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Abstract: The number of allogeneic hematopoietic stem cell transplantations conducted worldwide
is constantly rising. Together with that, the absolute number of complications after the procedure
is increasing, with graft-versus-host disease (GvHD) being one of the most common. The standard
treatment is steroid administration, but only 40–60% of patients will respond to the therapy and some
others will be steroid-dependent. There is still no consensus regarding the best second-line option,
but fecal microbiota transplantation (FMT) has shown encouraging preliminary and first clinically
relevant results in recent years and seems to offer great hope for patients. The reason for treatment
of steroid-resistant acute GvHD using this method derives from studies showing the significant
immunomodulatory role played by the intestinal microbiota in the pathogenesis of GvHD. Depletion
of commensal microbes is accountable for aggravation of the disease and is associated with decreased
overall survival. In this review, we present the pathogenesis of GvHD, with special focus on the
special role of the gut microbiota and its crosstalk with immune cells. Moreover, we show the results
of studies and case reports to date regarding the use of FMT in the treatment of steroid-resistant
acute GvHD.

Keywords: gut microbiota; graft-versus-host disease; fecal microbiota transplantation; gut-immune
cells cross-talk; gastrointestinal acute GvHD

1. Introduction

Acute graft-versus-host disease (aGvHD) is a common life-threatening complication
of allogeneic hematopoietic stem cell transplantation (alloHCT), which occurs in 25 to 50%
of alloHCT recipients and is known to be the second most common cause of death (after
relapse of the underlying disease) in this group of patients [1,2]. Despite its frequency
having decreased over time in matched related and unrelated donor transplantations, the
absolute number of patients experiencing aGvHD has increased due to the growing number
of alloHCT performed worldwide [3]. The gastrointestinal manifestation of aGvHD is also
increasing [4]. Graft-versus-host disease occurs when immunocompetent T cells in the graft
recognize the recipient as foreign tissue and initiate the immune response (Figure 1). The
main symptoms appear in the skin (maculopapular rash), liver (cholestasis due to small bile
duct damage), and gastrointestinal tract (watery or bloody diarrhea, nausea, vomiting, and
crampy abdominal pain). Diagnosis may be sometimes difficult because of overlapping
symptoms relating to toxicities of conditioning and concomitant infections. The clinical
diagnosis can be made with typical symptoms, laboratory tests, and tissue biopsy, which
should be analyzed with caution because of the relatively common false-negative and false-
positive results [5–7]. Risk factors for aGvHD are the extent of HLA disparity, increased
age of both the donor and recipient, transplantation from an unrelated donor, transplanta-
tion from a female donor to a male recipient, grafts received from peripheral blood, and
intensity of the conditioning regimen [8–10]. Prevention of GvHD includes administration
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of antithymocyte globulin (ATG), calcineurin inhibitors (cyclosporine or tacrolimus), and
methotrexate (folate antagonist) or mycophenolate mofetil [11,12]. Acute GvHD is treated
with glucocorticoids, but steroid refractoriness or dependency is relatively common and
only 40–60% of patients will respond to this therapy [13]. Still, there is no consensus about
the best second-line treatment, and mortality in patients not responding to steroids is high,
with a six-month overall survival estimate of 50% and two-year overall survival rate of a
maximum of 30% [14,15]. In 2020, for the first time, the authors of a randomized clinical
trial documented that intervention with ruxolitinib resulted in statistically higher overall
response rates than standard of care [16]. Among other most frequently used second-line
treatments are ATG [17], post-transplant cyclophosphamide [18], etanercept [19], inflix-
imab [20], and fecal microbiota transplantation (FMT) more recently [21].
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results in the transfer of bacteria to the bloodstream, which can cause sepsis. Moreover, the indole 
that is produced by commensal microbiota is also known to play a role in maintaining intestinal 
integrity. TMAO (choline-derived trimethylamine N-oxide) has been shown in the mouse model to 
promote the differentiation of Th17 cells, which facilitates GvHD. Additionally, the level of vitamin 
A seems to be negatively correlated with the severity of alloHCT, and some gut microbes are known 
for preventing retinoid metabolism. The gut microbiota of patients with aGvHD is of poor diversity. 
During the second stage, the host APC presents antigens to the donor T cells, stimulating robust 
annihilation of the enterocytes in phase 3, which in turn leads to further aggravation of the disease. 

