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Prediction of malignant 
lymph nodes in NSCLC 
by machine‑learning classifiers 
using EBUS‑TBNA and PET/CT
Maja Guberina1,2*, Ken Herrmann2,3, Christoph Pöttgen1, Nika Guberina1, 
Hubertus Hautzel2,3, Thomas Gauler1, Till Ploenes4, Lale Umutlu5, Axel Wetter5, 
Dirk Theegarten6, Clemens Aigner4, Wilfried E. E. Eberhardt7,8, Martin Metzenmacher7,8, 
Marcel Wiesweg7,8, Martin Schuler2,7,8, Rüdiger Karpf‑Wissel9, Alina Santiago Garcia1, 
Kaid Darwiche9 & Martin Stuschke1,2

Accurate determination of lymph‑node (LN) metastases is a prerequisite for high precision 
radiotherapy. The primary aim is to characterise the performance of PET/CT‑based machine‑learning 
classifiers to predict LN‑involvement by endobronchial ultrasound‑guided transbronchial needle 
aspiration (EBUS‑TBNA) in stage‑III NSCLC. Prediction models for LN‑positivity based on  [18F]FDG‑
PET/CT features were built using logistic regression and machine‑learning models random forest 
(RF) and multilayer perceptron neural network (MLP) for stage‑III NSCLC before radiochemotherapy. 
A total of 675 LN‑stations were sampled in 180 patients. The logistic and RF models identified 
 SUVmax, the short‑axis LN‑diameter and the echelon of the considered LN among the most important 
parameters for EBUS‑positivity. Adjusting the sensitivity of machine‑learning classifiers to that of the 
expert‑rater of 94.5%, MLP (P = 0.0061) and RF models (P = 0.038) showed lower misclassification rates 
(MCR) than the standard‑report, weighting false positives and false negatives equally. Increasing the 
sensitivity of classifiers from 94.5 to 99.3% resulted in increase of MCR from 13.3/14.5 to 29.8/34.2% 
for MLP/RF, respectively. PET/CT‑based machine‑learning classifiers can achieve a high sensitivity 
(94.5%) to detect EBUS‑positive LNs at a low misclassification rate. As the specificity decreases 
rapidly above that level, a combined test of a PET/CT‑based MLP/RF classifier and EBUS‑TBNA is 
recommended for radiation target volume definition.

For patients with newly diagnosed locally advanced non-small cell lung cancer (NSCLC) finding the right 
treatment choice is often a challenge. In this context, radiotherapy represents one of the principal treatments. 
Improvements in systemic therapy have enabled more patients to live longer, even with metastatic  disease1,2. This 
may allow and establish further treatment pathways with combined  chemoradiation3.

Regional recurrences at five years after definitive radiochemotherapy for stage-III NSCLC were observed 
at cumulative incidence rates of 38.2% in the RTOG 0617  trial4, and 11.4% and 6.5% in the large randomised 
PACIFIC trial with or without durvalumab  consolidation5. Detection of involved lymph nodes (LNs) with high 
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sensitivity and inclusion into the radiation target volume is an important determinant for a high loco-regional 
tumour control after definitive radiochemotherapy.

2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (2-[18F]FDG-PET/
CT) is the standard diagnostic procedure for definition of the radiation therapy target  volume6,7. Positive LNs 
are identified and delineated by visual  inspection8,9. Machine-learning classifiers are not readily characterised 
to support this routine. Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is 
recommended for mediastinal nodal staging in patients suspected of mediastinal LN involvement by PET/CT10. 
Although the use of EBUS-TBNA increased over  time11, its additional value for target volume definition has not 
been analysed in prospective studies so far.

In the current work, we trained and tested the precision of machine-learning classifiers to detect EBUS-
positivity from parameters systematically obtained from both PET/CT and histopathology. In addition, the role 
of EBUS-TBNA in increasing sensitivity with reasonable specificity (for primary tumours and LNs as well as 
parameters characterizing the pattern of malignant spread within the patient and histopathologic subtype) was 
analysed with respect to the performance of these PET/CT machine-learning classifiers.

Materials and methods
Study population. This work develops on our previous  publications12,13. All 180 patients with NSCLC who 
consecutively presented from December/2011 to June/2018 in a centre for radiation oncology with curative 
treatment intent were included in the study. The Ethics Committee of the Medical Faculty of the University 
Duisburg-Essen approved the study (19-9056-BO). The research was performed in accordance with the Declara-
tion of Helsinki, and with local relevant guidelines and regulations. Patients aged 18 years or older with histo-
logically proven NSCLC were eligible. At initial diagnosis, the disease had to be potentially radically treatable, 
identified clinically and on the diagnostic CT-chest as stage IIIA-C (AJCC/UICC/TNM 8th-edition). Additional 
compulsory inclusion criteria were EBUS-TBNA sampling and  [18F]FDG-PET/CT imaging for primary staging 
obtained at the same time point before treatment. Patients were excluded if they had severe systemic disease or 
previous tumour disease.

[18F]FDG‑PET/CT imaging and EBUS‑TBNA. Contrast-enhanced  [18F]FDG-PET/CT imaging was per-
formed on the Biograph_mCT PET/CT scanner (Siemens Healthineers, Germany) after intravenous injection 
of 250–400 MBq 2-[18F]FDG ligand-complex. One expert radiologist and one nuclear medicine physician inde-
pendently rated the PET/CT images and, in case of discrepancies, approved the standard report by a consensus 
reading. Orthogonal short and long-axis LN-diameters were also measured on CT. LNs with diffuse mediastinal 
infiltration were classified by an additional binary classification variable and assigned to the largest size group 
with a diameter of ≥ 6  cm14.

EBUS-TBNA was performed under general anaesthesia, and all accessible hilar and mediastinal LNs were 
systematically evaluated. LNs with a diameter of 5 mm or more were sampled with at least three needle passes 
using a 22G needle according to current  guidelines10. EBUS-positivity was defined in this study as a positive 
histopathologic result from EBUS-TBNA.

Obtained tissue was placed in formalin-solution to allow the preparation of a cell block for histologic evalua-
tion and immunocytochemical analysis. Measurements of the  [18F]FDG-PET/CT maximum standardised uptake 
value  (SUVmax) were carried out in all LN-stations sampled with EBUS-TBNA.

