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The task of drug-target interaction prediction holds significant importance in pharmacology and therapeutic drug 
design. In this paper, we present FRnet-DTI, an auto-encoder based feature manipulation and a convolutional 
neural network based classifier for drug target interaction prediction. Two convolutional neural networks are 
proposed: FRnet-Encode and FRnet-Predict. Here, one model is used for feature manipulation and the other one 
for classification. Using the first method FRnet-Encode, we generate 4096 features for each of the instances in 
each of the datasets and use the second method, FRnet-Predict, to identify interaction probability employing 
those features. We have tested our method on four gold standard datasets extensively used by other researchers. 
Experimental results shows that our method significantly improves over the state-of-the-art method on three 
out of four drug-target interaction gold standard datasets on both area under curve for Receiver Operating 
Characteristic (auROC) and area under Precision Recall curve (auPR) metric. We also introduce twenty new 
potential drug-target pairs for interaction based on high prediction scores. The source codes and implementation 
details of our methods are available from https://github .com /farshidrayhanuiu /FRnet -DTI/ and also readily 
available to use as an web application from http://farshidrayhan .pythonanywhere .com /FRnet -DTI/.
1. Introduction

The task of drug-target interaction prediction is very important in 
pharmacology and therapeutic drug design. This problem can be ad-

dressed in several ways. Firstly, for an already developed drug com-

pound the task is to find new targets with which the drug might have 
interactions. Secondly, for a given target protein one might search for 
potential drugs in the library. Another way to tackle the problem is to 
find the possibility of interaction given a pair of drug and target protein. 
In this paper, we are interested in the latter kind. Experimental methods 
in predicting drug-protein interactions are expensive and time consum-

ing and hence computational methods have been used extensively in 
the recent years [1, 2].

One of the most successful computational method in drug-target in-

teraction prediction is docking simulations [3]. This method largely 
depends on the availability of three dimensional native structure of the 
target protein determined by sophisticated methods like X-Ray Crystal-

lography. However, X-Ray Crystallography is itself a time-consuming 
and expensive process and thus the native structure of the targets pro-

teins are often unavailable. These have encouraged the researchers to 
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apply machine learning based methods to tackle the prediction problem 
by formulating it in a supervised learning setting [4, 5].

Success of supervised learning methods largely depend on the train-

ing datasets. In a pioneering work on drug-target interaction prediction, 
Yamanishi et al. [6] proposed gold standard datasets with four sets 
or target proteins and drugs. A good number of machine learning al-

gorithms have been used in the literature of supervised drug-target 
interaction prediction that includes: Support Vector Machines (SVM) 
[7], Boosting [8, 9, 10], Deep Learning [11, 12], etc. One of the major 
obstacles in drug-target interaction prediction is due to the imbalance in 
the dataset. Since the known validated interactions among drug target 
pairs are not large, most of the approaches considers the unknown inter-

actions as negative samples and thus they outnumber positive samples. 
The representation of the drug-target pair in the supervised learning 
dataset is another added challenge. Machine learning methods used in 
prediction of drug-target interaction often use features generated from 
molecular fingerprints of drugs and sequence or structure based infor-

mation of proteins [7, 8].

In the recent years, Chemo-genomic methods have received a lot 
of attention for identifying drug target interaction. They usually in-
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Table 1

A short summary of structural and evolutionary features used for fingerprint 
features and protein targets for drugs. Each Group column shows a different 
feature group, used in this experiment and they are discussed in a later sections.

Feature group Number of features Reference

Molecular finger print 881 [7]

PSSM bigram 400 [7]

Secondary Structure Composition 3 [8]

Accessible Surface Area Composition 1 [8]

Torsional Angles Composition 8 [8]

Torsional Angles Auto-Covariance 80 [8]

Structural Probabilities Auto-Covariance 30 [8]

Torsional Angles bigram 64 [8]

Structural Probabilities bigram 9 [8]

Total 1476

clude methods like graph theory [13, 14], deep learning [11], machine 
learning [6, 15] and network analysis methods [16, 17]. In supervised 
learning setting, K-Nearest Neighbor (KNN) [18], fuzzy logic [19], sup-

port vector machines [7, 20] are the most commonly used classification 
algorithm. In [6], drug target interaction problem was first introduced 
as a supervised problem and a gold standard dataset was proposed. 
Later those datasets have been exhaustively used by researchers. The 
same authors from [6], applied distance based learning to association 
among pharmacological space of drug target interactions. A non-linear 
kernel fusion with regularized least square method was proposed by 
[21].

In [22], Chemical and genomic kernels and Bayesian factorization 
was applied. Another method, DBSI (drug based similarity interface) 
[17] proposed two dimensional chemical-structural similarity for drug 
similarity. Later methods like DASPfind [23], NetCBP [24], SELF-BLM 
[20] were proposed in order to solve the same problem. Bigram based 
features as fingerprints extracted from position specific scoring matrix 
were found very helpful solving the drug target interaction problem [7]. 
Most of the supervised learning methods do not exploit the structure 
based features because most protein targets’ three dimensional native 
structure are not available.

In [25], the authors have used extremely randomized trees as clas-

sifier. They represented the drugs as molecular fingerprint and proteins 
as pseudo substitution matrix. These matrix were generated from its 
amino acid sequence information. Other relevant works include self-

organizing theory [26, 27], similarity based methods [28], network and 
chemoinformatics based tools [29], ensemble methods [30, 31]. A in 
depth literature review was provided by Chen et al. on computational 
methods for this particular problem [32].

Wen et al. [33] presented a model which consisted of multiple 
stacked RBM. The output layer consisted of two neurons each predict-

ing the interaction and non-interaction probability respectively. Chan et 
al. [11] presented a model that used deep representations for drug tar-

get interaction predictions. There were also many other attempts made 
to use deep learning tools and boosting to make further improvements 
in DTI [10]. In our recent work, iDTI-ESBoost [8], we exploited evolu-

tionary features along with structural features to predict drug protein 
interaction. SPIDER3, a successful secondary structural prediction tool 
[34, 35], was used to generate a novel set of features for supervised 
learning. The novel set of features includes seven primary set of fea-

tures. A short description of each feature set is given in Table 1. In that 
paper, two balancing methods were used to handle the imbalance ratio 
of the datasets, and Adaboost [36] was used for classification. In [29], 
authors presented a system of deep auto-encoders to further improve 
drug target pair interaction prediction.

In this paper, we propose two deep convolutional methods for fea-

ture manipulation and predicting drug target interaction: FRnet-Encode 
and FRnet-Predict. FRnet-Encode is used to generate 4096 features or 
deep representation of each dataset and FRnet-Predict is used for classi-

fication using the extracted features. We use the latest version of 4 gold 
2

standard datasets with 1476 features to test our method. In the exper-

imental results combining both methods, we have observed improved 
auROC and auPR metric scores and therefore we strongly claim that our 
method is an excellent alternative for most other proposed methods for 
Drug-Target-Interaction (DTI).