Figure 1. The role of the gut microbiota in the pathogenesis of graft-versus-host disease. During
the first phase of GvHD, the conditioning therapy is accountable for tissue damage, and rapidly
proliferating intestinal cells are particularly prone to the therapy. The damaged cells released TNFα,
IL-6, and IL-1, which are known as “danger signals” that trigger the influx of APC. SCFA (short-chain
fatty acids)-producing bacteria are frequently eliminated during the time of alloHCT because of the
antibiotics used. Therefore, the lack of SCFA needed for maintaining intestinal integrity and inhibiting
apoptosis of intestinal wall cells leads to the aggravation of GvHD. Lack of intestinal integrity results
in the transfer of bacteria to the bloodstream, which can cause sepsis. Moreover, the indole that is
produced by commensal microbiota is also known to play a role in maintaining intestinal integrity.
TMAO (choline-derived trimethylamine N-oxide) has been shown in the mouse model to promote the
differentiation of Th17 cells, which facilitates GvHD. Additionally, the level of vitamin A seems to be
negatively correlated with the severity of alloHCT, and some gut microbes are known for preventing
retinoid metabolism. The gut microbiota of patients with aGvHD is of poor diversity. During the
second stage, the host APC presents antigens to the donor T cells, stimulating robust annihilation of
the enterocytes in phase 3, which in turn leads to further aggravation of the disease.
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Fecal microbiota transplantation (FMT) is probably best known for its outstanding
efficacy in recurrent or refractory Clostridioides difficile infection (CDI), with more than 90%
cure rate [17]. Together with growing evidence about the role of the gut microbiota in
new entities, there are increasing attempts to reverse imbalance in the composition of gut
microbiota with FMT. Our group recently presented a case series of patients treated for
CDI with overlapping COVID-19, which showed only mild symptoms of the SARS-CoV-2
infection despite very high risk for a fatal course as well as a quick end to shedding of the
virus in the stool [22]. Many diseases where FMT is experimentally used are characterized
by a proinflammatory skewed immune response, and FMT acts as an immunoregulatory
factor decreasing the vicious circle and constant production of proinflammatory cytokines.
Acute GvHD is such a disease, and the first data published showed promising results of
FMT as a treatment modality for steroid-refractory/dependent type of this disease [23–25].

2. Pathogenesis of Acute Graft-versus-Host Disease

Acute GvHD pathogenesis is the effect of a vicious circle that occurs when donor T
lymphocytes are activated against the host tissues, which in turn release damage signals
that further trigger T cells. There are three widely recognized steps in the pathogenesis of
aGvHD [26,27]. During the first step (Figure 1), which is associated with tissue damage,
proinflammatory cytokines, such as tumor necrosis factor-α (TNFα) or interleukin-1 (IL-1),
are released. Pretransplant conditioning regimen, infections, or other inflammatory pro-
cesses before the transplant are accountable for tissue damage. The released cytokines play
the role of “danger signals”, which are considered to be the trigger in the pathogenesis of
aGvHD [28]. Interestingly, the gastrointestinal (GI) tract plays a vital role in the cytokine
release site and the whole process of aGvHD initiation [29]. Cells that are known to be
particularly damaged during the conditioning therapy are Paneth and goblet cells. Paneth
cells are responsible for the secretion of alpha defensins, which are antimicrobial peptides
that maintain the appropriate balance in the composition of gut microbiota [30]. Loss of
these cells results in intestinal dysbiosis [31]. Goblet cells secrete mucin that shields the
intestinal epithelial cells (IECs) from luminal bacteria [32]. Damage of these cells causes
loss of IEC integrity and permits the translocation of gut microbes and all gut antigenic load
(metabolites, peptides, and proteins) into the submucosa, lymph nodes, and bloodstream.
This consequently enhances the production of proinflammatory cytokines and stimulates
the GvHD itself [33]. The level of damage in the GI tract is clinically of the greatest concern.

After the alloHCT procedure, step two is initiated. Donor T cells home to the lymphoid
tissues within hours after transplantation. After 2–3 days, the host antigen-presenting
cells (APCs) lead to donor T cell activation, proliferation, and secretion of cytokines [34].
Data suggest that nonhematopoietic APCs are predominantly engaged in this process [35].
Additionally, T cells differentiate into Th1-type, cytotoxic T cells (Tc), and Th17 lymphocytes
that produce TNFα, IL-2, and IFNγ, which enhances the presentation of antigens [36]. All
of these lead to cytotoxic T cells infiltration in target organs, such as the liver, GI tract, and
skin [34]. The GI tract constitutes one of the barriers protecting us from the environment
and is also the biggest compartment of immune-competent cells. The GI mucosa (GALT)
is considered the biggest human lymphoid organ. In the second step, all APCs massively
present antigens (self and nonself) to the mature donor’s T cells, thereby activating invasion
and damage.

