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Animal models of chronic traumatic
encephalopathy

Repeated head impacts have been suggested to be associated with the development
of the neurodegenerative disorder, chronic traumatic encephalopathy (CTE). CTE
is characterized by the accumulation of hyperphosphorylated tau within the brain,
with accompanying cognitive and behavioral deficits. How a history of repeated
head impacts can lead to the later development of CTE is not yet known, and as such
appropriate animal models are required. Over the last decade a number of rodent
models of repeated mild traumatic brain injury have been developed that are broadly
based on traditional traumatic brain injury models, in controlled cortical impact, fluid
percussion and weight drop models, with adaptations to allow for better modeling of
the mechanical forces associated with concussion.
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Concussion is defined as a subset of traumatic
brain injury (TBI) that is induced by biome-
chanical forces and results in a complex series
of pathophysiological processes affecting the
brain (1. It is typically caused by a direct
blow to the head, face, neck or other part of
the body with an impulsive force transmit-
ted to the head, resulting in the rapid onset
of acute impairment of neurological function
that resolves spontaneously [2]. These clini-
cal symptoms may or may not involve loss of
consciousness and can also include headache,
changes in behavior, amnesia and insomnia [3].

Recent studies have highlighted a steady
increase in sport related concussion hospital-
izations, with an average annual increase of
5.4% in hospitalization rates in Victoria over
a 9-year period [4]. Football codes, includ-
ing rugby, Australian football and soccer
accounted for 36% of concussion related hos-
pitalizations between 2002 and 2011 [4]. An
estimated 1.6-3.8 million sport related con-
cussions occur in the USA each year, however

this number is believed to be severely under
reported, with up to 50% of concussions
going unreported [5].

High levels of public concern regarding
concussion, especially within professional
sporting circles, have sparked an increased
research presence within the past few years.
This is due to the recent link associating
participation in contact sports, exposure to
repeated events of concussion and the later
development of dementia-like symptoms in
the years following the initial event [6].

Link between repeated concussion

& later neurodegeneration

Contact sports have long been linked to the
later emergence of disturbances in cogni-
tive function [7], with the first such instance
noted in boxers in a study from 1928 describ-
ing athletes that appeared ‘punch-drunk’
in nature following repeated blows to the
head (8]. The condition was termed demen-
tia pugilistica in 1937 (9], and was considered
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neuropathologically distinct from other neurodegen-
erative diseases in a study from 1973 [10]. The link
between repeated concussion and later neurodegen-
eration then returned to the spotlight with reports of
distinct neuropathology within former professional
American football players (NFL), as well as others
exposed to repetitive concussion including wrestlers,
soccer players, rugby players and those in the mili-
tary [11-14]. A key paper by Omalu ¢z al. reported the
presence of diffuse AP plaques, neurofibrillary tangles
(NFTs) and tau-positive neuritic threads in neocorti-
cal areas in a former NFL athlete who had a history
of cognitive impairment, mood disorder and parkin-
sonian symptoms before death [11]. The pattern of tau
deposition is distinct from other neurodegenerative
diseases, with NFTs, thorned astrocytes and dystro-
phic neurites aggregating in the superficial cortical
layers of the brain, particularly at the base of the sulci
and surrounding blood vessels [15], with this presenta-
tion now known as chronic traumatic encephalopathy
(CTE). Additional neuropathological features of CTE
include deposits of phosphorylated TDP-43 as reac-
tive neuronal cytoplasmic inclusions, persistent neu-
roinflammation, evidence of axonal injury particularly
within the deep cortex and subcortical white matter, as
well as loss of white matter, most evident in the corpus
callosum [16]. This is accompanied by gross atrophy,
most pronounced in the frontal, temporal and medial
lobes [6]. CTE has been classified into four distinct dis-
ease stages that result in an increase in both the sever-
ity of clinical symptoms of patients and the associated
neuropathology (Table 1). It should be noted that the
diagnosis of CTE as its own distinct neuropathology
is still under scrutiny and the incidence of what is
believed to be pure CTE diagnoses is still unknown.
Although diagnosed postmortem, CTE has been
linked to two types of clinical presentations, with man-
ifestation of symptoms years, sometimes decades, after
the repetitive concussions were sustained [17). The first
type of presentation manifests earlier in life at approxi-
mately 40 years of age and involves changes in mood,
such patients are usually more aggressive, impulsive,
physically and verbally violent and depressed [17]. The
second type of presentation manifests at a much older
age than the first, at approximately 60 years of age
and involves changes in cognition, showing impair-
ments in episodic memory with patients in this cat-
egory more likely to develop dementia than in the
first [17]. Regardless of the type of initial presentation
patients will progressively develop symptoms from
both groups. In some cases, patients may also develop
Parkinsonian-like symptoms including tremors [18].
The underlying mechanisms for how concussion,
in particular repeated exposure to concussion, may