2. Methodology

This section provides a description of the methodology used in this 
paper: algorithmic details, datasets and performance evaluation meth-

ods.

2.1. Convolutional models

In this paper, we propose two novel deep learning architectures 
for drug target interaction, each network having its own purpose and 
goal. Throughout the rest of the paper these two models are referred 
as FRnet-Encode and FRnet-Predict. FRnet-Encode is used as a auto en-

coder that extracts 4096 features from the given feature sets which is 
than fed as input to FRnet-Predict for classification.

The proposed models FRnet-Encode and FRnet-Predict both have 
over millions of hyper-parameter to tune. While exhaustively tuning 
each of the parameter would provide the best result it is seldom done 
as it requires tremendous computational cost and time and risks over-

fit. Four of the most effective hyper parameters are chosen [37] to tune 
and from a given range. Aggressive regularization is also employed to 
remove over-fitting to maximum extend.

2.2. Rational for FRnet-DTI

Recently, Deep learning methods have been receiving a lot of at-

tention for biological applications. In [38], the authors used a model 
called Wide-and-Deep. Wen et al. [33] showed impressive improve-

ment in prediction capability using deep learning. The authors of [39]

used stacked auto-encoders to further improve the problem of DTI. We 
closely follow that article and employ an auto encoder to extract fea-

tures and a classifier for final classification. We follow the architectural 
design of GoogleNet [40] which is regarded as one of the most suc-

cessful classification network [41, 42]. They use a module called the 
inception module (see Fig. 3) where convolution operation with differ-

ent filters sizes are done in parallel with a pooling operation. Each of 
the output are then merged together as the final output of the module. 
This process reliefs the burden of choosing of proper filter size or oper-

ation type between convolution and pooling. Following this intuition, 
we design our two models. Top view of the proposed system is shown 
in Fig. 5 where the 1477 feature are generated using [8, 9].

2.2.1. FRnet-Encode

In order to perform a convolution operation, a 4D tensor with the 
shape (𝑋, 𝑎, 𝑏, 𝑐) is required [43] where 𝑎, 𝑏, 𝑐 are the 3d representa-

tion of the features and 𝑋 is the input batch size. Molecular fingerprint 
based drug features and structure and evolutionary features for pro-

teins extracted for the gold standard datasets showed very optimistic 
results in several recent works [7, 8, 44]. For convenience, a value 0 
was added which extended the feature length to 1476 so that the input 
can be reshaped into (𝑋, 211, 7, 1). Here 211 and 7 are unique numbers 
and interchanging them has no effect and 1 represents that the input 
has only 1 channel. Basically the dataset is represented as a gray scale 
211 × 7 sized image.

This model consists of several convolutional layers, max-Pooling 
layer and fully-connected layer. Fig. 1 shows the visual representation 
of the complete network. Input layer takes the input in the shape of 
(𝑋, 211, 7, 1) and passes to a 1 ×1 Convolutional layer with 32 filters and 
2 strides which outputs a tensor with the shape (𝑋, 106, 4, 32). Here 1 ×1
convolution means the size of the filter were 1 × 1. ‘Relu’ activation, 
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Fig. 1. Architecture of FRnet-Encode.
‘SAME’ padding and ‘L2’ regularizer were used in each layer. After con-

volution, a Max-Pool operation is done with a kernel and stride value 
of 2 to reduce the tensor shape to (𝑋, 53, 2, 32). This network output is 
then fed to four parallel processes. They are depicted in Fig. 1 from left 
to right. The first process is a 1 × 1 convolution with 8 filters followed 
by a 3 × 3 convolution with 64 filter. Next is a 1 × 1 convolution with 
8 filters followed by a 2 × 2 convolution with 64 filters. Then, there is 
a 1 × 1 convolution with 8 filters followed by a 5 × 5 convolution with 
32 filters and lastly, a Max-pool operation with kernel and stride 1. In 
the next stage, a merge operator combines the 4 network outputs on 
the 3rd axis of the resulting tensor with the shape (𝑋, 53, 2, 192). De-

tailed description is provided in Table 2. The merged network is then 
fed to fully connected layers with 4096 and 2048 neurons followed by a 
dropout operation with 𝐾𝑒𝑒𝑝_𝑃𝑟𝑏 value at 0.5. Finally the output layer 
consists of 1476 neurons each neuron representing a feature value of 
an instance in the dataset. The model was trained with a learning rate 
0.001, ‘𝐴𝑑𝑎𝑚’ as optimizer [45] and 𝑏𝑖𝑛𝑎𝑟𝑦_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦 as loss func-

tion. The fully connected layer with 4096 neurons is used as features 
to predict interaction probability using the FRnet-Predict method. The 
model achieved 85% accuracy just after 3 iterations and reached over 
90% after 20 iterations. Accuracy curves with respect to each iteration 
are described in Fig. 2.

The merge operation is used to retire the burden of choosing filter 
size from 1 × 1, 2 × 2 and 5 × 5. In stead, the model exploits all of them 
and chooses the better set of features by itself. This concept was inspired 
form the 𝑖𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛 model [40] which was later used to build the vari-

ous versions of imageNet by the same authors [41, 42]. However, this 
model also increases computational complexity as different sized fil-

ters are used at the same time. In order to reduce some computational 
cost, FRnet-Encode employs 1 × 1 convolution before and after each 
3

Table 2

Shapes of tensor after each convolution operation leading up to the merge op-

eration. Also know as Inception Operation.

Index Input shape Output shape after 
first convolution

Output shape after second 
convolution/Max-pool

a X, 53, 2, 32 X, 53, 2, 16 X, 53, 2, 64

b X, 53, 2, 32 X, 53, 2, 16 X, 53, 2, 64

c X, 53, 2, 32 X, 53, 2, 16 X, 53, 2, 32

d X, 53, 2, 32 – X, 53, 2, 32

Final Tensor shape (X, 53, 2, 192)

convolution operation with different filter size to reduce computational 
complexity of the model. This concept was first introduced in 2013 in 
the article by [46]. They showed that 1 ×1 convolutional operations can 
be used as tool to reduce channel size of a tensor. The hypothesis of [46]

states that converting a tensor form shape (𝑋, 106, 4, 32) to (𝑋, 53, 2, 192)
will cost much more than converting (𝑋, 106, 4, 32) to (𝑋, 106, 4, 16) us-

ing a 1 × 1 convolution using 16 filters than converting (𝑋, 106, 4, 16)
to (𝑋, 106, 4, 192) and have the same effect on the network. This same 
methodology is later incorporated in FRnet-Predict also.