In the third step, T cells robustly proliferate in the target tissues and cause cell lysis
via Fas/FasL and perforin/granzyme mechanisms. Elimination of target cells by donor
cytotoxic T cells leads to a further increase in the production of proinflammatory cytokines,
such as those mentioned in step one, and the vicious circle is initiated [37].

The steps in which the gut microbiota is particularly engaged is undoubtedly steps
one and two. During the first phase, the GI tract is damaged, with APCs presenting in the
second phase as either self (intestinal, skin, and liver epitopes) or nonself and mostly as
microbial (cell wall fragments) antigens. There is mounting evidence that gut microbiota
dysbiosis acts as a risk factor for GvHD. We have previously shown that pretransplant gut



Biomedicines 2022, 10, 837 4 of 16

colonization with antibiotic-resistant bacteria, which is a marker of dysbiosis and coloniza-
tion resistance loss, is a risk factor for GvHD, mostly of the GI tract [38]. Concomitantly and
since then, other groups have shown that low gut bacterial diversity correlates with lower
overall survival and higher incidence of GvHD [39,40]. The main cause of lower bacterial
diversity is antibiotic therapy before and during alloHCT [41]. All of these facts seem
logical as mucosa-associated, especially gut-associated, lymphoid tissue (MALT and GALT)
contains about 70% of the lymphocyte population, and there is constant, never-ending
“conversation” between immune-competent cells and the microbiota.

3. Crosstalk between the Intestinal Immune System and the Gut Microbiota

The wall of GI is colonized by the “two armies” of cells that are located on either sides
of this boundary. On the one side are the gut microbes, namely bacteria, viruses, fungi,
and parasites, while on the opposite side, the ‘’army” of immune cells is located consisting
of dendritic cells (DCs), macrophages, T/B cells, and neutrophils. A boundary is made
of IECs that are often mediating signals between the two sides of the wall. Taking into
consideration the pathogenesis of GvHD has been explained previously, this section is
focused on APCs, T cells, and IECs.

3.1. Intestinal Epithelial Cells

Intestinal epithelial cells include absorptive epithelial, Paneth, and goblet cells. Their
main role is to mediate signals between gut microbes and immune cells. Apart from that,
they constitute a dense wall that eliminates the possibility of an influx of bacteria into the
bloodstream. Additionally, these cells are responsible for the regulation of both the gut
microbiota composition and immunomodulation [42].

During the conditioning before alloHCT, IECs are damaged, which results in the
release of “danger signals”, such as TNFα or IL-1 [28]. Moreover, the destruction of these
cells increases the permeability of the intestinal wall, which enables the translocation of
luminal bacteria to the submucous tissue and the bloodstream. This in turn results in
further release of “danger signals” and triggers the influx of immune cells [33].

3.2. Antigen-Presenting Cells

Antigen-presenting cells consist mainly of DCs and macrophages, and as discussed
before, the role of host APCs is crucial in the pathogenesis of aGvHD [34]. The DCs
occupying the intestinal wall (lamina propria) are an exceptional kind of DCs because
of the presence of CD103 on their surface and the production of TGF-beta, which results
in differentiation of naïve T cells into the T regulatory phenotype [43]. This seems to be
extraordinary given the fact that other DCs are known producers of inflammatory cytokines
and influence differentiation of T cells towards the Th1 phenotype. Moreover, the intestinal
wall DCs present antigens in the mesenteric lymph nodes and usually do not reach the
spleen, which could provoke commensal-specific systemic response [44].

Macrophages residing in the intestinal wall are exceptional as well. They do not
express CD14, which causes LPS-induced cell activation and release of proinflammatory
cytokines [45]. Macrophages share some features of DCs, such as the ability to affect
differentiation of naïve T cells into the T regulatory phenotype. They can also tune the
ability of intestinal DCs to drive the differentiation of Th17 cells [46]. Interestingly, the
population of CD14+ macrophages that occupy the GI tract produces proinflammatory
cytokines, such as TNFα and IL-23, which provokes the influx of similar macrophages to
the intestinal wall [47].

To sum up, APCs are responsible for sensing the luminal antigens. Then, they are
responsible for presenting the antigens to the T cells in the Peyer’s patches and mesenteric
lymph nodes. The lack of balanced gut microbiota or the presence of some species of bacte-
ria can provoke the production of proinflammatory cytokines and drive the differentiation
of naïve T cells into the Th17 type [48]. Such a situation can influence the pathogenesis
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of aGvHD by additionally “boosting” the first step, which relies on the production of
proinflammatory cytokines.