In this dataset, there were no missing data for all parameters evaluated. The LNs were grouped into echelons 
1–3 in the direction of the lymphatic drainage: from ipsilateral hilum as echelon-1, over the ipsilateral central 
mediastinum LN-stations 7 and ipsilateral LN-station 4 as echelon-2, to the upper ipsilateral mediastinum with 
LN-station 2 or to the contralateral mediastinum with LN-stations 2 and 4 or the contralateral hilum as echelon-3.

Statistical analysis. Descriptive statistics and statistical analysis were conducted using SAS software ver-
sion 9.4, SAS/STAT15.1 (SAS-Institute, Cary, NC)15. Several procedures, primarily FREQ, NPAR1WAY and 
LOGISTIC, were used to build up and compare the prognostic models. The FREQ-procedure was used to com-
pare the performance of each classifier by the McNemar’s exact test and to test dependence of the false discovery 
rate (FDR) on the respective echelon by the Fisher’s exact test. The NPAR1WAY procedure performed non-
parametric tests to detect location differences in the distributions of quantitative parameters.

Three types of prognostic classifiers were evaluated. The logistic model represented the first procedure to 
estimate the probability of EBUS-positivity in dependence on PET/CT features, LN-location and histopathol-
ogy. Backward elimination at alpha = 0.05 was used for variable selection. Furthermore, the high-performance 
analytical procedures HPFOREST and HPNEURAL of SAS-Enterprise Miner 14.3 were used to build the ran-
dom forest (RF) and multilayer perceptron neural network (MLP) models (SAS-Institute, Cary, NC)16. Default 
specifications for the RF and MLP models were adopted until otherwise stated. The MLP model internally 
contained four hidden layers, resulting in a minimum of false positives as the first criterion and a minimum of 
misclassification rates in the validation dataset as the secondary criterion, when compared to a higher or lower 
number of hidden layers.

The sensitivity of the logistic and MLP classifiers was calibrated by assigning weighting factors > 1 to EBUS-
positive LNs compared with EBUS-negative LNs (weight = 1) in order to adjust their sensitivities to values similar 
to that of the expert rater. Weighting factors are not available for the RF-classifier. In addition, we adjusted the 
sensitivity of all classifiers to the values given in Table 4 by varying the critical cut-off level for the classifier-
predicted probability of LN-involvement, at or above which the output is considered positive. Throughout this 
analysis, the relative weights of EBUS-positive compared to EBUS-negative LNs were used. Weighting factors 
were normalised so that they sum up to the sample size over the whole sample. In addition, weighting factors 
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were utilised to compare the classification results of the different classifiers calibrated with different sensitivi-
ties. Weighting factors for the McNemar’s test can be varied independently of the factors used to calibrate the 
sensitivity of each classifier. Thus, the classifiers trained with different weighting factors were comparable. Fur-
thermore, the dependence of the results on the relative weighting was analysed. Weighting factors of 9 and 20 
were used to give higher weight to potential detrimental effects of a false negative classification result compared 
to a false positive one.

A false negative finding could lead to a regional relapse, a false positive to a slightly larger target volume with 
increased normal tissue toxicity.

To reduce the generalisation error, a threefold cross-validation was used. The dataset was split into three 
disjunctive subsets of similar size by assigning a random number to each observation. The model was trained on 
two subsets and the leave-out test subset was scored by the fixed model from the training set. This was repeated 
for all leave-out subsets, so that the entire dataset was evaluated by the model. As the MLP procedure uses a vali-
dation dataset to tune hyperparameters, nested cross validation was  used17,18. The training datasets were further 
subdivided with equal probability into five random samples. The inner loop training set contained data from 
four of these samples and the inner loop validation set data from the remaining sample. The inner loop classifier 
with the highest sensitivity to detect EBUS-positive LNs in the training dataset as the first criterion and with the 
highest specificity as the second was used to score the leave-out test set that was unseen during classifier building.

Receiver operator characteristics (ROC) curves for all classifiers were generated using the procedure LOGIS-
TIC and the areas under the ROC curves (AUC) were compared using a chi-square (χ2) test. All P-values are 
provided for two-sided hypotheses. The false discovery rate (FDR) is defined as the number of false positives 
detected by the classifier divided by the sum of false positives and true positives.

In addition, combinations of classifiers were also tested. LN-positivity is deemed to exist, if at least one of 
the tested classifiers, either test A or B, is positive. Under the assumption of independence of the test results the 
sensitivity of the combined tests  (SEab) is higher than the sensitivity of each individual test  (SEa,  SEb) according 
to the formula SEab = SEa + SEb − SEa × SEb . The specificity of the combined test  (SPab) is lower, as indicated 
by the formula SPab = SPa × SPb

19.

Ethics approval. Ethics committee UK Essen 19-9056-BO approved the study design, including all relevant 
details. We confirm that all experiments were performed in accordance with relevant regulations.

Results
Lymph node characteristics and patterns of spread. In total, 180 patients fulfilled the inclusion crite-
ria. Altogether, 675 LNs were examined by EBUS-TBNA and PET/CT in all patients. The further characteristics 
are shown in Table 1. The distribution of LNs over the echelons were 169 (25%), 297 (44%) and 209 (31%) in LN 
echelon-1, -2, and-3 respectively,  SUVmax-values are available for all LN-stations and for the primary tumours. 
EBUS-TBNA samples were positive in 145 (86%), 126 (42%), and 20 (9.6%) at LN echelon-1, -2, and -3, respec-
tively.

Involved LNs were larger than uninvolved at all echelons (P < 0.0001; χ2 = 249.3; 1 degree of freedom (DF), 
Kruskal–Wallis test). The cumulative distribution of the short diameters of EBUS-positive and EBUS-negative 
LNs is shown in Fig. 1.