2.2.2. FRnet-Predict

FRnet-Predict serves for the purpose of classifying interaction prob-

ability between a given drug-target pair. Similar to FRnet-Encode this 
model employs the inception module (details figure of the model is 
given in Fig. 3). It uses the 4096 features generated by FRnet-Encode as 
a 64 × 64 × 1 shaped instance. In this model, the first convolution and 
Max-Pool operation is kept the same as the previous method. Following 
those operations, the tensors are parallelly fed to 2 inception modules, 
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Fig. 2. Accuracy curves of FRnet-Encodeusing 𝐵𝑖𝑛𝑎𝑟𝑦 𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦 as loss function on four datasets: (a) enzymes (b) ion channels (ic) (c) GPCRs (d) nuclear receptors 
(nr).

Fig. 3. Inception module from [40, 41, 42].
one with stride size of 1 (left module of Fig. 4) and another with stride 
size 2.

The model merges those outputs in order to take befit of both stride 
size and put it through a final inception layer before connecting in to 
fully connected layers of 2048, 512 and finally 1 neuron for prediction. 
Similar to FRnet-Encode this model also uses 𝐿2 regularization, ‘𝐴𝑑𝑎𝑚’ 
as optimizer with 𝐵𝑖𝑛𝑎𝑟𝑦_𝑐𝑟𝑜𝑠𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑦 as loss function with learning rate 
set to 0.001 and 𝐾𝑒𝑒𝑝_𝑃𝑟𝑏 value set to 0.5 in the dropout layer.

2.3. Datasets

The benchmark datasets used in this article were first introduced 
by [6] in 2008 using DrugBank [47], KEGG [48], BRENDA [49] and 
SuperTarget [50] to extract information about drug-target interactions. 
These datasets are regarded as 𝑔𝑜𝑙𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 and have been exhaus-

tively been used by researchers throughout the years [7, 8, 11, 32]. 
These datasets are publicly available at: http://web .kuicr .kyoto -u .ac .
jp /supp /yoshi /drugtarget/.

In this paper, an extended version of those datasets is used which 
consists of structural and evolutionary features. This version of dataset 
was first introduced in 2016 by [7] and later further extended by [8, 9]. 
4

Table 3

Description of the gold standard datasets with structural and evolutionary fea-

tures [8].

Dataset Drugs Proteins Positive interactions Imbalance ratio

Enzyme 445 664 2926 99.98

Ion Chanel 210 204 1476 28.02

GPCR 223 95 635 32.36

Nuclear Receptor 54 26 90 14.6

The exacted dataset from [8] were used in this project for experimenta-

tion. A short description of each dataset is given in Table 3.

2.4. Performance evaluation

A wide variety of performance metrics are available to show case 
and compare performance of classification models. Even though the 
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 metric is sufficient enough to show the accuracy percent-

age of a model, in highly imbalanced dataset, such as gold standard 
datasets used in this experiment, that value holds little to no signifi-

cance. In imbalance binary datasets, one class highly outnumbers sam-

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
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Fig. 4. Architecture of FRnet-Predict.

Fig. 5. Top view of the proposed system.
ples of other class thus a measure of accuracy in this case makes little 
sense.

There are two metrics, who are independent from the imbalance 
ratio of the datasets, called area under curve for Receiver Operating 
Characteristic (auROC) and area under Precision Recall curve (auPR). 
Due to their ignorance towards the imbalance ratio of datasets, they 
have been widely used [8, 9, 11, 24, 51] as standard metric for com-
5

parison. Both metrics value range from 0 to 1 where a random classifier 
should have a score of 0.5 and a perfect classification model will have 
a auPR and auROC score of 1. In both cases the higher the value the 
better.

Another important factor is the balance of bias and variance trade 
off [52]. 𝑘-fold cross validation and jack knife tests are mostly used 
as an attempt to solve the bias-variance problem. In our experiment, 
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Table 4

A comparison of performances among FRnet-Predict and other classifiers on 
the gold standard datasets in terms of auROC and auPR using 4096 features 
generated by FRnet-Encode.

Dataset Classifier auPR auROC

enzymes Decision Tree 0.28 0.9376

SVM 0.53 0.9010

MEBoost 0.41 0.9404

CUSBoost 0.71 0.9345

FRnet-Predict 0.70 0.9754

GPCR Decision Tree 0.31 0.9038

SVM 0.44 0.8859

MEBoost 0.46 0.9075

CUSBoost 0.65 0.8989

FRnet-Predict 0.69 0.9512

Ion Channel Decision Tree 0.29 0.933

SVM 0.40 0.8904

MEBoost 0.39 0.928

CUSBoost 0.45 0.8851

FRnet-Predict 0.49 0.9478

NR Decision Tree 0.46 0.8147

SVM 0.41 0.7605

MEBoost 0.23 0.9165

CUSBoost 0.71 0.8989

FRnet-Predict 0.73 0.9241

we used 5-fold shuffled cross validation on each dataset. Each time the 
dataset is shuffled and spitted into 5 equal parts. Then 4 of them are 
used for training and the rest for testing.

3. Results and discussion

In the experiments reported in this paper, Python v3.6, 𝑇 𝑒𝑛𝑠𝑜𝑟𝑓𝑙𝑜𝑤
Library and Sci-kit learn [53] were used for the implementation. Each 
experiments were executed 10 times and the average result was consid-

ered. Each dataset were split into two sets, train set and test set using 
5 fold cross validation, thus for each fold we used 80% of each dataset 
for training and used the 20% for testing.

FRnet-Encode method is multilayer deep auto-encoder that uses con-

volution, max-pool and fully connected layers to regenerate the input 
as output in the final fully connected layer. For each of the datasets, 
the model was trained to achieve accuracy over of 95%. Due to the 
use of aggressive regularization, 𝐾𝑒𝑒𝑝_𝑃𝑟𝑏 value of 0.5 in dropout and 
𝐿2 regularization in each layer using learning rate of 0.001 to avoid 
over fitting, the models were unable to achieve accuracy higher than

97% for any of the datasets. The first fully connected layer in the 
network has 4096 neurons in the output and those were used to ex-

tract 4096 features from each dataset. For a fair sake of comparison, 
FRnet-Predict was tested with several states of the art machine learn-

ing algorithms like, Decision Tree [54], SVM [55], MEBoost [44] and 
CUSBoost [56]. Each of these classifiers were fed the 4096 features gen-

erated by FRnet-Encode. Results in terms of auPR and auROC are given 
Table 4. Table 4 shows that FRnet-Predict is able to produce results 
with better auROC for all the datasets. However, in terms of auPR the 
results in three datasets are better than the competitor algorithms. How-

ever, for the ‘enzymes’ dataset, the performance of FRnet-Predict is very 
close to the best performing CUSBoost. Note that other classifiers also 
achieved very impressive auROC and auPR score which shows the ef-

fectiveness of the features generated by FRnet-Encode. Therefore even 
though FRnet-Encode is designed for feature manipulation of the four 
datasets mentioned in this article, it can be used as a strong feature 
manipulation tool on other domains as well [8, 9].