3.3. T Cells

The interplay between the gut microbiota and T cells could be limited to the balance
between Tregs and Th17 cells. Many molecules derived from the lumen of the intestine
can switch the mode of the intestinal immune system from proinflammatory to anti-
inflammatory and vice versa through these two cell types. For instance, bacterial ATP
stimulation can result in Th17 differentiation, but short-chain fatty acids (SCFAs) drive
the differentiation of Tregs [49,50]. This is of great importance given the fact that Tregs
are the main cells accountable for dampening the immune response, such as that seen in
aGvHD [51]. Their tolerogenic capacity effectivity relies on the ability to downregulate the
expression of TLR5, which is associated with aGvHD [52,53]. Another recently described
regulatory cell type is the Th9 population that secretes IL-9, which was able to dampen
IFNγ-mediated GvHD in the murine model [54].

4. The Role of Gut Microbiota in the Pathogenesis of Acute Graft-Versus-Host Disease

The first experiments assessing the role of the gut microbiota in the pathogenesis
of aGvHD were performed in the 1970s, and they showed that mice treated with antibi-
otics targeting intestinal bacteria or germ-free animals developed less or a mild form
of aGvHD [55,56]. Subsequent trials showed that introducing metronidazole and/or
ciprofloxacin into the conditioning regimen (or other decontamination strategies) resulted
in lower aGvHD incidence [57,58]. Apart from that, recent studies in the era of next-
generation sequencing have shown that the loss of bacterial diversity is associated with the
development of gastrointestinal aGvHD [59–61]. The lack of balance between Th17 and
Treg cell differentiation due to the loss of diversified intestinal microbiota has been found
to be the mechanism of such aGvHD induction [62]. However, it is interesting to note how
the gut microbiota influences the mechanism of aGvHD pathogenesis.

The epithelial damage done by the conditioning therapy and irradiation leads to
the loss of intestinal integrity followed by bacterial translocation. Moreover, the aGvHD
itself contributes to further dysbiosis via damage to the Paneth cells, which facilitates
the expansion of potentially harmful bacteria [63,64]. Bacteria carry pathogen-associated
molecular patterns (PAMPs), which are accountable for the activation of the innate im-
mune system [65]. PAMPs are recognized by several receptors, such as toll-like receptors
(TLRs) [66], NOD-like receptors (NLRs) [67], and sialic acid-binding Ig-like lectins [68].
This leads to further activation of the donor T cells by the innate immune system and
additionally exacerbates aGvHD.

Among the bacteria that prevent aGvHD development are Clostridiales, which are
potent SCFAs producers, and their mechanism of action will be discussed further. The
higher abundance of these bacteria was found to be associated with decreased number
of GvHD-related deaths [69,70]. Jenq et al. showed that increased existence of bacteria
from the Blautia genus belonging to Clostridiales was associated with decreased number
of GvHD-related deaths. Additionally, the abundance of the same bacteria positively
correlated with overall survival. The factors mentioned by the authors as possibly leading
to the reduction of Blautia in the gut were treatment with antibiotics targeting the anaerobic
bacteria and total parenteral nutrition administered for a long time [61]. Another study
also showed that the use of aztreonam and cefepime, which both preserve anaerobic flora,
resulted in a reduction in GvHD-related mortality [59].

On the other hand, the high abundance of some bacteria predisposes to GvHD onset
and enhanced severity of the disease. Enterococcus is one such example, and increased
number of these bacteria are found at the initiation of aGvHD [71]. Interestingly, the main
source of energy for these bacteria is lactose, so patients with lactose malabsorption and
subsequently increased lactose concentration in the intestinal lumen have an increased
risk of Enterococcus domination. Moreover, an alloHCT mouse model on lactose-deprived
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diet showed lower number of these bacteria in the gut microbiota and thus improved
survival related to GvHD [72]. Another bacteria highlighted to predispose to GvHD is
Akkermansia muciniphila, which is associated with increased aGvHD lethality in mice [73].

