig. 5. Secondly, we 
calculated Fréchet Inception Distance (FID), which provides a quanti
tative metric of GAN performance (Heusel et al., 2017). The FID metric 
is based on the activations of an Inception V3 trained on the ImageNet 
dataset (O’Reilly and Asadi, 2021; Szegedy et al., 2016). The activations 
are extracted from a pooling layer and are assumed to be approximately 
multivariate normal distributions. The FID score is calculated as the 
distance between the means of the activations of the real and generated 
images, minus the trace of the product of the covariance matrices of the 
real and generated images. The smaller the FID score, the more similar 
the generated images are to the real images. 

2.3. Segmentation model 

2.3.1. Data pre-processing 
Grayscale FLAIR images and binary segmentation masks were 

normalized to the range [0,1]. They were kept at a size of 256 × 256 
pixels. 

Fig. 3. Representative sample of synthetic data, decomposed into FLAIR sequence and binary segmentation mask images, before and after applying geometric 
augmentations. The generated images are essentially indistinguishable from genuine images based on visual inspection, and the GAN achieved an FID score of 14.39. 
Following geometric augmentations, some of the image compositions are clearly irregular, with brain tissue spread across image boundaries; while this appearance 
may seem odd to human observers, it is not necessarily deleterious for training CNNs. 

Fig. 4. Distribution of genuine and synthetic image vector representations 
plotted in two-dimensional space using t-SNE. It may be noted that vector 
representations of these 2751 real and randomly-sampled 2751 fake images 
occupy largely overlapping regions in this space, without any obvious outliers. 
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2.3.2. Model architecture 
U-net (Ronneberger et al., 2015) models were trained to perform 

automatic image segmentation. These consisted of four encoding blocks, 
each with repeated convolution (3 ×3 filter, with zero-padding), batch 
normalization and rectified linear unit (ReLU) activation layers followed 
by max pooling (2 ×2 kernel, stride of 2). The number of filters in each 
of these consecutive encoding blocks was 64, 128, 256 and 512. These 
were connected to another convolutional block, although excluding max 
pooling, with 1024 filters, which fed into a decoding section. The 
decoder had four blocks with convolutional transpose layers that scaled 
up spatial dimensions by a factor of two. The number of filters in the 
decoding blocks mirrored those in the encoder (i.e., 512, 256, 128, 64), 
and data from equivalent stages of the encoder were concatenated 
before feeding into another convolutional layer with the same number of 
filters. Output was taken from a final convolutional layer with one filter 
with size 1 × 1 and sigmoid activation function. 

2.3.3. Model hyperparameters and training scheme 
The withheld validation dataset was used to monitor performance at 

the end of each training iteration. Dice loss and adaptive moment esti
mation optimizer were used for training. The learning rate started at 
1 × 10− 4 and reduced by a factor of 0.1 in response to plateau in vali
dation loss with minimum limit of learning rate 1 × 10− 7. Maximum 
number of training iterations was set to 1000, with batch size of 32, 
although early stopping occurred when no decrease in validation loss 
was observed for 50 iterations. Evaluation metrics calculated at the end 
of each training step included dice coefficient, intersection over union 
(IoU), recall, and precision. The best model in terms of validation set 
dice coefficient was saved. In the results section we report dice coeffi
cient values, which are representative of the other metrics. 

Firstly, a model was trained without any data augmentation, using 
only the real training set to evaluate baseline performance. Then four
teen models were trained while adding successive batches of 1000 
synthetic images, as illustrated in Fig. 2, to evaluate the performance of 
synthetic data augmentation. Subsequently, this process was repeated 

with geometric data augmentation. Thus, baseline performance with 
and without geometric augmentation was determined, and model per
formance with synthetic data augmentation with and without geometric 
data augmentation was determined. The specific geometric manipula
tions that were randomly applied were horizontal and vertical flips, 
horizontal and vertical translations (max. 30% of image size), shearing 
(range of 0.2), zooming (range of 0.2), brightness adjustment (range of 
[0.5, 1.05]). New edge pixels were filled in with ’wrap’ mode. 