We have compared our method with other state of the art classifiers 
mentioned in recent literatures such as SVM, AdaBoost and random for-

est. FRnet-Predict shows superior performance in both metric on all 
the datasets except for NR which holds only 1048 instances and is the 
smallest dataset among the others. Comparison with other classification 
6

Table 5

A performance comparison among FRnet-Predict with AdaBoost, Support Vector 
Machine and Random Forest classifiers on the gold standard datasets auROC 
and auPR curve.

Dataset Reference Classifier auPR auROC

enzymes [8] AdaBoost 0.68 0.9689

[8] Random Forest 0.43 0.9457

[7] SVM 0.54 0.9194

FRnet-Predict 0.70 0.9754

GPCR [8] AdaBoost 0.31 0.9128

[8] Random Forest 0.30 0.9168

[7] SVM 0.28 0.8720

FRnet-Predict 0.69 0.9512

Ion Channel [8] AdaBoost 0.48 0.9369

[8] Random Forest 0.40 0.9234

[7] SVM 0.39 0.8890

FRnet-Predict 0.49 0.9512

NR [8] AdaBoost 0.79 0.9285

[8] Random Forest 0.29 0.7723

[7] SVM 0.41 0.8690

FRnet-Predict 0.73 0.9241

Table 6

Performance of FRnet-Predict on the four benchmark gold datasets in terms of 
auROC with comparison to other state-of-the-art methods.’N/A’ denotes where 
that particular dataset was not used in the article.

Method Dataset

Enzyme GPCR ion channels nuclear receptor

Yamanishi et al. [6] 0.904 0.8510 0.8990 0.8430

Yamanishi et al. [57] 0.8920 0.8120 0.8270 0.8350

DBSI [17] 0.8075 0.8029 0.8022 0.7578

KBMF2K [22] 0.8320 0.7990 0.8570 0.8240

NetCBP [24] 0.8251 .8034 0.8235 0.8394

Wang et al. [13] 0.8860 0.8930 0.8730 0.8240

Mutowo et al. [58] 0.9480 0.8990 0.8720 0.8690

iDTI-ESBoost [8] 0.9689 0.9369 0.9222 0.9285

Wang et al. [29] 0.9425 0.8743 0.9107 0.8176

CFSBoost [9] 0.9563 0.9377 0.9278 0.8147

Our Method 0.9754 0.9478 0.9512 0.9241

models are shown in Table 5. Results for the other methods were taken 
from the experiments reported in the literature [7, 8, 9]. Note that, for 
each of the datasets except the nuclear receptor (NR) dataset, perfor-

mance of FRnet-Predict is superior to the other methods both in terms 
of auPR and auROC. For the NR dataset, the performance of FRnet-

Predict is almost similar to the best performing boosting classifier. The 
auPR value is second best and probably because of the fact that this 
dataset is highly clustered and clustered sampling techniques for bal-

ancing used in [8] makes it perform better in this particular case.

We have also compared our results against methods which used un-

supervised and semi-supervised methods reported in the literature [6, 
13, 17, 22, 24, 57]. Table 6 shows comparisons of auROC scores of 
other methods including supervised methods [7, 8]. Note that, our pro-

posed method achieves significantly higher auROC for three datasets 
among four and for the NR dataset, the performance is only second best 
and very close to the best performing one. Although the performance 
of our model is not better than the models of [5] it is superior to other 
recent models based on the given result which makes it a competitive 
substitute.

These two methods works well together because we use the first 
network to represent the 1476 features as a grey scale image and re-

duce the dimension of the feature vector to a smaller scale. This eases 
the difficulty of the problem. Then we use another deep network to 
use those feature vector for prediction. Further improvements can be 
made by making the networks more deeper but at the cost of more 
computational expense. We also have considered the fact that making 
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Table 7

Comparison of the performance of FRnet-Predict on the four benchmark gold 
datasets from [8] in terms of auPR with other the state-of-the-art methods.

Predictor enzymes GPCRs Ion channels Nuclear receptors

Mousavian et al. [7] 0.54 0.39 0.28 0.41

iDTI-ESBoost [8] 0.68 0.48 0.48 0.79

CFSBoost [9] 0.68 0.54 0.50 0.73

Ezzat et al. [59] 0.41 0.42 0.36 0.57

FRnet-Predict 0.70 0.69 0.49 0.73

Table 8

Performance comparison of FRnet-Predict and other classifiers on the gold stan-

dard datasets in terms of auROC and auPR using 4096 features generated by 
FRnet-Encode with input shape (X, 7, 211, 1).

Dataset Classifier auPR auROC

enzymes Decision Tree 0.27 0.9299

SVM 0.54 0.9035

FRnet-Predict 0.70 0.9713

GPCR Decision Tree 0.32 0.9038

SVM 0.48 0.8859

FRnet-Predict 0.70 0.9255

Ion Channel Decision Tree 0.60 0.9235

SVM 0.52 0.8894

FRnet-Predict 0.50 0.9507

NR Decision Tree 0.43 0.8207

SVM 0.42 0.7588

FRnet-Predict 0.62 0.9134

the network more deeper may cause it to over-fit the data-set, therefore 
a dataset of larger scale will also be required.

In the literature of imbalanced classification problems, it has been 
often argued that between area under Precision Recall curve (auPR) 
and area under Receiver Operating Curve (auROC), auPR should be 
considered more significant. However, only [7] and [8] reported auPR 
scores in their paper. A comparison in terms of auPR score are given 
in Table 7. Here too, its interesting to note the superior performance of 
our proposed model on all the datasets.

We have also tested our method with input shape (𝑋, 7, 211, 1) in-

stead of (𝑋, 211, 7, 1) and found similar results which concludes that 
changing the input shape has little to no effect on the performance on 
the models. Results using input shape (𝑋, 7, 211, 1) is provided in Ta-

ble 8.
Table 9

New prediction made by FRnet-Predict for four gold standard datasets used in this p
Dataset Protein Id Drug Id

enzymes hsa:10825 D00041

hsa:4759 D00041

hsa:129807 D00041

hsa:4953 D00041

hsa:1845 D00041

ion channels hsa:285242 D00294

hsa:779 D00294

hsa:2561 D00294

hsa:785 D00294

hsa:11254 D00294

GPCRs hsas:9052 D04625

hsa:9052 D00632

hsa:9052 D03880

hsa:9052 D03881

hsa:1909 D03621

nuclear receptors hsa:2099 D01132

hsa:2101 D00956

hsa:2101 D00443

hsa:2099 D00316

hsa:9971 D00316

7

Since the prediction scores with high confidence are interesting in 
practical applications, A list of top five the false positive interactions 
based on FRnet-Predict’s prediction score is given in Table 9. These are 
the interactions that are known as not interacting pair but the model 
highly suggests other wise.