Moreover, in addition to the bacteria themselves, their metabolites can also influence
the pathogenesis of aGvHD. Probably the most known metabolite of intestinal bacteria is
butyrate, one of SCFAs that is the main source of energy for IECs [74], and it is diminished
after alloHCT [75]. Butyrate was shown to improve intestinal integrity, inhibit apoptosis,
and in turn lead to alleviation of aGvHD [60]. Additionally, it causes increased differen-
tiation of naïve intestinal T cells into Tregs, which are known for silencing the immune
response associated with aGvHD [76,77]. Butyrate is also a histone deacetylase inhibitor
that inhibits antigen-stimulated donor T cells [78]. Another metabolite produced by gut
microbes is indole, which is a metabolite of tryptophan. Indole was shown to influence the
expression of pro- and anti-inflammatory genes in IECs [71]. Patients with severe aGvHD
had reduced 3-indoxyl sulfate levels and showed a shift toward Enterococci bacteria in
the stool specimens [71]. Indoles administered orally in mice were found to limit aGvHD
through the prevention and reparation of the lost mucosal barrier of the gut [79]. Moreover,
a high concentration of choline-derived trimethylamine N-oxide (TMAO) was found to
lead to increased lethality in the mouse model, which was attributed to induction of M1
macrophage polarization and subsequent differentiation of Th1 and Th17 cells [60]. Vitamin
A also plays a role in the incidence of aGvHD, with studies showing that lower levels
of vitamin A 30 days after alloHCT were associated with increased aGvHD prevalence
in a pediatric population. This is probably because the differentiation of naïve T cells to-
wards Tregs instead of Th17 is driven by vitamin A [80]. Moreover, commensal microbiota
probably inhibits retinoid metabolism in enterocytes to prevent dysbiosis by decreasing
the IL-22 levels. The notion that children with GI aGvHD had increased IL-22 supports
this hypothesis [81,82].

Recently presented studies clearly suggest that the abundance and wealth of the gut
microbiota during the neutrophil engraftment period is crucial regarding the particular
time point when gut microbiota predicts the risk of aGvHD development. Researchers
have shown that patients who have lowered bacterial diversity due to conditioning and
antibiotics also have increased risk of aGvHD [83]. Another work by Golob et al. proved
that the gut microbiota measured during the time of neutrophil recovery could become a
useful predictor of subsequent aGvHD severity. The authors mentioned that such knowl-
edge would allow physicians to act early and intensively to protect particularly prone
patients based on their gut microbiota composition. In the same work, they showed that
oral Actinobacteria and oral Firmicutes in the stool were positively correlated with severe
aGvHD development, while some Bacteroides, such as B. caccae, B. ovatus, and B. thetaiotaomi-
cron, were negatively correlated. Moreover, there could be an association between the gut
microbiota of the HCT donor and recipient microbiota regarding the risk of aGvHD [84]. In
line with this, Ingham et al. checked the dynamics of the gut, nose, and oral microbiota
changes after alloHCT in a pediatric population and found that it decreased in all three
sites directly after transplantation and reconstituted again 1–3 months after the procedure.
Importantly, they proved that aGvHD could be predicted based on microbiota composition
from all three sites before alloHCT. They also confirmed the effect of Blautia abundance on
the risk and severity of aGvHD in the pediatric population [85].

5. Current Guidelines and Potential for the Future

The widely known first-line treatment for aGvHD is systemic steroid therapy [86], but
the main limitation is relatively frequent refractoriness or dependency to steroids (35–50%
of patients) [13]. Steroid-refractory aGvHD (SR-aGvHD) can be diagnosed after 3–5 days
of treatment when we see clear progression or 5–7–10 days with no response [87]. When
SR-aGvHD develops, the question is which therapy to use as a second-line treatment
because there is still no consensus on this matter [88]. Moreover, the mortality in this
group of patients is high, and the commonly applied treatment is ineffective. Therefore, the
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search for new drugs and new targets is critical. Some studies have shown an estimated
two-year survival rate of 17% [13], and the average six-month survival estimate is 49% [14].
Additionally, what worsens the situation of these patients is a high frequency of infections,
with bacterial infections (often with antibiotic-resistant bacteria) as the common etiology
of deaths [89].

Among second-line therapies applied in SR-aGvHD, the best documented is ruxolitinib
treatment [16]. Others therapies, such as extracorporeal photopheresis (ECP), mechanistic
target of rapamycin kinase inhibitors, anti-TNFα antibodies, mycophenolate mofetil, anti-
IL-2R antibodies, methotrexate, alemtuzumab, and antithymocyte globulin [14] are less
effective or less studied [87]. In case of failure, it is recommended that another second-line
treatment be tried rather than increasing the dose.