Primary and lymph node PET‑features. We explored the differences and the decline of the  SUVmax 
from the primary tumour to the LN echelon-1 to echelon-3. The  SUVmax for EBUS-positive LNs decreased sig-
nificantly with distance from the primary tumour toward LN echelon-1 and echelon-2, while the distributions 
in LN echelon-2 and -3 did not differ. The respective cumulative distribution functions are shown in Fig. 2. The 
median  SUVmax-values were 14.65 (5th–95th-percentile:4.85–30.35), 10.60 (5th–95th-percentile:4.05–30.70), 
7.02 (5th–95th-percentile: 2.50–21.40), and 6.75 (5th–95th-percentile: 2.10–25.69) for the primary tumours and 
EBUS-positive echelon-1, -2, and -3 LNs, respectively. All pairwise comparisons of the  SUVmax distributions of 
EBUS-positive LNs per echelon or primary tumour in Fig. 2 were significant at P < 0.01 (χ2 > 7.7, Kruskal–Wallis 
test), except between echelon-2 and echelon-3 (P = 0.58;χ2 = 0.39, Kruskal–Wallis test). We also found this impact 
of ‘distance from the primary tumour’ on  SUVmax in an intra-patient analysis of variance for the logarithms of 
the  SUVmax-values (with patient and echelon as class variables) from primary to echelon-1 (P < 0.0001; F = 6.8 or 
F = 18.6, respectively;1-DF,TypeIII ANOVA F-test) and from echelon-1 to echelon-2 (P < 0.0001;F = 17.7;1-DF, 
Type-III ANOVA F-test), while the  SUVmax-values between echelon-2 vs. echelon-3 were not different (P = 0.27; 
F = 1.3; 1-DF, Type-III ANOVA F-test). The logarithms of the  SUVmax of involved nodes were more compatible 
with a normal distribution than the untransformed values (P = 0.23, Shapiro–Wilk test on deviations of the loga-
rithms from normal distribution). The  SUVmax distributions of EBUS-negative LNs showed minor differences 
between echelons. The median  SUVmax for EBUS-negative nodes over all echelons was 2.43 (5th–95th-percentile: 
0.90–5.30).

In addition, the  SUVmax of EBUS-positive LNs were dependent on the  SUVmax of the primary tumour. Figure 3 
shows the dependence of the log  (SUVmax) of EBUS-positive LNs on the log  (SUVmax) of the primary tumours. The 
slope was 0.55 ± 0.06. Thereby, the log  (SUVmax) of the LNs was adjusted by an echelon-effect of − 0.328 ± 0.070 
for comparison of echelon-2 with echelon-1 and of − 0.422 ± 0.137 for echelon-3 in comparison to echelon-1. 
 SUVmax of EBUS-negative LNs was not related to  SUVmax of the primary tumour (slope of 0.05 ± 0.05; P = 0.37, 
F = 0.8, Type-III ANOVA F-test).

Multivariable logistic model to detect EBUS‑positive lymph nodes. In a next step, the perfor-
mance of a multivariable logistic model to predict EBUS-positivity of the respective LN was analysed based 
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on the quantitative values of  SUVmax, CT short-axis LN-diameter (CT-SD) and parameters associated with the 
pattern of LN-metastases in the respective patient. The main parameters included were the continuous  SUVmax 
of the primary tumour and the respective LN, the short-axis LN diameter (CT-SD) on CT together with a clas-
sification variable indicating conglomerate LN metastasis or diffuse mediastinal infiltration, the laterality of the 
primary tumour (left- vs. right-sided), the LN-echelon of the respective LN, the laterality of the respective LN (a 
variable indicating the location of the respective LN in station 4R for left-sided primary  tumours13), the EBUS-
TBNA result, and the largest  SUVmax-value in an echelon-2 LN of the respective patient. In addition, an interac-
tion effect between  SUVmax of the considered LN and the respective echelon were introduced. The parameter 
estimates from the whole dataset are shown in Table 2.

To evaluate the generalisation performance of the logistic model, threefold cross-validation was applied. A 
weighted model was used to adjust the classifier to the same sensitivity (of 94.5%) as that of the expert rater. For 
the logistic model. A relative weighting factor of 9 for EBUS-positive LNs compared to EBUS-negatives resulted 
in a sensitivity of 94.5%, similar to that of the expert rater (Table 4). The misclassification rate was 0.2059. 
Increasing the sensitivity of the logistic classifier to 99.3% by lowering the cut off for predicting EBUS-positivity 
to Pr = 0.09 led to an increase in the misclassification rate to 0.4015 (Table 4). The  SUVmax of the considered LN 
and of the primary tumour, nodal short diameter, and the echelon of the LN-localisation were the most important 
parameters according to the associated Wald χ2-values (Table 2).

Machine‑learning models to detect EBUS‑positive lymph nodes. In comparison to the logistic 
model, the performance of the two machine-learning models, the MLP as well as the RF model were analysed 
(Table 4). All classifiers were threefold cross-validated. All parameters shown in Table 3 were used as input vari-
ables for the machine-learning models. The predictions by these models were compared with the assessment 
of the expert rater or a fixed threshold classifier using a  SUVmax cut-off of 2.5 as a single criterion to announce 

Table 1.  Characteristics for 675 EBUS- und PET-tested lymph nodes from 180 patients with locally advanced 
NSCLC receiving definitive or neoadjuvant radiochemotherapy. All numbers represent lymph node counts, 
except in the rows with a quantitative value as  SUVmax,  SUVmax of primary tumour and shorter diameter of 
EBUS-positive nodes. Continuous variables were compared by Kruskal–Wallis test. Nominal variables were 
compared by exact chi-square test.