4. Conclusion

In This paper, we propose two novel deep neural net architectures, 
FRnet-Encode and FRnet-Predict where FRnet-Encode aims to extract 
convolutional features and FRnet-Predict tries to identify drug target 
interaction using the extracted features. From [8], we exploit our al-

gorithm with datasets consisting with both structural and evolution-

ary features and with the help of FRnet-Encode we try to generate 
4096 informative features. These datasets are regarded as gold standard 
datasets and are exhaustively used by researchers. We have conducted 
extensive experiments and produced the results in term of auROC and 
auPR scores. In many previous literatures like [7, 8], it was argued that 
in case of drug target interaction, it is more appropriate to use auPR 
metric over auROC as the gold standard datasets are highly imbalanced 
with very few interaction samples. For this reason, FRnet-Predict was 
focused on getting a superior auPR score even by sacrificing auROC 
score. We also proposed 5 new possible interaction pair for each of 
the 4 datasets based on prediction score. Up to this moment, our pro-

posed method outperforms other state of that art methods in 3 of the 
4 benchmark datasets in auPR and auROC metric. We believe the ex-

cellent performance our method will motivate other practitioners and 
researchers to exploit both methods for not only drug target interaction 
but also in other domains.
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Drug name Score
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Diazoxide (JAN/USP/INN) 0.9823

Diazoxide (JAN/USP/INN) 0.9712

Diazoxide (JAN/USP/INN) 0.9723

Diazoxide (JAN/USP/INN) 0.9634

Diazoxide (JAN/USP/INN) 0.9565

Isoetharine (USP) 0.9013

Dobutamine hydrochloride (JP17/USP) 0.9013

Dobutamine lactobionate (USAN) 0.8912

Dobutamine tartrate (USP) 0.8904

Cyclizine (INN) 0.8898

Tazarotene (JAN/USAN/INN) 0.9912

Nandrolone phenpropionate (USP) 0.9876

Spironolactone (JP17/USP/INN) 0.9885

Etretinate (JAN/USAN/INN) 0.9472

Etretinate (JAN/USAN/INN) 0.9102



F. Rayhan et al. Heliyon 6 (2020) e03444
Funding statement

This research did not receive any specific grant from funding agen-

cies in the public, commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

[1] S.J. Haggarty, K.M. Koeller, J.C. Wong, R.A. Butcher, S.L. Schreiber, Multidimen-

sional chemical genetic analysis of diversity-oriented synthesis-derived deacetylase 
inhibitors using cell-based assays, Chem. Biol. 10 (5) (2003) 383–396.

[2] F.G. Kuruvilla, A.F. Shamji, S.M. Sternson, P.J. Hergenrother, S.L. Schreiber, Dis-

secting glucose signalling with diversity-oriented synthesis and small-molecule mi-

croarrays, Nature 416 (6881) (2002) 653–657.

[3] D.B. Kitchen, H. Decornez, J.R. Furr, J. Bajorath, Docking and scoring in virtual 
screening for drug discovery: methods and applications, Nat. Rev. Drug Discov. 
3 (11) (2004) 935–949.

[4] Z. Mousavian, A. Masoudi-Nejad, Drug–target interaction prediction via chemoge-

nomic space: learning-based methods, Expert Opinion on Drug Metabolism & Toxi-

cology 10 (9) (2014) 1273–1287.

[5] R.S. Olayan, H. Ashoor, V.B. Bajic, Ddr: efficient computational method to pre-

dict drug–target interactions using graph mining and machine learning approaches, 
Bioinformatics 34 (7) (2017) 1164–1173.

[6] Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, M. Kanehisa, Prediction of drug–

target interaction networks from the integration of chemical and genomic spaces, 
Bioinformatics 24 (13) (2008), i232–i240.

[7] Z. Mousavian, S. Khakabimamaghani, K. Kavousi, A. Masoudi-Nejad, Drug–target 
interaction prediction from pssm based evolutionary information, J. Pharmacol. 
Toxicol. Methods 78 (2016) 42–51.

[8] F. Rayhan, S. Ahmed, S. Shatabda, D.M. Farid, Z. Mousavian, A. Dehzangi, M.S. 
Rahman, idti-esboost: identification of drug target interaction using evolutionary 
and structural features with boosting, Sci. Rep. 7 (1) (2017) 17731.

[9] F. Rayhan, S. Ahmed, D.M. Farid, A. Dehzangi, S. Shatabda, Cfsboost: cumulative 
feature subspace boosting for drug-target interaction prediction, J. Theor. Biol. 464 
(2019) 1–8.

[10] K. Tian, M. Shao, Y. Wang, J. Guan, S. Zhou, Boosting compound-protein interaction 
prediction by deep learning, Methods 110 (2016) 64–72.

[11] K.C. Chan, Z.-H. You, et al., Large-scale prediction of drug-target interactions from 
deep representations, in: 2016 International Joint Conference on Neural Networks, 
IJCNN, IEEE, IEEE, 2016, pp. 1236–1243.

[12] F. Rayhan, Fr-mrinet: a deep convolutional encoder-decoder for brain tumor seg-

mentation with relu-RGB and sliding-window, Int. J. Comput. Appl. 975 (2019) 
8887.

[13] W. Wang, S. Yang, J. Li, Drug target predictions based on heterogeneous graph infer-

ence, in: Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 
NIH Public Access, NIH Public Access, 2013, p. 53.

[14] X. Chen, M.-X. Liu, G.-Y. Yan, Drug–target interaction prediction by random walk 
on the heterogeneous network, Mol. BioSyst. 8 (7) (2012) 1970–1978.

[15] K. Bleakley, Y. Yamanishi, Supervised prediction of drug–target interactions using 
bipartite local models, Bioinformatics 25 (18) (2009) 2397–2403.

[16] S. Alaimo, A. Pulvirenti, R. Giugno, A. Ferro, Drug–target interaction prediction 
through domain-tuned network-based inference, Bioinformatics 29 (16) (2013) 
2004–2008.

[17] F. Cheng, C. Liu, J. Jiang, W. Lu, W. Li, G. Liu, W. Zhou, J. Huang, Y. Tang, Predic-

tion of drug-target interactions and drug repositioning via network-based inference, 
PLoS Comput. Biol. 8 (5) (2012) e1002503.

[18] Z. He, J. Zhang, X.-H. Shi, L.-L. Hu, X. Kong, Y.-D. Cai, K.-C. Chou, Predicting drug-

target interaction networks based on functional groups and biological features, PLoS 
ONE 5 (3) (2010) e9603.

[19] X. Xiao, J.-L. Min, P. Wang, K.-C. Chou, icdi-psefpt: identify the channel–drug inter-

action in cellular networking with pseaac and molecular fingerprints, J. Theor. Biol. 
337 (2013) 71–79.