predispose to later neurodegeneration with its associ-
ated accumulation of pathological proteins, particu-
larly phosphorylated tau, is still not understood. The
number of injuries required, the intensity of injuries,
the impact of concussive versus subconcussive injuries
and the effect of other confounding factors such as pre-
existing medical conditions and substance abuse on the
development of CTE are not yet known. Furthermore,
biomarkers for the disease to identify at risk individu-
als have also not yet been developed. Thus, in order
to facilitate a better understanding of disease progres-
sion, animal models of repetitive TBI are required that
replicate key aspects of the clinical situation.

Suggested requirements for an appropriate
animal model of repetitive concussion

A number of criteria have been proposed to allow ani-
mal models of concussion to be reflective of the type of
injuries seen clinically. Optimally it has been suggested
that the head should be struck directly and the impact
should occur with high velocity and rapid acceleration
of the head, both rotational and angular 1920). Striking
the head directly causes higher accelerations of shorter
durations [21], with biomechanics studies, principally in
NFL footballers suggesting that angular acceleration of
the head in the coronal plane has the strongest associa-
tion with concussion due to generation of the greatest
amount of shear force. In regard to the force required,
the degree of linear acceleration required for a concus-
sive injury is reported to be close to 100 G [22-25], and is
similarly regardless of whether it is reported in helmeted
NFL players or in unhelmeted athletes 22,2326}, like Aus-
tralian Rules Football players [25]. In addition, the range
for angular acceleration has been reported as 5022-7912
rad/s? [232427.28], providing a guideline for the types of
forces that should be generated in animal models.

It should be acknowledged that it is difficult to trans-
late rotational acceleration forces reported in humans
to animal models, given the differences in brain size.
Inertial effect is dependent on brain mass, and this
determines the degree of tissue deformation [29]. As
such the same forces applied to a smaller brain pro-
duce lower strains and less injury [3031]. Indeed in
the rapid nonimpact inertial head injury models that
have been developed to date, injury parameters have
been scaled, with the rotational acceleration increased
500% for a 140 g baboon brain [32] and 630% for a
90 g pig brain [33] to induce the same tissue strains
that cause axonal injury in humans. This makes it
difficult to produce equivalent rotational acceleration
in small animals such as rodents with reports that to
achieve equivalent tissue strains in the 2 g rat brain
accelerations >5000% of that in human TBI would be
required to produce similar tissue strains [34].
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Table 1. Proposed progression of chronic traumatic encephalopathy stages.

Review

Stage Clinical Features Gross pathological

changes

| Loss of attention None
& concentration,
increased aggression

Il Depression, mood
swings, short-
term memory loss,
loss of attention
& concentration,
aggression

No cerebral atrophy,
mild enlargement of
ventricles

1 Memory loss,
executive dysfunction, with dilation of
explosivity, loss ventricles, septal
of attention & abnormalities,
concentration, atrophy of the
depression, mood mammillary bodies &
swings, aggression

the corpus callosum

\Y Executive dysfunction, Atrophy of the
memory loss, severe cerebral cortex
memory loss & & white matter,
dementia, profound medial temporal
loss of attention & lobe, thalamus,
concentration, aphasia, hypothalamus
explosivity, aggression, & mammillary
paranoia, depression,  bodies. Ventricular
visuospatial difficulties, enlargement, cavum
suicidal tendencies septum pellucidum

Adapted with permission from [14].
NFT: Neurofibrillary tangle; SN: Substantia nigra.