Lymph node characteristics EBUS-positive nodes EBUS-negative nodes P-value

SUVmax  < 0.0001

Median (25–75% quartile) 8.39 (5.10–13.5) 2.43 (1.85–3.20)

Short lymph node diameter from CT [cm]  < 0.0001

Median (25–75% quartile) 1.75 (1.29–2.70) 0.89 (0.64–1.19)

Echelon  < 0.0001

Echelon-1 145 24

Echelon-2 126 171

Echelon-3 20 189

SUVmax primary 0.0077

Median (25–75% quartile) 13.8 (9.8–19.0) 15.6 (11.0–20.0)

SUVmax of echelon 1 lymph nodes  < 0.0001

Median (25–75% quartile) 10.6 (6.5–16.0) 2.4 (1.8–2.9)

SUVmax of echelon 2 lymph nodes  < 0.0001

Median (25–75% quartile) 7.0 (4.2–11.8) 2.6 (2.0–3.3)

SUVmax of echelon 3 lymph nodes  < 0.0001

Median (25–75% quartile) 6.8 (4.0–11.3) 2.2 (1.8–3.1)

Short axis diameter of echelon 1 lymph nodes  < 0.0001

Median (25–75% quartile) 2.04 (1.29–6.00) 0.92 (0.62–1.24)

Short axis diameter of echelon 2 lymph nodes  < 0.0001

Median (25–75% quartile) 1.63 (1.29–2.15) 1.02 (0.78–1.34)

Short axis diameter of echelon 3 lymph nodes  < 0.0001

Median (25–75% quartile) 1.66 (1.28–1.90) 0.79 (0.60–1.06)

Considered lymph node is in station 4R and primary is left-sided 0.0026

(Yes/no) 13/278 42/342

Largest SUVmax at echelon-2 for the respective patient the considered lymph node originates

Median (25–75% quartile) 6.5 (3.6–10.0) 4.1 (2.7–7.8)  < 0.0001

Histology 0.5846

(AdenoCa. vs. Non-AdenoCa.) 135/156 169/215

Laterality of the primary tumour the lymph node is draining 0.0740

Right-sided 157 180
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Figure 1.  Empirical distribution functions of the short-axis lymph node diameter. Empirical distribution 
functions of the short-axis lymph node diameter [cm] from the computed tomograms of lymph nodes at the 
different echelons of the mediastinum, plotted separately for EBUS-positive and negative echelons. Group (1.0): 
echelon-1, EBUS-negative; Group (1.1): echelon-1, EBUS-positive; Group (2.0): echelon-2, EBUS-negative; 
Group (2.1): echelon-2, EBUS-positive; Group (3.0): echelon-3, EBUS-negative; Group (3.1): echelon-3, EBUS-
positive. There were significant differences in the distributions of EBUS-positive and negative nodes (P < 0.0001, 
Kruskal–Wallis test).

Figure 2.  Empirical distribution functions of  SUVmax values in lymph nodes. Empirical distribution functions 
of  SUVmax in lymph nodes at the different echelons of the mediastinum, plotted separately for EBUS-positive 
and negative echelons. Group (1.0): echelon-1, EBUS-negative; Group (1.1): echelon-1, EBUS-positive; Group 
(2.0): echelon-2, EBUS-negative; Group (2.1): echelon-2, EBUS-positive; Group (3.0): echelon-3, EBUS-negative; 
Group (3.1): echelon-3, EBUS-positive; Group (10.0): primary tumour. The  SUVmax for the primary tumours or 
EBUS-TBNA involved LNs decreased significantly from the primary tumour to echelon-1 and echelon-2 lymph 
nodes (P < 0.01, Kruskal–Wallis test), while the distributions of echelon-2 and -3 nodes did not differ.
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PET-positivity. The MLP model was also adjusted to the sensitivity of the expert rater of 94.5% by weighting 
EBUS-positives higher than EBUS-negative LNs during training. Supplementary Figure 1 shows the diagnostic 
cross tabulation of the results of EBUS-TBNA and the MLP classifier.

In addition, the precision of the logistic, the RF or the MLP models were analysed at a very high sensitivity of 
97.9% and 99.3%, by lowering the cut-off predicted probability at which EBUS-positivity was announced. Because 
the RF model does not support weighting factors, its sensitivity was adjusted to a similar sensitivity as the MLP 
model by lowering the critical cut-off values for the predicted probability of EBUS-positivity to Pr = 0.221, 0.08 or 

Fit plot for SUVmax values 
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Figure 3.  Fit plot for  SUVmax of primary tumours and lymph nodes. The figure shows the dependence of the 
 SUVmax values of EBUS-positive LNs on the  SUVmax values of the primary tumours. Covariance plot adjusted for 
the echelon-effect on the  SUVmax. The R-value for the fit is 0.4496 = 0.45.

Table 2.  Logistic model for prediction of EBUS-positivity of the respective lymph node using PET and CT 
information about the lymph node as well as parameters about the primary tumours and the mediastinal 
lymph node spread. Model was fitted to the entire dataset. Parameter estimates are given with 95%-confidence 
intervals, χ2- and P-values and degrees of freedom (DF) are presented for each parameter. The weighting factor 
for EBUS-positive nodes was set ninefold higher than for EBUS-negative nodes. CT-SD CT short-axis diameter 
of the lymph node.

Covariable

Model

Parameter estimate (95% CI) Wald χ2 P-value

SUVmax 1.077 (0.665 to 1.489) 26.2, 1 DF  < 0.0001

CT-SD [cm] 1.592 (0.591 to 2.593) 9.7, 1 DF 0.0018

SUVmax Primary  − 0.116 (− 0.180 to − 0.051) 12.4, 1 DF 0.0004

Echelon-2 vs. Echelon-1 2.022 (0.533 to 3.512)
8.1, 2, DF 0.0178

Echelon-3 vs. Echelon-1  − 1.093 (− 3.018 to 0.832)

SUVmax × Echelon-2 vs.  SUVmax × Echelon-1  − 0.462 (− 0.868 to − 0.055)
5.1, 2 DF 0.0762

SUVmax × Echelon-3 vs.  SUVmax × Echelon-1  − 0.195 (− 0.702 to − 0.312)

Considered lymph node is in station 4R, primary is left-sided 0.810 (− 0.036 to 1.656) 3.5, 1 DF 0.0604

Largest  SUVmax at echelon-2  − 0.061 (− 0.172 to 0.049) 1.2, 1 DF 0.2769

Lymph node conglomerate or diffuse mediastinal infiltration  − 2.001 (− 4.913 to 0.899) 1.8, 1 DF 0.1759

Histology (AdenoCa. vs. Non-AdenoCa.) 0.066 (− 0.128 to 0.249) 0.1, 1 DF 0.7488

Laterally of the primary tumour: right-sided vs. left-sided 0.312 (− 0.4369 to 1.059) 0.7, 1 DF 0.4137

Intercept  − 4.584 (− 8.651 to − 0.516) 4.9, 1 DF 0.0272
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0.05. The lowest predicted probability of an EBUS-positive LN was Pr = 0.0003 according to this model. Similar 
to the logistic model, the  SUVmax, the considered LN-echelon and the short-axis LN diameter were identified as 
the most important variables by the RF model according to the loss reduction criterion. However, the  SUVmax of 
the primary tumour appeared less important. The variable importance is proportional to the sum of the reduc-
tion of the node impurity at the nodes where each variable splits (Table 3).