Several treatment options have already been evaluated in clinical studies. This includes
ruxolitinib, as mentioned earlier, and Janus kinase (JAK) 1/JAK2 inhibitor, which influences
all three steps of pathogenesis of aGvHD [90]. Another treatment that is emerging, with the
possible status of being a “black horse”, is FMT (described in detail in the next paragraph),
while other potential microbiota-derived products have also been proposed. Alpha1-
antitrypsin (AAT) is also being studied in clinical trials. In murine models, AAT showed
its efficacy by reducing the release of inflammatory cytokines and increasing the ratio of
Treg to effector T cells. In phase 2 clinical trial in patients with SR-aGvHD (NCT01700036),
the CR and ORR rates were 35 and 65%, respectively, after 28 days [91]. Anti-CD3/CD7
immunotoxin was given fast-track designation for SR-aGvHD treatment by the US Food
and Drug Administration after a study found the CR and ORR rates were 50 and 60%,
respectively, after 28 days. This therapeutic includes a mixture of anti-CD3 and anti-CD7
antibodies conjugated to recombinant ricin A, which suppresses T cell activation and
causes their depletion in vivo [92]. Vedolizumab is another agent that has been studied in
the treatment of aGvHD, but the results showed discrepancies [93–95]. It is a monoclonal
antibody targeting integrin alpha4beta7 expressed on the surface of circulating lymphocytes
and stops their relocation to the GI tract [96]. The mixed results can probably be attributed
to the mechanism of action, which indicates that vedolizumab should only work in the
early stages of the disease and not when aGvHD is already developed. Therefore, studies
now concentrate on the role of vedolizumab as prophylaxis of GvHD (NCT03657160).
Other therapies have also been studied but did not show positive results. Among them
were agents such as brentuximab vedotin (anti-CD30 antibody–drug conjugate) [97] and
begelomab (targeting CD26 expressed on the surface of CD4+ T cells) [98].

6. Fecal Microbiota Transplantation for the Treatment of Acute Graft-versus-Host
Disease: What Do We Know Now?

Fecal microbiota transplantation is the therapy in which a healthy donor’s stool is
transformed into fecal suspension and is given directly to the patient’s GI tract to reestablish
balanced gut microbiota [25]. Given the key role of the gut microbiota in the pathogenesis
of aGvHD, especially the intestinal form of aGvHD, it seems reasonable that FMT should
have a positive influence on the gut barrier and limit step one in the three-step pathogenesis
of aGvHD. Our review shows that in the published studies to date, the overall response rate
of FMT in the treatment of gastrointestinal aGvHD could reach even 74%, with complete
response accounting for 50% (see Table 1).

Kakihana et al. performed a pilot study of FMT in aGvHD of the gut on three patients
with steroid refractoriness and one patient with steroid dependency. All patients responded
to therapy, with three of them showing complete response and one showing a partial
response. An increase in the number of effector regulatory T cells was also seen during
response to FMT [99].

Spindelboeck et al. reported three patients with SR-GI-aGvHD who had a significantly
dysbiotic gut microbiota. All of them responded to FMT, and an important finding was
that microbial engraftment took place only after repeated FMT and was associated with
reduced stool volumes [100].
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Table 1. Clinical studies and trials on fecal microbiota transplantation in GvHD treatment.

Study Indication/
Population

Number of
Patients

Administration
Route Study Type Donor

Relation
Total Number

of FMTs
Serious Adverse

Events Response

Kakihana et al.
[99]

Steroid-
resistant/dependent

gut GvHD
4 Nasogastric

tube Prospective Spouse/
relative 7

1 lower GI
bleeding,

hypoxemia
(probably not

related)

n = 3, CR;
n = 1, PR

Spindelboeck
et al. [100]

Steroid-resistant
grade IV gut GvHD 3 Colonoscopy Retrospective,

case series
Unrelated/

sibling 9 No serious AEs n = 2, CR;
n = 1, PR

Qi et al. [101] Steroid-resistant
GvHD 8 Nasoduodenal

tube Prospective Unrelated 12 No serious AEs n = 5, CR;
n = 1, PR

Shouval et al.
[102]

Steroid-resistant/
dependent GvHD 7 Oral capsules Prospective Unrelated 15

2 bacteremia
(deemed

unrelated)
n = 2, CR

van Lier et al.
[103]

Steroid-resistant/
dependent GvHD 15 Nasoduodenal

tube Prospective Unrelated 15 No serious AEs n = 11, CR

Kaito et al.
[104]

Steroid-resistant
grade IV gut GvHD 1 Oral capsules Prospective Unrelated 2 No serious AEs n = 1, PR

Zhong et al.
[105]

Steroid-resistant
grade III gut GvHD 1 Nasoduodenal

tube Retrospective Unrelated 2 No serious AEs n = 1, CR

Biernat et al.
[106]

Steroid-resistant
grade IV gut GvHD 2 Nasoduodenal

tube Retrospective Unrelated 7 No serious AEs n = 1, CR

Mao et al.
[107]

Steroid-resistant
grade IV gut GvHD 1 Oral capsules Retrospective,

case report Unrelated 2 No serious AEs n = 1, CR

Goloshchapov
et al. [108]

Steroid-resistant
GvHD/4-overlap

GvHD
19

3 gastroscopy,
3 nasointesti-
nal tube, 13

oral capsules

Prospective 15 unrelated, 4
related 19 No data n = 8, CR;

n = 8, PR

Goloshchapov
et al. [109]