Mild cerebral atrophy

thalamus, thinning of

TDP-43
immunoreactivity

Pattern of tau deposition

Focal epicenters of None
perivascular pTau in the

sulcal depths limited to

the superior & dorsolateral
frontal cortices

pTau pathology in multiple Some TDP-43
discrete foci of the immunoreactivity
cortex. Some small NFTs

present in hypothalamus,

hippocampus, thalamus

and SN

NFTs widespread
throughout the cortex,
hippocampus and
amygdala. NFTs also
observed in olfactory
bulbs, hypothalamus,
mammillary bodies and SN

TDP-43 reactive
neurites observed
in cerebral cortex,
medial temporal
lobe & brainstem

Severe pTau abnormalities Severe TDP-43

widespread throughout immunoreactivity

cerebellum, diencephalon, in cerebral

basal ganglia, brainstem & cortex, medial

spinal cord temporal lobe,
diencephalon,
basal ganglia &

brainstem

Axonal injury

Minimal

Minimal

Axonal loss &
distorted axonal
profiles observed
in subcortical white
matter (frontal &
temporal cortices)

Marked axonal loss
in subcortical white
matter tracts with
distorted axonal
profiles

Instead animal models can aim to replicate the
clinical features of concussion, with acute symptoms of
concussion clinically encompassing physical signs such
as loss of consciousness, somatic symptoms including
headache and vertigo, behavioral changes encompass-
ing cognitive impairment, irritability and sleep distur-
bance [1]. Evidently many of these measures are dif-
ficult to measure in animal models where animals are
typically anesthetized, although some newer models
are moving toward injury in awake animals [35]. Loss
of consciousness is typically seen as an increase in
time spent to regain righting reflex, with differences
reported between sham animals and injured controls
even with anesthesia [36-43]. Further advances in the
field could be shifting toward more acute behavioral
testing (on the same day) and monitoring of sleep pat-
terns to allow a more complete understanding of the
acute effects of our current concussive models. In addi-
tion, it has been suggested that given that by definition
concussion does not cause structural abnormalities

on standard neuroimaging [1], similarly animal mod-
els should be mild enough so that they do not cause
more severe signs of injury such as contusions, edema
or hemorrhage [44.45].

In regard to modeling repeated concussive events,
the number, severity and timing between injuries also
needs to be considered. It has been suggested that the
optimal model would involve impacts beginning in
adolescence and continuing sporadically over a long
period of time [44], a pattern that has not yet been uti-
lized. Currently animal models typically utilize short
spacings between impacts (24 h-7 days) [3537.46], in
line with evidence of a window of vulnerability follow-
ing a single concussion, where a subsequent concussion
can have greater long-term effects [47]. However it is
not known whether in addition multiple concussive
and/or subconcussive impacts spaced at greater inter-
vals could also have long-term consequences in our
animal models and whether this may now be more rel-
evant clinically given the advancements in requiring
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rest periods before returning to play. It has been sug-
gested that cumulative exposure to trauma, as in the
number of years of engaging in contact sport, rather
than the number of concussions, is linked to the sever-
ity of tau phosphorylation (48], suggesting a key role of
subconcussive hits and that CTE is primarily linked
to a long history of repeated head impacts rather than
a small number of concussive events in a short space
of time. Investigation of the number of head impact
in collegiate level American football found that play-
ers received up to 1444 head impacts in one season
with an average of 6.3 impacts per practice and 14.3
impacts per game sustained per player [49]. Evidently
the vast majority of these impacts are subconcussive,
with reports of concussion rates ranging from 1.86 [50]
to 4.46 [51] per 1000 athlete exposures. This suggests
an area that needs to be further explored in our current
models, with a number of studies now trying to incor-
porate a larger number of less severe impacts to attempt
to model this clinical situation.