Table 4 depicts the misclassification rates (MCRs) and the number of false negative LNs compared to EBUS-
TBNA for all cross-validated classifiers, as well as the results of the expert rater and a fixed threshold classifier 
with a  SUVmax cut-off of 2.5 as a single criterion. At the same sensitivity of 94.5% as the expert rater, the MCR of 
the RF model was slightly (P = 0.038; McNemar’s test) and that of the MLP markedly better (P = 0.0061; McNe-
mar’s test), than that of the standard report, giving false negatives the same weight as false positives within the 

Table 3.  Random forest model for prediction of EBUS-positivity. CT-SD CT short-axis diameter of the lymph 
node. Model was adapted to the whole dataset.

Covariable

Variable importance

Number of splitting rules that use this variable Loss reduction in out of badge data

SUVmax 1507 0.1444

Echelon-1, -2, -3 325 0.0541

CT-SD [cm] 1113 0.0398

Lymph node conglomerate or diffuse mediastinal 
infiltration 88 0.0003

Considered Lymph node is in station 4R and 
primary is left-sided 29  − 0.0002

Histology (AdenoCa. vs. Non-AdenoCa.) 147  − 0.0008

Laterality of the primary: right-sided vs. left-
sided 164  − 0.0017

SUVmax primary 819  − 0.0239

Largest  SUVmax at echelon-2 1259  − 0.0287

Table 4.  Performance of the logistic model and two machine-learning models in comparison to the standard 
report. False negatives: number of EBUS-positive lymph nodes estimated to be EBUS-negative by the model. 
Weighting factors for EBUS-positive nodes compared to EBUS-negatives (weight = 1) were introduced to adjust 
the sensitivity of the MLP or logistic model similar to that of the specialist rater of 94.5% at a classification 
threshold of about 0.5. In addition, the cut-off probability for the classifier used to announce PET-positivity 
was chosen to adjust the sensitivity also to higher values of 97.9 and 99.3% as indicated in column 2. The 
McNemar’s test was used to compare the performance of the classifier in the respective row of the table with 
the standard report by the specialist rater. As the clinical consequences of false positives and negatives are 
different, a weighted McNemar’s test was used and the weighting factors for EBUS positive lymph nodes 
using this test  (weightMCN) relative to those of EBUS negative nodes are indicated. Error rate: number of 
misclassifications over the 675 assessed lymph nodes. MCR misclassification rate, MLP multilayer perceptron 
neural network; RF Random forest.

Model/classifier Adjusted sensitivity MCR False negatives
McNemar’s test for comparison of the row heading classifier with 
standard report by expert rater

Logistic model, cross-validated Sensitivity = 94.5% by Weighting factor = 9
Cut-off Pr = 0.50 0.2059 16 0.0663  (weightMCN = 1))

Logistic model, cross-validated Sensitivity = 97.9% by Weighting factor = 9
Cut-off Pr = 0.30 0.2756 6 0.7179  (weightMCN = 9)

0.0447  (weightMCN = 20)

Logistic model, cross-validated Sensitivity = 99.3% by Weighting factor = 9
Cut-off Pr = 0.09 0.4015 2 0.2853  (weightMCN = 9)

0.0979  (weightMCN = 20)

MLP, cross-validated Sensitivity = 94.5% by Weighting factor = 3
Cut-off Pr = 0.48 0.1333 16 0.0061  (weightMCN = 1)

MLP, cross-validated Sensitivity = 97.9% Weighting factor = 3
Cut-off Pr = 0.15 0.2133 6 0.1054  (weightMCN = 9)

0.0088  (weightMCN = 20)

MLP, cross-validated Sensitivity = 99.3% by Weighting factor = 3
Cut-off Pr = 0.05 0.2978 2 0.4203  (weightMCN = 9)

0.0052  (weightMCN = 20)

RF, cross-validated Sensitivity = 94.5% by Cut-off Pr = 0.221 0.1452 16 0.0375  (weightMCN = 1)

RF, cross-validated Sensitivity = 97.9% by Cut-off Pr = 0.08 0.2667 6 0.5966  (weightMCN = 9)
0.0432  (weightMCN = 20)

RF, cross-validated Sensitivity = 99.3% by Cut-off Pr = 0.04 0.3422 2 0.9790  (weightMCN = 9)
0.0270  (weightMCN = 20)

Standard report by expert rater 0.1748 16

SUVmax = 2.5 as fixed cut-off 0.2919 9  < 0.0001  (weightMCN = 1)
0.4395  (weightMCN = 9)
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McNemar’s test. In addition, weighting false positives and negatives equally, the logistic model at a sensitivity of 
94.5% showed a similar performance (P = 0.066, McNemar’s test). The fixed threshold model at a cut-off of 2.5 
was significantly worse with a higher misclassification rate (P < 0.0001, McNemar’s test) than the standard report. 
At higher sensitivities of 97.9%, the logistic, MLP and RF classifier ranked better than the nuclear medicine rater 
but only if false negatives received a 20-fold higher weight than false positives (P < 0.05, McNemar’s tests for 
 weightMCN = 20, Table 4). The same applies for the MLP and RF classifier at the sensitivity of 99.3% (Table 4). 
The reduced numbers of false negatives over-compensate the increase in the misclassification rate for the latter 
classifiers (Table 4).

Figure 4 shows the ROC curves for the different cross-validated classifiers compared to the results of the 
expert rater. The MLP classifier ranked best followed by the RF and the logistic model (both P = 0.034 and 
P = 0.0063 in comparison to MLP at 94.5%, respectively), while the latter two classifiers had similar areas under 
curve (P = 0.15; χ2 = 0.70 (1-DF). Area under curves stayed together with their 95% Wald confidence intervals 
0.9551 (95% CI 0.9438–0.9663), 0.9475 (95% CI 0.9349–0.9600), and 0.9461 (95% CI 0.9339–0.952) above 0.93 
for all cross-validated machine-learning classifiers and the logistic regression models shown in Table 4.