[20] J. Keum, H. Nam Self-blm, Prediction of drug-target interactions via self-training 
svm, PLoS ONE 12 (2) (2017) e0171839.

[21] M. Hao, Y. Wang, S.H. Bryant, Improved prediction of drug-target interactions using 
regularized least squares integrating with kernel fusion technique, Anal. Chim. Acta 
909 (2016) 41–50.

[22] M. Gönen, Predicting drug–target interactions from chemical and genomic kernels 
using Bayesian matrix factorization, Bioinformatics 28 (18) (2012) 2304–2310.

[23] W. Ba-Alawi, O. Soufan, M. Essack, P. Kalnis, V.B. Bajic, Daspfind: new efficient 
method to predict drug–target interactions, J. Cheminform. 8 (1) (2016) 15.
8

[24] H. Chen, Z. Zhang, A semi-supervised method for drug-target interaction prediction 
with consistency in networks, PLoS ONE 8 (5) (2013) e62975.

[25] Y.-A. Huang, Z.-H. You, X. Chen, A systematic prediction of drug-target interactions 
using molecular fingerprints and protein sequences, Curr. Protein Pept. Sci. 19 (5) 
(2018) 468–478.

[26] S. Daminelli, J.M. Thomas, C. Durán, C.V. Cannistraci, Common neighbours and 
the local-community-paradigm for topological link prediction in bipartite networks, 
New J. Phys. 17 (11) (2015) 113037.

[27] C. Durán, S. Daminelli, J.M. Thomas, V.J. Haupt, M. Schroeder, C.V. Cannistraci, 
Pioneering topological methods for network-based drug–target prediction by ex-

ploiting a brain-network self-organization theory, Brief. Bioinform. 19 (6) (2018) 
1183–1202.

[28] Q. Yuan, J. Gao, D. Wu, S. Zhang, H. Mamitsuka, S. Zhu, Druge-rank: improving 
drug–target interaction prediction of new candidate drugs or targets by ensemble 
learning to rank, Bioinformatics 32 (12) (2016), i18–i27.

[29] L. Wang, Z.-H. You, X. Chen, S.-X. Xia, F. Liu, X. Yan, Y. Zhou, K.-J. Song, 
A computational-based method for predicting drug–target interactions by using 
stacked autoencoder deep neural network, J. Comput. Biol. 25 (3) (2018) 361–373.

[30] A. Ezzat, M. Wu, X.-L. Li, C.-K. Kwoh, Drug-target interaction prediction via class 
imbalance-aware ensemble learning, BMC Bioinform. 17 (19) (2016) 509.

[31] A. Ezzat, M. Wu, X.-L. Li, C.-K. Kwoh, Drug-target interaction prediction using en-

semble learning and dimensionality reduction, Methods 129 (2017) 81–88.

[32] X. Chen, C.C. Yan, X. Zhang, X. Zhang, F. Dai, J. Yin, Y. Zhang, Drug–target interac-

tion prediction: databases, web servers and computational models, Brief. Bioinform. 
17 (4) (2015) 696–712.

[33] M. Wen, Z. Zhang, S. Niu, H. Sha, R. Yang, Y. Yun, H. Lu, Deep-learning-based 
drug–target interaction prediction, J. Proteome Res. 16 (4) (2017) 1401–1409.

[34] Y. López, A. Dehzangi, S.P. Lal, G. Taherzadeh, J. Michaelson, A. Sattar, T. Tsunoda, 
A. Sharma, Sucstruct: prediction of succinylated lysine residues by using structural 
properties of amino acids, Anal. Biochem. 527 (2017) 24–32.

[35] G. Taherzadeh, Y. Zhou, A.W.-C. Liew, Y. Yang, Structure-based prediction of 
protein-peptide binding regions using random forest, Bioinformatics 34 (3) (2018) 
477–484.

[36] Y. Freund, R.E. Schapire, A desicion-theoretic generalization of on-line learning and 
an application to boosting, in: European Conference on Computational Learning 
Theory, Springer, Springer, 1995, pp. 23–37.

[37] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep Learning, Vol. 1, MIT Press, 
Cambridge, 2016.

[38] Y. Du, J. Wang, X. Wang, J. Chen, H. Chang, Predicting drug-target interaction via 
wide and deep learning, in: Proceedings of the 2018 6th International Conference 
on Bioinformatics and Computational Biology, ACM, 2018, pp. 128–132.

[39] L. Wang, Z.-H. You, X. Chen, S.-X. Xia, F. Liu, X. Yan, Y. Zhou, Computational meth-

ods for the prediction of drug-target interactions from drug fingerprints and protein 
sequences by stacked auto-encoder deep neural network, in: International Sympo-

sium on Bioinformatics Research and Applications, Springer, 2017, pp. 46–58.

[40] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke, A. Rabinovich, Going deeper with convolutions, arXiv :1409 .4842, 2014.

[41] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception ar-

chitecture for computer vision, in: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, 2016, pp. 2818–2826.

[42] C. Szegedy, S. Ioffe, V. Vanhoucke, A.A. Alemi, Inception-v4, inception-resnet and 
the impact of residual connections on learning, in: AAAI, vol. 4, 2017, p. 12.

[43] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, 
G. Irving, M. Isard, et al., Tensorflow: a system for large-scale machine learning, in: 
OSDI, vol. 16, 2016, pp. 265–283.

[44] F. Rayhan, S. Ahmed, A. Mahbub, M. Jani, S. Shatabda, D.M. Farid, et al., Cus-

boost: cluster-based under-sampling with boosting for imbalanced classification, 
arXiv preprint arXiv :1712 .04356.

[45] D.P. Kingma, J. Ba Adam, A method for stochastic optimization, arXiv preprint 
arXiv :1412 .6980.

[46] M. Lin, Q. Chen, S. Yan, Network in network, arXiv preprint arXiv :1312 .4400.

[47] D.S. Wishart, C. Knox, A.C. Guo, D. Cheng, S. Shrivastava, D. Tzur, B. Gautam, M. 
Hassanali, Drugbank: a knowledgebase for drugs, drug actions and drug targets, 
Nucleic Acids Res. 36 (suppl 1) (2008) D901–D906.

[48] M. Kanehisa, M. Araki, S. Goto, M. Hattori, M. Hirakawa, M. Itoh, T. Katayama, S. 
Kawashima, S. Okuda, T. Tokimatsu, et al., Kegg for linking genomes to life and the 
environment, Nucleic Acids Res. 36 (suppl 1) (2008) D480–D484.

[49] I. Schomburg, A. Chang, C. Ebeling, M. Gremse, C. Heldt, G. Huhn, D. Schomburg, 
Brenda, the enzyme database: updates and major new developments, Nucleic Acids 
Res. 32 (suppl 1) (2004) D431–D433.