A further complicating factor is the difference in life
span between rodents and humans and how to accu-
rately replicate the time-course of the disease. There
is typically a gap between a history of repeat injury
and onset of symptoms, with behavioral symptoms
reported at around 40 years of age and cognitive symp-
toms at 60, although noticeable tau pathology has been
reported in much younger athletes [14.17]. Compared
with an average human life span of 80 years, laboratory
rodents live about 2-3.5 years (average 3 years) [52]. In
most animal models, injury is induced in young adult-
hood (10-12 weeks) and at most animals are followed
up to 1 year post injury (~15-16 months) [s2]. How-
ever this only equates to early middle age in humans,
with the need for further studies examining up to
18-24 months post injury, to allow a complete exami-
nation of the evolution of the neurological changes
induced by repeated head impacts. Furthermore mod-
eling of spacing between injuries is complicated by the
differing lifespan. Direct calculation comparing the
length of adulthood in rodents and humans, leads to
the calculation that 11.8 rodent days are roughly equiv-
alent to one human year [53]. However, if this is used
as the basis to determine how far apart head impacts
should occur, it ignores the evolution of secondary
injury factors following an insult that play a role in the
effects of a subsequent insult. For instance Shultz ez al.
utilized a 5 days gap between their insults, as this
allowed for complete resolution of the inflammatory
response between impacts [41]. This was equated to an
event that took roughly two weeks in humans, rather
than the approximately 6 months which would be cal-
culated by chronological age of the rodent. It is evident
that this is a key difficulty that needs to be taken into

account, and acknowledged as a limitation of the cur-
rent animal models.

Regardless of their limitations animal models of con-
cussion are required to allow us to develop an insight
into the long-term effects of repeated head impacts.
Animal models of repeated concussion should also be
highly reflective of the current descriptions of CTE,
leading to progressive cognitive deficits, mood changes
and the gradual appearance of key neuropathological
features such as NFTs [14,54-55], changes in white mat-
ter integrity (56] and sustained neuroinflammation [49].
Many studies have attempted to scale down current
models of severe TBI, such as the controlled cortical
impact (CCI) and fluid percussion (FP) injuries and
weight drop models, with modifications to replicate
key features seen clinically.

Current animal models of repeated
concussion

Controlled cortical impact

A popular model of injury used currently in the devel-
opment of repetitive mild TBI (mTBI) animal models
is a modified version of the CCI model of TBI. Classi-
cally, CCl involves the use of a rigid impactor to deliver
mechanical energy to the dura of the brain, exposed via
a craniotomy to an animal restrained in a stereotaxic
device to produce a focal contusive injury [57]. To rep-
licate a concussive injury the model has typically been
adapted to negate the need for a craniotomy, with use
of rubber or silicone tips to allow impact to the skull
directly [36.43,58-60] or to a form fitting steel cap [35.61],
without generating an overt focal necrotic lesion. This
is important as secondary impacts are delivered in
the same location as the first, which would be con-
founded by the presence of a contusive injury. Indeed,
the only report of significant cerebral hemorrhage and
extensive cortical tissue loss in a CCI model of rmTBI
was when direct impact to the dura rather than the
skull occurred (62], suggesting that a more replica-
tive injury is produced when a craniotomy is avoided.
Similarly it appears that larger tip sizes in mature rats
(6-10 mm) [36,59-61] produce less focal structural dam-
age and thus may be more appropriate for reproducing
concussive insults, with only smaller tips sizes associ-
ated with development of areas of hemorrhage [43.62],
although this was prevented when strike depth was
decreased to 1 mm. [58].