Steroid-resistant
GvHD/2-overlap

GvHD
7

2 gastroscopy,
2 nasoduode-

nal tube, 3
oral capsules

Prospective
pediatric

4 unrelated, 3
related, All

were also HSC
donors

7 No serious AEs n = 5, CR;
n = 1, PR

Goeser et al.
[110]

Steroid-resistant
GvHD 11

9 oral
capsules, 2
nasojejunal

tube

Retrospective,
case series Unrelated 11 No serious AEs n = 9, CR;

n = 2, PR

Zhao et al.
[111]

Steroid-resistant
GvHD 23

Nasoduodenal/
nasogastric

tube
Prospective Unrelated 43

2 thrombocy-
topenia and

cardiac events

n = 13, CR;
n = 3, PR

Biliński et al.
[23]

Steroid-resistant
GvHD 11 Nasoduodenal

tube Prospective Unrelated 14 2 sepsis and
septic shock

n = 5, CR;
n = 1, PR

Biliński et al.
[21]

Steroid-resistant
GvHD 4 Nasoduodenal

tube Prospective Unrelated 15 No serious AEs n = 3, CR

Malard et al.
[24]

Steroid-resistant
grade III–IV gut
aGvHD n = 24,

Steroid-dependent or
Steroid-resistant gut

aGvHD (classical
n = 41, late onset

n = 3, overlap
syndrome n = 8) for
Expanded Access

Program

76
2 nasogastric

tube, 74
enema

Prospective Pooled
unrelated 192 5 serious AEs in

2 patients

n =29, CR;
n = 14,
VGPR

n = 5, PR

TOTAL 193 372 12 (4.8%)

ORR (CR +
VGPR + PR)

= 74%
CR = 50%

Abbreviations: aGvHD, graft-versus-host disease; FMT, fecal microbiota transplantation; AE, adverse event; CR,
complete remission; PR, partial remission; ORR, overall response rate; GI, gastrointestinal.

A group of Chinese researchers performed a pilot study of FMT in SR-aGvHD on
eight patients and showed great results, with all clinical symptoms being resolved and the
gut microbiota composition being successfully restored. Compared to patients that did
not receive FMT, those who received FMT showed significantly higher progression-free
survival. Moreover, most importantly, no adverse events related to FMT were noted during
and after infusion [101].
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Shouval et al. presented a study of seven patients with GI-aGvHD, with six patients
being steroid-refractory and one being steroid-dependent. Of note, this was the first study
to be carried out with orally administered capsules for the treatment of GI-aGvHD, which
proved to be well tolerated, safe, and efficient. The gut microbiota diversity after FMT
increased, and 2 out of the 7 patients reaching complete response [25].

van Lier et al. published the results of a prospective, single-center, single-arm study of
FMT treatment in 15 patients with steroid-refractory/dependent gastrointestinal aGvHD.
FMT was well tolerated, and no adverse events were attributable to the procedure. In the
study, 10 out of 15 patients reached complete remission within 1 month after FMT. Moreover,
in 6 out of 10 responding patients, the immunosuppressive therapy could be successfully
tapered. The alpha diversity of the gut microbiota increased, and the SCFAs-producing
bacteria were enriched, including Blautia and Clostridiales species [103].

Kaito et al. reported a case of SR-aGvHD treated with FMT in the form of frozen cap-
sules. In the study, FMT was delivered via a nasoduodenal tube. The composition of the gut
microbiota was successfully restored, and symptoms, such as diarrhea, were resolved [104].

Zhong et al. presented two pediatric case reports, with one of them being an aGvHD
case. Patients with aGvHD achieved complete remission of symptoms and had no infectious
complications. The analysis of post-FMT stool microbiota showed reconstruction of diverse
gut microbiota [105].

Biernat et al. presented two cases of aGvHD, but only one patient achieved complete
remission of symptoms, with the second case unable to reach therapeutical efficacy. FMT
was shown to eliminate the drug-resistant Enterococcus spp. but not the multidrug-resistant
Acinetobacter baumanii or Candida spp. [106].

Mao et al. presented a case report of a SR-aGvHD patient who was treated with FMT
in the form of oral capsules. After the first administration of FMT, the symptoms of aGvHD
were relieved but recurred after 11 days. The second FMT resulted in durable remission of
symptoms that were relieved during the two-month follow-up [107].