2.3.4. Model evaluation criteria 
Computational costs of U-net training were quantified with the total 

number of completed training iterations, total training time (hours) and 
time per iteration (minutes). This data is plotted in Fig. 6. We used dice 
coefficient as the primary evaluation metric for segmentations. This 
metric assesses overlap between the predicted and ground truth seg
mentations, with a value ranging from 0 (no overlap) to 1 (perfect 
overlap). A higher dice coefficient therefore reflects better segmenta
tions. Training and validation set metrics were calculated at the end of 
each training iteration and used to plot learning curves (Fig. 7). After 
completing training, models were evaluated with the test set. The in
fluence of synthetic and geometric data augmentation relative to the 
baseline (using only real images) was then evaluated in terms of 
training, validation and test set dice coefficients (Fig. 8). Pearson’s 
correlation coefficient (r) was used to evaluate correlations between 
these metrics and the amount of synthetic data. 

2.4. Distribution of image vector representations 

Image vector representations were produced using a pre-trained 
Inception V3 model (Szegedy et al., 2016) with input size of 
256 × 256 as a feature extractor. Image vectors of size 2048 were 
derived by collapsing the final convolutional layer filter activations with 
average pooling. All of the real images (2751) and a random sample of 
2751 generated images were transformed into their vector representa
tions using this approach. These vectors were transformed into 

Fig. 5. Selected examples of genuine, subjectively good and subjectively poor-quality synthetic images. Obtaining this sample of low-quality synthetic images 
required scouring all of the generated images. Issues identified from this sample include lack of FLAIR image detail, faded and noisy segmentation masks. 
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two-dimensional space with t-Stochastic Neighbor Embedding (t-SNE) 
(Van Der Maaten and Hinton, 2008). The results from this analysis are 
visualized inFig. 4. 

2.5. Software 

Python 3 was used with NiBabel, NumPy, OpenCV, MatPlotLib, 
PyTorch and TensorFlow. StyleGAN2-ada was developed using PyTorch, 
and U-net models were developed using TensorFlow. Code and data used 
in this study are openly available from https://osf.io/yr56s/? 
view_only=bf0cd961e56e44c391bc0a27d6511b5a. 

3. Results 

After training, the GAN reached an FID score of 14.39. It took 
approximately two days of continuous training to achieve this FID score; 
another day of fine-tuning did not improve the FID score. Randomly 
selected images generated by the trained GAN are shown in Fig. 3. These 
are effectively indistinguishable from the training set distribution. 
Importantly, none of the synthetic images were identical to any of those 
in the training set. Generated FLAIR sequence images and glioma seg
mentation masks appear to correspond well, with higher intensity pixels 
indicating tumour tissue that are overlapped by the mask. There is also 
diversity in the location and morphology of tumour regions among 
healthy brain tissue. Fourteen batches of 1000 synthetic images were 
produced, as illustrated in Fig. 2, and split into their corresponding 

FLAIR images and glioma segmentation masks. These were used 
cumulatively in fourteen rounds to augment real data and explore the 
influence of synthetic data augmentation on performance of U-nets 
trained to perform automatic glioma segmentation. 

Fig. 4 displays vector representations of 2751 real and 2751 
randomly-sampled fake images transformed into two-dimensional space 
using tSNE. This analysis indicates that genuine and synthetic image 
vector representations occupy largely overlapping distributions, ac
counting for the relatively low FID score. However, Fig. 5 illustrates 
examples of well-generated and poorly-generated synthetic images, 
alongside real images for reference; the quality of these synthetic images 
was judged by visual inspection. Identifying this small sample of poorly- 
generated images required thoroughly searching through all of the 
generated data, thus the vast majority of synthetic images were of high 
quality. 

Analysis of the completed number of training iterations and 
computation time for U-nets trained with successive rounds of addi
tional synthetic data augmentation are plotted in Fig. 6. The number of 
completed training iterations did not significantly correlate with the 
amount of synthetic data augmentation (Fig. 6a; r = − 0.201, p = 0.472 
and r = − 0.426, p = 0.113 without and with geometric augmentation, 
respectively). However, total training time (Fig. 6b; r = 0.776, 
p = 6.76 ×10− 4 without, and r = 0.937, p = 2.69 ×10− 7 with geo
metric augmentation) and time per iteration (Fig. 6c; r = 1.0, 
p = 4.65 ×10− 24 without, and r = 1.0, p = 1.83 ×10− 29 with geometric 
augmentation) both significantly correlated with rounds of synthetic 
data augmentation. This is due to the dependence between the amount 
of training data and number of batches, and also between the number of 
batches and computation time for backpropagation. 