[50] S. Günther, M. Kuhn, M. Dunkel, M. Campillos, C. Senger, E. Petsalaki, J. Ahmed, 
E.G. Urdiales, A. Gewiess, L.J. Jensen, et al., Supertarget and matador: resources 
for exploring drug-target relationships, Nucleic Acids Res. 36 (suppl 1) (2008) 
D919–D922.

[51] D.-S. Cao, S. Liu, Q.-S. Xu, H.-M. Lu, J.-H. Huang, Q.-N. Hu, Y.-Z. Liang, Large-scale 
prediction of drug–target interactions using protein sequences and drug topological 
structures, Anal. Chim. Acta 752 (2012) 1–10.

[52] J.H. Friedman, On bias, variance, 0/1—loss, and the curse-of-dimensionality, Data 
Min. Knowl. Discov. 1 (1) (1997) 55–77.

http://refhub.elsevier.com/S2405-8440(20)30289-9/bib611D6F506D2D5D5CAAA8B41BF43A3EDCs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib611D6F506D2D5D5CAAA8B41BF43A3EDCs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib611D6F506D2D5D5CAAA8B41BF43A3EDCs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib33180FCD9DCDD5209EA842CDCC3AE619s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib33180FCD9DCDD5209EA842CDCC3AE619s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib33180FCD9DCDD5209EA842CDCC3AE619s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibCA6F43C195D142A3F4B40A137B2D3AEAs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibCA6F43C195D142A3F4B40A137B2D3AEAs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibCA6F43C195D142A3F4B40A137B2D3AEAs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib321B9460FF061CE5D4E4B2DF0BBF6589s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib321B9460FF061CE5D4E4B2DF0BBF6589s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib321B9460FF061CE5D4E4B2DF0BBF6589s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib7947014604F7679DBC4794ADE3D16F6Ds1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib7947014604F7679DBC4794ADE3D16F6Ds1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib7947014604F7679DBC4794ADE3D16F6Ds1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib64E6431A61C70EBCE7BFB488142A637As1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib64E6431A61C70EBCE7BFB488142A637As1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib64E6431A61C70EBCE7BFB488142A637As1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibDBDEB29687C0F3D4F55E7796C4C0599Es1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibDBDEB29687C0F3D4F55E7796C4C0599Es1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibDBDEB29687C0F3D4F55E7796C4C0599Es1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib84448055C861AE60CE57024F9C9441E5s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib84448055C861AE60CE57024F9C9441E5s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib84448055C861AE60CE57024F9C9441E5s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibFEFA516F4A2F214AFE5CD658B8096AEDs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibFEFA516F4A2F214AFE5CD658B8096AEDs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibFEFA516F4A2F214AFE5CD658B8096AEDs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib5E3AA5DEE6256D93AD0E20738E29B8C8s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib5E3AA5DEE6256D93AD0E20738E29B8C8s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibE647A8B934885CEF782AB0FC8EA6365Ds1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibE647A8B934885CEF782AB0FC8EA6365Ds1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibE647A8B934885CEF782AB0FC8EA6365Ds1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib0BCB0C4A5FB8C42E63A1C1AA92D1AD7Cs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib0BCB0C4A5FB8C42E63A1C1AA92D1AD7Cs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib0BCB0C4A5FB8C42E63A1C1AA92D1AD7Cs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibE624B16D21D0B280CD06EEFFA8A6F506s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibE624B16D21D0B280CD06EEFFA8A6F506s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibE624B16D21D0B280CD06EEFFA8A6F506s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibA3083818CDF4863795F12F12DB7C2400s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibA3083818CDF4863795F12F12DB7C2400s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib72CAE3670A39EAB53ACC90254962615Bs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib72CAE3670A39EAB53ACC90254962615Bs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib4870A36065ED7A8D303A85C21E4A2958s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib4870A36065ED7A8D303A85C21E4A2958s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib4870A36065ED7A8D303A85C21E4A2958s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib2F2A4C9BC66CA184B62CCF3193498BF1s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib2F2A4C9BC66CA184B62CCF3193498BF1s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib2F2A4C9BC66CA184B62CCF3193498BF1s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibB1EAFE21D8E216BDE7028FFAFE9A5767s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibB1EAFE21D8E216BDE7028FFAFE9A5767s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibB1EAFE21D8E216BDE7028FFAFE9A5767s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib21CB3915FC77B0A03BFFA822C26BA3A0s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib21CB3915FC77B0A03BFFA822C26BA3A0s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib21CB3915FC77B0A03BFFA822C26BA3A0s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibB83AA510F62520D6E677D4FE5732A401s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibB83AA510F62520D6E677D4FE5732A401s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibDF60AD4DDEA7CFBD648198F9FCEA50D1s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibDF60AD4DDEA7CFBD648198F9FCEA50D1s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibDF60AD4DDEA7CFBD648198F9FCEA50D1s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib6CAE73AFFEE33423BF77C6DE22A93EFCs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib6CAE73AFFEE33423BF77C6DE22A93EFCs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibD76B03270A04F2EEF6EAD8EBDCAAFD73s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibD76B03270A04F2EEF6EAD8EBDCAAFD73s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib4236A745FE9393A486EBAA8E94FA42E1s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib4236A745FE9393A486EBAA8E94FA42E1s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibC32F1869DAF990E337AE3FEE279E13ABs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibC32F1869DAF990E337AE3FEE279E13ABs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibC32F1869DAF990E337AE3FEE279E13ABs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib209F79E4E3D19EB484C08B6D0BAAAF39s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib209F79E4E3D19EB484C08B6D0BAAAF39s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib209F79E4E3D19EB484C08B6D0BAAAF39s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib60D319496B900ADA1CB0C5751DB92DFFs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib60D319496B900ADA1CB0C5751DB92DFFs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib60D319496B900ADA1CB0C5751DB92DFFs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib60D319496B900ADA1CB0C5751DB92DFFs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib1D3D5A0B43F3B488E28C91FAC2278810s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib1D3D5A0B43F3B488E28C91FAC2278810s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib1D3D5A0B43F3B488E28C91FAC2278810s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib2FCCAA7532C5E6E5F3B091532284B382s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib2FCCAA7532C5E6E5F3B091532284B382s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib2FCCAA7532C5E6E5F3B091532284B382s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib63BC73460A3FDE0D523EEE0EE345DF72s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib63BC73460A3FDE0D523EEE0EE345DF72s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibE32112CCEAC0BBBA99DB934E2512F00Cs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibE32112CCEAC0BBBA99DB934E2512F00Cs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib44026F9A46EC8721A288B16666EFC780s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib44026F9A46EC8721A288B16666EFC780s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib44026F9A46EC8721A288B16666EFC780s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib0A3D71DA1E364FA2A49CEE56F1D1BBABs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib0A3D71DA1E364FA2A49CEE56F1D1BBABs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibE22F1861F67D6765152F7734A0D33EE6s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibE22F1861F67D6765152F7734A0D33EE6s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibE22F1861F67D6765152F7734A0D33EE6s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib55A542FA418B7EC71D7D247EC93DEFA1s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib55A542FA418B7EC71D7D247EC93DEFA1s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib55A542FA418B7EC71D7D247EC93DEFA1s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibA14F5D9AF1B868A86A9235695708A4B5s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibA14F5D9AF1B868A86A9235695708A4B5s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibA14F5D9AF1B868A86A9235695708A4B5s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib379B5402A47C72C9098151A28A448188s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib379B5402A47C72C9098151A28A448188s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib73CDF83AB03F59110510FA3CE7E5092Fs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib73CDF83AB03F59110510FA3CE7E5092Fs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib73CDF83AB03F59110510FA3CE7E5092Fs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib90426E8C360E6705527480C9274E8B44s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib90426E8C360E6705527480C9274E8B44s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib90426E8C360E6705527480C9274E8B44s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib90426E8C360E6705527480C9274E8B44s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibEE707ED6078656DC7906005CBEB07085s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibEE707ED6078656DC7906005CBEB07085s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib19919EE9B71C3A14CEDC75E00D2E301Cs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib19919EE9B71C3A14CEDC75E00D2E301Cs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib19919EE9B71C3A14CEDC75E00D2E301Cs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib749C1DBAE9A2C683232355AED7A78E85s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib749C1DBAE9A2C683232355AED7A78E85s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib94AA557B3ED64B441F37A3CC8AA9D13Fs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib97A64AF2DE8C499CEC99E0F0A4790858s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib97A64AF2DE8C499CEC99E0F0A4790858s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib97A64AF2DE8C499CEC99E0F0A4790858s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibB88B8F9E9C5AF9DF750A673227029C8Fs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibB88B8F9E9C5AF9DF750A673227029C8Fs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibB2AC4B5842AED781339E0C9D690F62B3s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib639992767081C38F7FE36158CB862CE7s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib639992767081C38F7FE36158CB862CE7s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib639992767081C38F7FE36158CB862CE7s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib6997AAACF2AC226CCA01F5FA35AF1F5Cs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib6997AAACF2AC226CCA01F5FA35AF1F5Cs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib6997AAACF2AC226CCA01F5FA35AF1F5Cs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib5BB2C0641BD9D0BF777BF3CD51FE82DEs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib5BB2C0641BD9D0BF777BF3CD51FE82DEs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib5BB2C0641BD9D0BF777BF3CD51FE82DEs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib025ED98DFC90463111D7AD409EC90533s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib025ED98DFC90463111D7AD409EC90533s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib025ED98DFC90463111D7AD409EC90533s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib025ED98DFC90463111D7AD409EC90533s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib09F29D9C15964E107D916BEC4524292Bs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib09F29D9C15964E107D916BEC4524292Bs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib09F29D9C15964E107D916BEC4524292Bs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibF387F672C7131178DCCE7215CB8E7E2Cs1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibF387F672C7131178DCCE7215CB8E7E2Cs1