As some patients of this study received EBUS-TBNA prior to PET/CT, we analysed the influence of the 
sequence of both procedures on the results by the expert rater. A total of 56 LNs were biopsied 4 or more days 
prior to PET/CT, 154 nodes between 3 and 1 day prior and the remaining 465 nodes were biopsied after PET/
CT. Neither sensitivity nor specificity of the standard report by the expert rater to predict EBUS-positivity was 
dependent on the sequence of the test (PET/CT and EBUS). Sensitivity of PET/CT performed prior to or after 
EBUS-TBNA was 95.1% (95% CI 91.2–97.6%) and 93.1% (95% CI 85.6–97.4%) (P = 1.00; Fisher’s exact test). 
In addition, the sensitivity of PET/CT performed 1–3 days after EBUS-TBNA was similar with 96.9% (95% CI 
89.2–99.6%). Specificity of PET/CT performed prior to or after EBUS-TBNA was 73.6% (95% CI67.8–78.9%) 
and 73.2% (95% CI 64.4–80.1%) (P = 0.58, Fisher’s exact test) and the specificity of PET/CT performed 1–3 days 
after EBUS-TBNA remained also unchanged with 72.2% (95% CI 61.8–81.2%).

One finding from our previous work was that the FDR by the expert rater increases from echelon-1 to ech-
elon-312. For both machine-learning classifiers at the high overall sensitivity of 99.3%, the FDR increases sig-
nificantly from 13.6 over 37.4 to 70.3% for the RF and from 11.6%, over 50.4% to 74.3% for the MLP (P ≤ 0.001, 
Fisher’s exact test for all pairwise comparisons). At echelon-3, the FDR at a sensitivity of 94.5% was lowest from 
the MLP classifier.

Machine‑learning models to detect LN‑involvement augmented by EBUS‑TBNA. Because 
MCR and FDR increase sharply when the sensitivity of the classifiers exceeds 94.5%, we analysed some com-
bined tests for predicting the regional pattern of spread of LN metastases based on a PET/CT MLP classifier per-
formed at a sensitivity of 94.5% on one hand and on the RF classifier or the expert rater on the other. The result 
of a combined test is deemed positive, if one or both of the individual tests are positive. Table 5 shows that the 
overall sensitivity of the combined test of MLP and RF models increased to 96.6% as well as the sensitivity of the 
combined test of MLP and the expert rater to 96.9%. Both values are less than the sensitivity of 99.7%, expected 
due to the independence of the test results. Fourty-four percent of the EBUS-TBNA positive and expert rater 

Figure 4.  ROC curves for the different classifiers. The figure shows the receiver operator characteristic (ROC) 
curves for comparing the performance of the cross-validated multilayer perceptron neural network (MLP), 
random forest (RF) and logistic regression models with the expert rater. The logistic regression model was 
trained with a weighting factor 9 and the MLP model with a weighting factor of 3.06 for false negatives to 
achieve the same sensitivity as the expert rater at a cut-off point for the estimated probability of EBUS-positivity 
of 0.5. In addition, the ROC curve for the MLP trained with a weighting factor of 10 for EBUS-positives is 
shown.
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negative LNs became positive by the combined test at the price that per additionally discovered EBUS-positive 
LNs four additional uninvolved LNs became positive.

With regard to a combined test of EBUS-TBNA and PET/CT, it is advantageous to make use of the high 
specificity of EBUS-TBNA of about 100%. To demonstrate this, a sensitivity of EBUS-TBNA of 85% is assumed to 
detect truly involved LNs as well as independence of both tests, EBUS-TBNA and the PET-based MLP classifier. 
This results in a prevalence of 342 truly involved LNs. The combined test of the MLP classifier with a sensitivity 
of 94.5%, together with the 16 EBUS-TBNA positives that are MLP classifier negative results in a miss of 2.8 false 
negative nodes. As the total number of positives by the MLP classifier was 349 (Table 4), a total of 12.6 misclas-
sifications are observed. This result can be compared with the MLP classifier alone at a sensitivity of 99.3%. At 
a prevalence of 342 truly involved LNs, this classifier misses 2.4 false negative nodes and results in 150.8 mis-
classifications. Comparing the combined test with the MLP classifier at a sensitivity of 99.3%, superiority of the 
combined test can be claimed using weighting factors of 9 and 20 (P < 0.0005, McNemar’s tests).

Discussion
Meta-analysis of clinical studies revealed overall sensitivities of 77.4% and specificities of 90.1% of PET/CT for 
mediastinal staging (N2/N3-mediastinal involvement) per patient according to qualitative visual  inspection20. 
The 95%-confidence intervals (95% CI) of the sensitivities and specificities from different studies were moderate 
with 65.3–86.1% and 85.3–93.5%, respectively. Therefore, expert raters placed considerable attention on a high 
specificity and thus on the avoidance of false positive findings with the possible consequence of an unjustified 
denial of surgery for the patient. EBUS-TBNA is generally recommended for histopathological proof of patients 
with PET-positive LNs prior to therapy or if there is an increased risk of mediastinal  involvement10. However, 
for radiation therapy planning, the consequences of a false negative finding that could lead to a spatial miss of a 
LN-metastasis and thus recurrence, are potentially higher than a false positive finding with a slight extension of 
the target volume. However, radiotherapy to the whole mediastinum should be avoided, as a larger randomised 
trial showed that PET-based radiotherapy to the mediastinum according to the identification of involved LNs by 
a radiation oncologist in consensus with a specialist nuclear-medicine expert is not inferior to the prophylactic 
mediastinal irradiation at the loco-regional control  endpoint8. In their meta-analysis, Gould et al. found higher 
sensitivities of 18F-FDG PET in patients with enlarged LNs on CT than in those  without21. As the summary ROC 
curves for these groups of patients were the same, these data revealed the dependence of the operating point 
on the ROC curve on the presence of enlarged LNs. This study also found a similar sensitivity of PET in stud-
ies scoring involvement on a per LN-basis than in studies using mediastinal involvement on a per patient basis 

Table 5.  Determination of misclassification and false discovery rate in echelon-1 to -3 with each test 
procedure. MLP multilayer perceptron neural network, RF Random forest, LN lymph node, FDR false 
discovery rate.