A potential criticism of these models is that although
the head is struck directly, the model is less able to gen-
erate either rotational or linear acceleration forces due
to the typical placement of the head within a stereo-
taxic device, and thus cannot model the mechanical
forces that typically induce concussions clinically [44].
To assist in this modifications have been utilized within
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some studies, including replacement of the stereotaxic
device with a molded, gel filled base [36] or placement
of animals within a plastic restraint cone on a foam
bed [35] to allow more movement of the head, with
further characterization needed to analyze the specific
types of forces generated.

Studies employing modifications of the CCI model
to generate repeated concussion currently use a range of
impact parameters, with acceleration ranging from 3.5
to 6 m/s and dwell time from 31.5 to 500 ms. Notably
many studies do not provide objective measurements of
injury severity, such as the presence of an apneic period
or loss of righting reflex (LORR) [35.59.60,62], making it
difficult to compare studies utilizing different injury
parameters or to assess whether the impacts produced
are likely to be concussive or subconcussive. Similarly
injury schedules vary (see Table 2), with some employ-
ing a small number of injuries (2-5) with interinjury
intervals ranging from 24 to 72 h [36,42.43,59.60.62.63],
while three studies explored the effects of larger num-
ber of injuries: 30 at 24 h intervals [36], six impacts 2 h
apart for 7 days [35] or 24-32 over 3—4 months [64].
Indeed it is evident that the interinjury interval can
have significant effects, with Winston et 4/. finding
that there was a greater effect on synaptic loss with
an interinjury interval of 7 days rather than 24 h with
a large number of injuries 36]. This appears counter-
intuitive given the known window of vulnerabil-
ity whereby a second injury has been shown to have
more lasting impacts [47], but perhaps indicates some
adaptation when a large number of injuries are sus-
tained within a short space of time, which is not seen
with the longer interval. Further investigation will be
needed to see the effect of a large number of injuries at
greater intervals on other aspects seen in CTE, such as
behavioral changes and tau phosphorylation.

Nonetheless many of these models do replicate some
features associated with the sequelae of repeated con-
cussion, and importantly many look at the long-term
effects (up to 1 year post injury), which is important
when attempting to replicate CTE such as neuropa-
thology. Unsurprisingly all studies reported persistent
neuroinflammation, as seen by increased astrocytic
and microglial reactivity following repeat injury [36,59-
61], although evidence of enhanced tau phosphory-
lation, the key diagnostic feature of CTE was not
consistently reported. Luo er al. saw increased pTau
immunoreactivity in regions including the hippo-
campus and cortex at 6 months following three inju-
ries spaced 24 h apart, while Petraglia ¢z al. similarly
reported enhanced tau phosphorylation at 6 months
post injury in the cortex and amygdala, whereas hip-
pocampal pTau had subsided at this point, despite a
vastly different injury schedule (42 impacts in 5 days).

Animal models of chronic traumatic encephalopathy

In contrast Winston ez al. found that delivering 20
impacts over a 4 week period (5 daily impacts a week)
to 18 month 3xTgAd mice did not cause an increase
in levels of pTau at 24 h or 1 month following injury.
Of note repeated injury is seen more commonly in
younger populations and age at impact may affect the
likelihood of increasing tau phosphorylation. Indeed
Ojo et al. utilizing transgenic 12 weeks old htau mice
found significantly increased levels of phosphorylated
and aggregated tau at 3 months post injury within the
cortex when mice were exposed to highly repetitive
mTBI (24 or 32 impacts within 4 months) [64].

Other key aspects of CTE are the development of
behavioral symptoms including increased anxiety,
depression and cognitive deficits [14]. The majority
of papers reported cognitive deficits, although these
appeared shortly after injury (in the first week), with
some reporting improvement at later time-points [60] or
persistence to 6 months post injury [59.61]. None saw
the emergence of cognitive deficits over time [59-61],
which would represent a more consistent pattern to
what is seen clinically (17] and may indicate that the
current CCI models are too severe, but could also
relate to the difficulty in detecting subtle cognitive
deficits in rodents. Notably Winston ez 2/. who did not
find evidence of cognitive deficits on the Morris water
maze (MWM), did see an emergence of anxiety-like
behavior at 1 year post injury that was not evident at
6 months, suggesting a progressive, rather than static,
disease course [36]. As such, it is evident that there are
a number of models based on modification of the CCI
device that can replicate aspects seen clinically follow-
ing rmTBI, although there are also limitations due to
the difficulty in generating the same mechanical forces
seen clinically.