In a prospective, single-center study performed on 27 patients with GvHD (19 treated
with FMT and 8 in the placebo group), Goloshchapov showed that eight patients reached
complete response. Moreover, patients after FMT had higher overall “bacterial mass” and
higher numbers of E. coli, B. fragilis, and Bifidobacterium spp. Of note, the “bacterial mass”
in unresponsive patients was comparable to that seen in the placebo group [108]. The same
authors conducted another study, this time on a pediatric population of seven patients aged
3–10 years with GI-aGvHD. In this study, complete response was reached in six patients
by 120 days. Additionally, starting from day 8 after FMT, increased amounts of B. fragilis,
Faecalibacterium prausnitzii, and E. coli were noted in the stool [109].

Goeser et al. presented a study on 11 patients with SR-GvHD and reported that nine
of them achieved complete response. The stool frequencies and volume were significantly
reduced. Additionally, the gut microbiota alpha diversity was increased and resembled
the donor [110].

Zhao et al. enrolled 55 patients with SR-GI-GvHD, but only 41 of them with grade
IV were included in the statistical analysis. A total of 23 patients were given FMT, while
18 were assigned to the placebo group. On day +90 after FMT, the FMT group showed
significantly better OS. At the end of the study, the median survival time was 107 days for
the control group and >539 days for the FMT group [111].

Our group performed a prospective study on acute gastrointestinal steroid-refractory/
dependent GvHD treatment with FMT. A total of 16 FMTs were performed in 11 patients
with aGvHD and 2 patients with chronic GvHD. Complete response (CR) was reached
in 42%, while the overall response rate (ORR) was 57%. Moreover, we analyzed the
decolonization status of patients colonized with antibiotic-resistant bacteria before FMT and
showed that 71% of patients were at least partially decolonized [23]. Recently, we presented
a case study of four patients treated with FMT in combination with ruxolitinib and showed
great effectiveness (3 of 4 patients achieved CR). Interestingly, the results were better
and faster when we diagnosed patients with steroid refractoriness/dependency earlier
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and immediately introduced second-line therapy (ruxolitinib with FMT sessions), which
indicates that FMT works better when the intestinal barrier is still in a good condition [21].

Malard et al. recently presented the results from a Phase IIa HERACLES Study and Ex-
panded Access Program (EAP) [24]. A total of 76 patients with SR-GI-aGvHD were treated
with pooled-donor, high-richness microbiota therapeutic MaaT03, and 29 of them reached
complete response. The ORR on day 28 post FMT was 38 and 60% for the HERACLES and
EAP groups, respectively. Furthermore, the OS was significantly higher [24].

There are also a few ongoing trials studying the effectiveness of FMT in the treatment
of aGvHD (NCT04269850, NCT03819803, NCT03812705, NCT04285424, and NCT03359980).

7. Safety of FMT

An analysis of FMT procedures conducted in the last two decades showed an adverse
events (AEs) rate of 19% [112]. It is worth mentioning that most of them were mild and
self-limiting, and only 1.39% of procedures were complicated by severe adverse events.
The most common AEs were diarrhea, abdominal pain, nausea, and vomiting. The rate
of adverse events depended on the manner of FMT administration and its indication. For
instance, FMT conducted via the upper gastrointestinal tract was associated with more
adverse events than methods of microbiota transplantation via the lower gastrointestinal
tract. The highest rate of adverse events was reported when FMT was given for infections
with antibiotic-resistant bacteria. During the last two decades, only four cases of deaths
were associated with FMT (one case was assessed as probably associated) [112], and we
calculated the risk of death associated with microbiota transplantation as 0.02%.

The preparation of washed FMT was recently proposed and showed significantly
increased safety compared to manual microbiota transplantation [113,114].

8. Conclusions

To sum up, there are big expectations for FMT in treatment of aGvHD, which has
been prompted by its encouraging effectiveness so far, with very few serious adverse
events (common even without FMT in this group of patients). Therefore, if confirmed by
randomized clinical trials, we believe that the use of FMT could be the standard in the
treatment of steroid-refractory or -dependent aGvHD. Furthermore, we can imagine that
FMT may not be just limited to patients with steroid refractoriness or dependency in the
future and rather applied more broadly to patients with aGvHD as a first-line therapy
(sparing the adverse events associated with steroid therapy) or prophylaxis. Moreover,
as every patient undergoing alloHCT would have performed a gut microbiota profiling,
FMT may be used to re-establish the gut microbiota and increase integrity of the gut barrier.
This alone could be enough prophylaxis against acute and chronic GvHD. Of course, more
evidence with randomized clinical trials are needed.

Great hopes are also associated with targeted therapies derived from the gut micro-
biota, such as live biotherapeutic products.

We believe that restoring natural barriers and compositions destroyed by the severity
of treatment itself and re-establishing them to their original state, or even to a “perfect”
state, will be widely discussed in the future.
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