Learning curves for U-nets trained with different amounts of syn
thetic data augmentation are plotted in Fig. 7. These depict patterns of 
training and validation set losses during training from models trained 
with and without geometric augmentation. Training set losses converge 
more quickly with increasing amounts of synthetic data augmentation. 
Rate of change in loss was evaluated by differentiating these learning 
curves, which showed that initial convergence rate of training loss 
significantly correlated with the amount of synthetic data, both with 
(r = − 0.991, p = 9.18 ×10− 13) and without geometric augmentation 
(r = − 0.989, p = 2.86 ×10− 12). Initial convergence rates for the vali
dation set were also significantly correlated with the amount of syn
thetic data, both with (r = − 0.943, p = 1.4 ×10− 7) and without 
geometric augmentation (r = − 0.67, p = 0.00629). However, by the 
second training iteration validation loss convergence rates no longer 
correlated with the amount of synthetic data (r = − 0.228, p = 0.413 
without, and r = 0.369, p = 0.176 with geometric augmentation). 

Dice coefficients for U-nets trained with different amounts of syn
thetic data augmentation are plotted in Fig. 8. Without geometric 
augmentation (Fig. 8a), segmentation performance does not correlate 
significantly with the amount of synthetic data used for augmentation in 
terms of the training (r = − 0.235, p = 0.4), validation (r = 0.332, 
p = 0.226) or test (r = 0.299, p = 0.279) sets. With geometric 
augmentation (Fig. 8b) these correlations were also not statistically 
significant (training set r = − 0.269, p = 0.332; validation set r = 0.144, 
p = 0.609; test set r = − 0.101, p = 0.721). Synthetic data augmentation 
did not noticeably improve model generalization, with there being 
relatively consistent gaps among training and validation and test set 
performances. Geometric data augmentation did, however, close these 
gaps and improve model generalization. 

For real data without geometric augmentation, Dice coefficients 
were training 0.932, validation 0.819 and test 0.877. With synthetic 
data augmentation, these reached 0.944, 0.86 and 0.912, respectively, 
showing improvement of 0.0409 for validation and 0.0355 for test sets. 
With geometric augmentation, real data produced training 0.912, vali
dation 0.878 and test 0.897; then combined geometric and synthetic 
augmentation achieved 0.91, 0.898 and 0.911, with improvements of 
0.0196 and 0.0144 for validation and test sets, respectively. Standard 

Fig. 6. Training time increases with addition of synthetic images with and 
without geometric augmentation. The completed number of training iterations 
(a) does not exhibit a notable statistically significant trend, whereas the total 
training time (b) and time per iteration (c) both demonstrate statistically sig
nificant correlation with the amount of additional synthetic images. Real 
training data consisted of 2751 image-mask samples; these were augmented 
with 0 to 14,000 synthetic image-mask pairs, as illustrated on the x-axis. 
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deviation of Dice coefficients from U-nets trained without geometric 
augmentation was 0.0406, in contrast with 0.0104 for U-nets trained 
with geometric augmentation, demonstrating improved generalization. 

4. Discussion 

Synthesized FLAIR images and corresponding glioma segmentation 
masks were effectively indistinguishable from genuine images, illus
trated with the sample in Fig. 3. The FID score of 14.39 is comparable 
with the range of values reported in the literature for GANs used to 
synthesize neuroimaging data (Kossen et al., 2022, 2021; Subramaniam 
et al., 2022). Although direct comparison of this metric calculated in 
different contexts is not always informative, as the FID score can vary 
with image size, sample size, and software implementation (Nunn et al., 
2021; O’Reilly and Asadi, 2022, 2021). On visual inspection of the 
synthetic images no artifacts were detected. This contrasts with other 
architectures such as deep convolutional (DC)-GAN and progressively 
grown (PG)-GAN that are known to propagate unnatural artifacts to 
generated images (Asadi and O’Reilly, 2021; Carver et al., 2021; For
oozandeh and Eklund, 2020; Park et al., 2021). Absence of artifacts in 
generated images is one of the advantages of using the StyleGAN2 ar
chitecture (Karras et al., 2020, 2019), removing the need to identify and 
remove obviously artificial images from the synthetic dataset prior to 
use in downstream applications (O’Reilly and Asadi, 2022). While some 
relatively lower quality images were identified by visual inspection, as 
shown in Fig. 5, image vector representations plotted in Fig. 4 suggest 
that genuine and synthetic images occupy largely overlapping distri
butions. This is also supported by recent work demonstrating 
state-of-the-art performance of StyleGAN2-ada for generating synthetic 
medical images (Woodland et al., 2022). Issues identified from synthetic 
images that were subjectively judged to be poorly generated (Fig. 5) 
included lack of detail in FLAIR images, and noisy or faded segmentation 

masks; the latter of which were remedied by thresholding. 
There is a trade-off between the computational costs of training a 