FP injury

The lateral FP (LFP) model is the most extensively used
and characterized model of experimental TBI and is
easily adapted to produce milder injuries by decreasing
the force of the fluid pulse [67]; however, there are rela-
tively few studies utilizing it to investigate the effects
of repeated injury (40,41,46,68.69]. Injury is induced with
FP by performing a craniotomy and applying a fluid
pressure pulse to the intact dura, caused by the striking
of a pendulum against a piston attached to a reservoir
of fluid, producing displacement and deformation of
neural tissue [70]. As such, it does not reproduce the
linear and rotational forces that generate concussive
injuries clinically.

Previous literature has suggested that mild to mod-
erate injury can be administered between (0.9-2.1
atm) [71], and indeed reports using LFP to induce
repeated mTBI herein use pressures that fall within
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the smaller end of this scale (1.0-1.5 atm; Table 3).
One difficulty with use of the model for repeat inju-
ries is the necessity for a craniotomy to be performed
to administer the injury. This increases the risk of
other factors such as wound infection and the animals
removing the screw/cement complexes that are neces-
sary to induce injury [69]. Furthermore it limits the
number of injuries that are able to be delivered with
five injuries the highest reported [41], unlike the modi-
fied CCI models and weight drop models. In addi-
tion repeated LFP appears to cause significant corti-
cal damage, when impacts are spaced closely together
(within 24 h) or when more than three impacts are
given spaced 5 days apart [40,41.46], a feature not sug-
gestive of the type of pathology seen in CTE, which is
a progressive neurodegenerative disease.

However, some features reported to be related to the
long-term effects of repeated concussion, with persis-
tent neuroinflammation to 3 months post injury (the
latest time point studied) [40.41.68], evidence of white
matter damage [40.46] and increased tau phosphoryla-
tion within the cortex [4¢]. It should be noted that with
two injuries spaced 5 days apart increased tau phos-
phorylation was more prominent acutely after injury
(at 24 h and 1 week) returning toward sham level by
1 month post injury, with an increase to three repeat
injuries associated with increased tau phosphorylation
to 3 months post injury [46]. Like the modified repeat
CCI models, multiple LFP injuries are associated
with cognitive deficits both acutely [41,69] and chroni-
cally [40.41,46,69], although this model has been associ-
ated with more significant motor impairments most
likely related to the degree of cortical injury [40.46,68].

Closed head weight drop

Closed head injury models involve the application of
force directly onto the intact skull, which causes move-
ment of the unrestricted head, including lateral and
rotational forces, as seen in concussive insults. This
produces a diffuse injury, with no reports of cortical
contusions of hemorrhage unlike some CCI [43.62],
or FPI models [40.41.46]. Typically a weight is dropped
from a height, either onto the head itself, or onto a
metal helmet applied to the skull to prevent the skull
fracture, with head movement facilitated by placement
of the animal within a foam bed [38,72,73] or by allowing
the animal to free fall from the surface they were rest-
ing on (aluminum foil, Kim wipes of magnetic sheets)
into a foam bed below [3739,74]. The latter allows unre-
stricted movement, and hence may promote more rota-
tional injury, which is known to cause the shear strain
critical in concussive impacts, although biomechanical
studies on these forces have yet to be reported. Indeed
it should be noted that there are similarities between

Animal models of chronic traumatic encephalopathy

the weight drop models and modifications of the CCI,
such as that utilized by Petraglia ez al. [35.61] where the
head is not restrained, with the key difference being
how the force to the head is generated.