Model/classifier

Echelon-1 
No of LN = 169
No of EBUS + LN = 145

Echelon-2 
No of LN = 297
No of EBUS + LN = 126

Echelon-3 
No of LN = 209
No of EBUS + LN = 20

Misclassifi-cation 
error rate (MER) False negatives FDR

Misclassifi-cation 
error rate (MER) False negatives FDR

Misclassifi-cation 
error rate (MER) False negatives FDR

Logistic model, cross-
validated at sensitiv-
ity = 94.5%

0.0769 1 0.077 0.3434 8 0.443 0.1148 7 0.567

MLP at sensitiv-
ity = 99.3%, cross-
validated

0.1124 0 0.116 0.4310 0 0.504 0.2584 2 0.743

MLP at sensitiv-
ity = 97.9%, cross-
validated

0.1006 1 0.100 0.3230 2 0.431 0.1388 3 0.605

MLP at sensitiv-
ity = 94.5%, cross-
validated

0.0769 3 0.066 0.2189 8 0.326 0.0574 5 0.318

RF at sensitiv-
ity = 99.3%, cross-
validated

0.1361 0 0.137 0.3737 5 0.467 0.2201 1 0.703

RF at sensitiv-
ity = 94.5%, cross-
validated

0.0592 0 0.065 0.2256 12 0.325 0.1005 4 0.515

Cut-off  SUVmax = 2.5 as 
a single fixed criterion 0.0710 1 0.071 0.3333 6 0.444 0.4115 2 0.824

Specialist reader 0.0533 1 0.053 0.2290 12 0.329 0.1962 3 0.691

Combined test, MLP at 
sensitivity = 94.5% or 
RF at sensitivity 94.5%, 
cross-validated

0.0710 0 0.076 0.2492 6 0.362 0.1053 4 0.529

Combined test, MLP at 
sensitivity = 94.5% or 
specialist reader

0.0651 0 0.071 0.2896 6 0.400 0.2010 3 0.696
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(yes_or_no) as the target. A cut-point for  SUVmax within the LN as a quantitative criterion for PET-positivity has 
the advantage that the sensitivity on the ROC-curve can be preselected by this quantitative measure.

Schmidt-Hansen et al. found a similar sensitivity and specificity of PET/CT to predict mediastinal involve-
ment on a per patient basis in studies using a predefined  SUVmax cut-off point of 2.5 for a positive LN than in 
the studies using visual inspection of the activity over background of the  LNs20. Yang et al. analysed sensitivity 
and specificity of PET/CT per LN using either the activity of the mediastinal blood pool (MBP) or a  SUVmax of 
3.9 above as cut-points for PET-positivity and compared these results with histopathology of EBUS-TBNA or 
resection  specimens22. Sensitivities were 97.4% and 90.9% and specificities were 35.8% and 61.9% using the first 
or second of the aforementioned criteria. As sensitivities of more than 95% are achievable, specificities of about 
36% are rather low. Nguyen et al. also found a sensitivity of 90% at a  SUVmax cut-point of 3.9 within the  LN23.

In the present study, the sensitivities of 94.5% and 96.9% and specificities of 73.4% and 51.0% were achieved 
by the expert rater or using an  SUVmax cut-point of 2.5 for the considered LN. As found in another study, speci-
ficity of the expert rater did not depend on the sequence of EBUS-TBNA and PET/CT to a detectable  extent24.

Furthermore, it was shown here, that the  SUVmax of an EBUS-TBNA positive LN was dependent on the  SUVmax 
of the primary tumours and decreased from the primary tumour to echelon-1 and from echelon-1 to echelon-2 
or echelon-3 in an intra-patient analysis. The  SUVmax seems to depend on the particular LN-echelon. Possible 
reasons for the  SUVmax decline is a smaller cell density at more distant nodes, a smaller FDG-accumulation per 
tumour cell in more distant nodes, and a smaller diameter of involved nodes at echelon-2 and -3 in comparison 
to echelon leading to smaller signal recovery coefficients. Accordingly, Li et al. found that the false positive rate 
(FPR) for detection of the mediastinal LN involvement by PET increased in tumours with  SUVmax ≤ 4.0 using 
a  SUVmax cut-point of 2.5 as  criterion25. Fixed threshold criteria do not consider a systematic dependence of 
 SUVmax on distance from the primary tumour, whereas machine-learning classifiers or multivariable regression 
models can do so.

Vesselle et al. used a multilayer perceptron neural network to predict mediastinal involvement from basic 
diagnostic PET and CT parameters on a per patient  basis26. A higher accuracy on the test sets was achieved by 
the MLP (87.3%) than by the expert rater (73.5%). For comparison, the accuracy of MLP (weight = 3.06) and 
the expert rater in the present study were 88.0% and 82.5%, respectively. Wang et al., found classical machine-
learning methods to predict LN positivity in LN-based surgical specimens. Input parameters were diagnostic 
parameters for the LNs from PET/CT, such as LN short diameter or  SUVmax and related parameters, as well as 
82 radiomic texture  features27. While the radiomic texture features did not improve prediction, the accuracy 
ranged from 82.7 to 85.1%, and the various classifiers using diagnostic PET/CT parameters achieved sensitivi-
ties of 77.1% to 85.7%. Accuracy and sensitivity of the expert rater were 81.6% and 72.9%, respectively. A deep 
convolutional network directly analysing the image patches around the LNs, showed similar results as classical 
machine-learning methods using a set of diagnostic features from PET/CT. Yoo et al. analysed PET/CT features 
of LNs from lung cancer patients with or without distant metastases using machine-learning classifiers to predict 
the histopathologic results after surgery or minimally invasive  procedures28. The prevalence of histopathologic 
LN positivity was with 61% higher in their study than in the present study with 43%. The multiplicity of analysed 
LNs per patient was 1.36 in that study, much smaller than in the present study with 3.75, so that the index lesion 
per patient was analysed in the former while the intra-patient spread was analysed in the present study. The areas 
under ROC curves by the machine-learning algorithm was about 0.85 and therefore smaller than those found 
in the present study that uses also location parameters of the LNs. In both studies,  SUVmax was a dependent LN 
variable with the highest importance. They found similar accuracies of the machine-learning classifier using 
PET/CT features and the expert rater. Sibille and Seifert trained a deep convolutional neural network to directly 
localise and classify PET/CT foci from PET/CT image datasets of lymphoma and NSCLC-patients. Nuclear-
medicine experts’ readings were the reference standard in that study. For lung cancer a classification sensitivity 
of 87.1% and a specificity of 99.1% were found in comparison to the expert  rater29.