GAN then generating thousands of synthetic images versus the benefits 
obtained from using the resulting synthetic images. Estimation of these 
costs should include time, energy and memory requirements associated 
with training the GAN and subsequent training of the U-net with a larger 
amount of data. For the benefits, we can consider segmentation per
formance improvements attained by using synthetic data augmentation. 
The results presented in Fig. 6 display statistically significant positive 
correlations between dataset size and computation time, without cor
responding changes in the number of completed training iterations. This 
demonstrates that although training takes longer with inclusion of larger 
amounts of synthetic data, the U-net is optimized to achieve its best 
performance within the same number of iterations through that training 
data. 

Viewed alone this suggests that additional synthetic data does not 
contain substantially more information for the U-net to learn from than 
the real data used to train the GAN. However, the learning curves plotted 
in Fig. 7 indicate that larger amounts of synthetic data augmentation 
increase the initial convergence rate, such that the negative gradient at 
the beginning of the learning curve descent is significantly correlated 
with the amount of additional synthetic images. Taken together, these 
findings suggest that U-net optimization initially benefits from synthetic 
data augmentation, but fine-tuning of its weights requires a similar 
number of iterations through the training data before the early stopping 
criteria is reached. Returning to the question of the trade-off between 
the costs of implementing synthetic data augmentation versus the ben
efits gained in terms of U-net performance: it is difficult to argue on the 
basis of these findings that the benefits of synthetic data augmentation 
are worth the additional expense. In contrast, geometric augmentation 
provides a clear benefit for model generalization, as shown in Fig. 8, 
without the additional computational load associated with training and 

Fig. 7. Training loss converges faster with additional synthetic images with and without geometric augmentation. Learning curves for training set loss are shown on 
the top panels, and those for validation set loss are shown on the bottom panels. Models trained without geometric data augmentation are represented on the left, and 
those trained with geometric augmentation are represented on the right. Colour-coded learning curves illustrate how U-net losses evolve when trained with only real 
(+0k) and cumulative additional batches of synthetic (+1k to +14k) images. Increasing synthetic data augmentation correlates with training loss convergence rate. 
Furthermore, geometric augmentation increased training loss and decreased validation loss slightly relative to synthetic data augmentation alone. 
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running a GAN to produce synthetic images. 
These findings are generally in agreement with recent studies using 

PGGAN and an ensemble of GANs (Foroozandeh and Eklund, 2020; 
Larsson et al., 2022), which found marginal improvements in brain 
tumour segmentation provided by GAN-based synthetic data augmen
tation. Although an ensemble of 10 GANs produced significantly better 
U-net segmentations than without data augmentation (mean Dice co
efficient 0.735 vs. 0.729), the inefficiency of this approach makes it 
difficult to justify based on the relatively small improvement reported. 
Nevertheless, we can consider other potential benefits of using synthetic 
neuroimaging data. In particular, artificial medical images synthesized 
by a GAN trained using data from a cohort of patients are considered to 
be more ethical for sharing among researchers because they cannot be 
identified as belonging to an individual patient (Kossen et al., 2022, 
2021; Subramaniam et al., 2022). In this sense, neuroimage synthesis 
can be interpreted as an enhanced standard of data anonymization. 
Therefore, where patient privacy is of paramount concern, application 
of GAN technology is advantageous. 

StyleGAN2-ada (Karras et al., 2020) includes a truncation hyper
parameter that controls the trade-off between diversity (0) and fidelity 
(1) of its generated images. In the current study this was fixed at 0.65, 
which is considered to be sufficient in most applications. It is feasible 
that altering this parameter, for example lowering it to increase the 
diversity of synthetic images at the expense of their fidelity, could in
fluence the usefulness of images generated by the GAN after training. We 
can speculate that higher diversity of images would provide greater 

benefits from synthetic data augmentation, thus improving upon the 
marginal performance gains observed. However, corresponding de
creases in the fidelity of synthetic images could potentially have dele
terious effects due to compromised quality and co-registration of FLAIR 
and glioma segmentation image channels. It is unclear which of these 
possibilities would be more likely, or whether further, unforeseen con
ditions would emerge while tuning this hyperparameter. Ultimately, 
however, a systematic investigation of the effects of StyleGAN2-ada’s 
truncation parameter on downstream U-net segmentation performance 
with synthetic data augmentation was beyond the scope of this study. 