F. Rayhan et al. Heliyon 6 (2020) e03444
[53] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: machine learning in 
python, J. Mach. Learn. Res. 12 (Oct) (2011) 2825–2830.

[54] S.R. Safavian, D. Landgrebe, A survey of decision tree classifier methodology, IEEE 
Trans. Syst. Man Cybern. 21 (3) (1991) 660–674.

[55] T. Joachims, Making large-scale svm learning practical, Tech. Rep., Technical re-

port, SFB 475: Komplexitätsreduktion in Multivariaten Datenstrukturen Universität 
Dortmund, 1998.

[56] F. Rayhan, S. Ahmed, A. Mahbub, M. Jani, S. Shatabda, D.M. Farid, C.M. Rahman, 
et al., Meboost: mixing estimators with boosting for imbalanced data classification, 
arXiv preprint arXiv :1712 .06658.

[57] Y. Yamanishi, M. Kotera, M. Kanehisa, S. Goto, Drug-target interaction prediction 
from chemical, genomic and pharmacological data in an integrated framework, 
Bioinformatics 26 (12) (2010), i246–i254.

[58] P. Mutowo, A.P. Bento, N. Dedman, A. Gaulton, A. Hersey, J. Lomax, J.P. Over-

ington, A drug target slim: using gene ontology and gene ontology annotations to 
navigate protein-ligand target space in chembl, J. Biomed. Semant. 7 (1) (2016) 59.

[59] A. Ezzat, M. Wu, X.-L. Li, C.-K. Kwoh, Computational prediction of drug-target in-

teractions using chemogenomic approaches: an empirical survey, Brief. Bioinform. 
20 (4) (2019) 1337–1357.
9

http://refhub.elsevier.com/S2405-8440(20)30289-9/bib1E37FE8AE148BF9CF67410C5AC97BB84s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib1E37FE8AE148BF9CF67410C5AC97BB84s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib1E37FE8AE148BF9CF67410C5AC97BB84s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibA40A48E07726C427A5B4D45866A8B559s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibA40A48E07726C427A5B4D45866A8B559s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib3C46AE1C5EA29834E4E085E34BD962C2s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib3C46AE1C5EA29834E4E085E34BD962C2s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib3C46AE1C5EA29834E4E085E34BD962C2s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibA1A9D73204F5B79A3099A8A16A0C6F64s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibA1A9D73204F5B79A3099A8A16A0C6F64s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bibA1A9D73204F5B79A3099A8A16A0C6F64s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib78B660BB33EF447E1781D2B6A993202Ds1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib78B660BB33EF447E1781D2B6A993202Ds1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib78B660BB33EF447E1781D2B6A993202Ds1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib3713184366C0A1924EF48A365B34594As1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib3713184366C0A1924EF48A365B34594As1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib3713184366C0A1924EF48A365B34594As1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib7462AAB91B5407EA5FA312E7E9543840s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib7462AAB91B5407EA5FA312E7E9543840s1
http://refhub.elsevier.com/S2405-8440(20)30289-9/bib7462AAB91B5407EA5FA312E7E9543840s1

	FRnet-DTI: Deep convolutional neural network for drug-target interaction prediction
	1 Introduction
	2 Methodology
	2.1 Convolutional models
	2.2 Rational for FRnet-DTI
	2.2.1 FRnet-Encode
	2.2.2 FRnet-Predict

	2.3 Datasets
	2.4 Performance evaluation

	3 Results and discussion
	4 Conclusion
	Declarations
	Author contribution statement
	Funding statement
	Competing interest statement
	Additional information

	References