In the present study, we used classical diagnostic features from PET/CT together with localisation parameters 
of the LNs as well as the primary tumour, parameters related to the spread of LNs to echelon-2 in the mediasti-
num and histopathology to serve as input and set the machine-learning classifiers.

One method to compare the performance of different classifiers is to fix sensitivity and take specificity as 
the measure of  performance30,31. We compared the three classifiers logistic, MLP, and RF at three sensitivities, 
94.5% as obtained by the nuclear medicine specialist, and even higher sensitivities of 97.9% and 99.3%. This 
was achieved by variation of the classification threshold for each test. In addition, as the logistic and the RF 
models allow for differing weighting factors placed on the prediction error for EBUS-positives or negatives 
nodes, giving different weights to false positive and negative predictions. These weights were adjusted to result 
in a classifier sensitivity of 94.5% at a classification threshold of the classifier about 0.5. At the same sensitivity, 
the MLP classifier generally shows the highest specificity. In addition, all the classifiers were compared with the 
performance of the nuclear medicine specialist using the McNemar’s test. At the same sensitivity of 94.5%, the 
MLP classifier ranked best while the logistic model ranked worse. At higher sensitivities, the comparison of the 
machine learning classifier with the nuclear medicine specialist depends on the relative importance given to 
false positive and false negative classifications. As the consequence of a false negative classification, i.e. a relapse, 
might be much more adverse than that of a false positive result, i.e. enlargement of the target volume, importance 
factors  (weightMCN) were introduced given the relative weight of false EBUS negative results in comparison to 
false  positives32. If false negative results count 20 fold more than false negatives the machine learning classifier 
at very high sensitivities of 97.9 and 99.3% performed consistently better than the standard reporting procedure.

The influence of the echelon on which the LN resides on the sensitivity of the PET/CT readings by the spe-
cialist experts was shown in our previous study on this same  dataset12. The sensitivity decreased from 99.3% on 
echelon-1 to 90.5% on echelon-2 and to 85.0% on echelon-3. On a per patient basis, EBUS-positivity at echelon-3 
depended on pattern of spread of the  tumour13. The present study shows that machine-learning methods may 
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assist the expert rater at a high sensitivity of 94.5%. Especially the MCR at echelon-2 and -3 could be substan-
tially reduced by the MLP classifier compared to the standard reporting procedure with the same sensitivity. 
Increasing the sensitivity beyond 94.5%, the MCR of the machine-learning classifiers increased rapidly, with the 
smallest increase for the MLP classifier. Therefore, a suitable way to combine the results of a machine-learning 
classifier with EBUS-TBNA results, which are available in the majority of thoracic oncology centres but are not 
systematically used to define the target volume for radiation therapy, is important.

The meta-analysis by Leong et al. showed a pooled sensitivity of EBUS-TBNA of 49% for detecting unsus-
pected N2/N3 mediastinal involvement in a PET–negative mediastinum with a specificity of 100%33. Similar 
characteristics were found in the meta-analysis conducted by El-Osta  201834. The pooled prevalence of N2/
N3 in these studies underlying the meta-analyses was 13–15%. However, with a higher prevalence of medias-
tinal metastases of about 34%, the sensitivity of EBUS-TBNA in combination with EUS-FNA to detect N2/N3 
mediastinal metastases can be markedly higher and was found to be about 86%35. Here, we propose a combined 
test using a machine-learning classifier based on diagnostic PET/CT parameters and the results of systematic 
EBUS-sampling also from PET-negative LNs to bring the sensitivity of the PET/CT classifier above 94.5%, while 
maintaining specificity. Assuming that both tests are independent, the sensitivity of the combined test yielding 
a positive result increases from 94.5% of the MLP-classifier alone to 99.2% in the case of either MLP PET/CT or 
EBUS-TBNA positivity when the sensitivity of EBUS-TBNA ranges from 85%19. Since the MCR of PET/CT-based 
machine-learning classifiers increases rapidly above a sensitivity of 94.5% according to this study, a combined test 
of PET/CT-based machine-learning classifiers adjusted to sensitivity of 94.5%, in combination with a systematic 
EBUS-TBNA of PET-negative LN stations can be recommended for defining the target volume for radiotherapy 
of stage-III NSCLC to achieve sensitivities for LN-metastases detection above 94.5%. This combined assay takes 
advantage of the high specificity of EBUS-TBNA and uses the machine-learning to improve the specificity of the 
PET/CT results at a high sensitivity of the expert rater. In addition, the risk of missed LNs due to inaccessibility by 
EBUS-TBNA or a varying negative predictive value of EBUS-TBNA observed in several studies is  mitigated36–39.

With the limitation of all prescriptions, target volumes based on algorithms should be controlled according 
to high known standards, i.e. in prospective  studies40–42.

Conclusion
PET/CT based machine-learning classifiers demonstrate the potential to reduce the MCR compared to the 
standard report. Because misclassification increases substantially at higher sensitivities, a combined test of a 
PET/CT-based machine-learning classifier with a systematic EBUS-TBNA of PET-negative LN-stations is rec-
ommended. The classifiers can support the specialist to increase sensitivity. This dual test performed better than 
machine-learning classifiers alone. Combined, classifiers based on  [18F]FDG-PET/CT features and EBUS-TBNA 
prove to be valuable instruments for determining the regional pattern of nodal spread and radiation treatment 
planning in lung cancer.

Data availability
All data generated and analysed during this study are included in this published article (Supplementary Informa-
tion can be received from the corresponding author).
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