Four different MRI sequences are available to support brain tumour 
segmentation in the BraTS challenge dataset. These include pre-contrast 
(T1), post-contrast T1-weighted (T1c), T2-weighted (T2), and FLAIR 
scans (Nalepa et al., 2019b). The methods presented in the current study 
have limited ability to synthesize multiple of these neuroimage modal
ities simultaneously. The StyleGAN2-ada model is designed for gener
ating three-channel colour images; thus, at most it could synthesize two 
MRI sequences and one tumour segmentation mask simultaneously. By 
making significant changes to network architectures, pre-training pro
cedures and supporting code it could be possible to expand the number 
of image channels to work with, although this is beyond the scope of the 
present study. Nevertheless, the FLAIR sequence provides sufficient 
contrast between healthy and tumour tissue for brain tumour delinea
tion using convolutional neural networks (Ribalta Lorenzo et al., 2019; 
Zeineldin et al., 2020), which may improve clinical efficiency compared 
with acquiring multiple MRI scans. 

In addition to geometric augmentation, several other methods of 
image augmentation have been proposed in the literature. For instance, 
Anaya-Isaza and Mera-Jimenez (2022) proposed a strategy based on 
principal component analysis, whereby random contributions from 
principal components are applied to original images to generate novel 
variants. This report did not quantitatively evaluate the similarity be
tween synthesized and original images (Anaya-Isaza and Mera-Jimenez, 
2022), obstructing comparison with GAN-based synthetic image 
augmentation methods that typically report FID scores (Kossen et al., 
2022, 2021; Subramaniam et al., 2022). Nalepa et al. (2019a) high
lighted convergence of GANs as a potential issue with regards to their 
practical implementation, proposing diffeomorphic medical image 
registration as a viable alternative for data augmentation. This approach 
avoided generating unrealistic data using a recommendation algorithm 
(Nalepa et al., 2019a). Zhao and colleagues (Zhao et al., 2019) also 
proposed an image registration-based method for augmenting brain 
scans, whereby unlabelled data is transformed in spatial extent and 
appearance to match a labelled template scan. They applied this method 
to generate brain scans for training a model to perform one-shot seg
mentation of 30 neuroanatomical structures. We view this as potentially 
having limited generalization due to the sampling of initial labelled 
training data, particularly if applied for segmenting brain tumours, 
which have less predictable appearance than common neuroanatomical 
structures. Image mixing-based techniques have also been proposed for 
brain lesion segmentation, such as CarveMix (Zhang et al., 2023). In this 
approach, two existing annotated images are stochastically combined to 
create new labelled images, which was shown to improve segmentation 
performance of a U-net trained with addition of these images to training 
data. As seen from this review of relevant literature, innovative medical 
image augmentation techniques are actively under development. 
Implementation of diverse approaches will presumably enhance the 
robustness of artificial intelligence systems designed to encounter mul
tiple sources of variance within medical images. 

5. Conclusions 

The StyleGAN2-ada approach produced realistic FLAIR sequence 
neuroimaging data and accompanying glioma segmentation masks. 
Cumulatively adding up to 14,000 of these generated image and mask 
pairs to the training data did not substantially improve segmentation 

Fig. 8. Segmentation performance does not increase with additional synthetic 
images with or without geometric augmentation. From the top panel it can be 
noted that synthetic data augmentation does not substantially improve gener
alization from training to validation and test sets. In contrast, geometric 
augmentation does improve generalization, causing the U-net performance to 
converge for training, validation and test sets. Dashed lines show the line of best 
fit from least squares linear regression. 
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performance of U-nets evaluated on held-out validation and test sets that 
were excluded from the GAN training data. Synthetic data augmentation 
marginally improved Dice coefficients (validation set +0.0409, test set 
+0.0355), whereas geometric augmentation improved generalization 
(SD among training/validation/test sets of 0.01 with, and 0.04 without 
geometric augmentation). We can conclude for the data used in this 
study that synthetic data augmentation using StyleGAN2-ada for glioma 
segmentation with the U-net does not significantly improve model 
performance. This can be attributed to partially non-overlapping dis
tributions of imaging data in training, validation and test sets. The 
considerable computational costs associated with training the GAN and 
subsequently using it for synthetic data augmentation were not balanced 
by the marginal benefits attained by downstream application of the 
synthetic data. We cannot rule out that synthetic data augmentation 
may improve segmentation performance in other contexts more sub
stantially than observed in this study. Furthermore, there are potentially 
more appropriate uses for state-of-the-art GAN technology in neuro
imaging, such as sharing data with enhanced anonymity. 
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