Notably all reports examined here suggest that the
impacts delivered lead to increased LORR [37-39.72-74],
indicative of concussive impacts and hence the more
severe end of sporting injuries. Future studies could
alter parameters to include subconcussive impacts
to investigate the effect of combining these types of
impacts. Furthermore, Briggs ez a/. who utilized the
highest number of impacts (30) found that LORR
decreased with subsequent impact suggesting some
adaption to the impact, an important point to consider
when using LORR as a measure of impact severity,
especially when animals are subject to a large number
of head impacts spaced close together (5 impacts/week
for 6 weeks) [74].

Similar to the models discussed above, weight drop
models similarly report variable neuropathological
and behavioral findings associated with the long-term
consequences of repeated concussion. Again this may
be in part be caused by variability of the number of
impacts employed, with as low as three [73] and as
high as 30 [74], interinjury intervals ranging from 24 h
to 5 days and the weight and hence force of impact
reported as between 40-95 g in mouse studies [37-39.74]
and 200-450 g in rat studies [72.73] with release of the
weight typically from 1 m. As with other concussion
models, increased neuroinflammation was consistently
reported in studies incorporating weight drop mod-
els (37-39.73-74], up to 6 months post injury, although
intriguingly both Mannix e /. and Kane er al.
reported increased astrocytic, but not microglial acti-
vation at chronic time-points suggested there could be
a differential response of these two immune cells [37.39].
Similar to the CCI models, increased tau phosphoryla-
tion was not a consistent feature, with reports of acutely
increased pTau in some studies within areas such as the
cortex, hippocampus and white matter tracts [37.72-74],
while Mannix et al. reported normal levels of pTau at
6 months following 7 rmTBI in 9 days [39] and Xu ez al.
similarly found no changes in pTau at 10 weeks follow-
ing 12 hits over 7 days [38]. Given the considerable dif-
ferences within the studies that reported positive find-
ings and those with negative tau findings (see Table 4)
it is difficult to determine the key factors within injury
models that allow for the development of abnormal tau
phosphorylation post injury, with greater exploration
of both how the mechanical forces induced and their
severity and frequency influence tau phosphorylation,
as well as the role of different tau phosphorylation sites
may be needed in future studies. Tau can be phosphor-
ylated at up to 85 different sites [75], so subtle changes
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in tau phosphorylation state can be missed depending
on the antibodies utilized.

As discussed eatlier, other key aspects of CTE are the
development of behavioral symptoms including increased
impulsivity, depression and cognitive deficits [14]. Like the
other injury models, the weight drop model was similarly
associated with cognitive deficits, both acutely within the
first 2 weeks following injury [72] and persisting to 1 year
post injury [39]. Mannix et a/. did see a protective effect
of increased interinjury interval with impaired perfor-
mance on the MWM at 6 months following injury with
a shorter gap between injuries (24 h or week), but not at
longer intervals (2 weeks, 4 weeks). Furthermore, in one
study a progressive cognitive deficit, suggestive of ongo-
ing neurodegeneration was seen with increased escape
latency on the Barnes Maze seen at 12 weeks, but not 6
weeks post injury [73]. Few studies looked at additional
behavioral symptoms with reports of delayed motor defi-
cits developing following a large number of impacts (30
over 6 weeks) and persistent depressive-like behavior in
the same model, with further study needed, especially
given the suggestion that psychological symptoms may
be the first manifestation of chronic neuropathology
associated with repeated head impacts 17].

Rotational acceleration models

To date no pure rotational acceleration models (with-
out head impact) have been developed to study the
effects of repeated insults to the brain on later neuro-
degeneration. This is in line with the clinical literature
where typically an impact to the head is received that
then leads to rapid acceleration [1]. This is most closely
replicated by the weight drop models where animals
are free to fall from the surface they were resting on
(aluminum foil, Kim wipes of magnetic sheets) into
a foam bed below [37.39,74]. Nonetheless there are cur-
rently rotational acceleration models have been devel-
oped in the rat [77], rabbit (78], pig [79] and primate [80]
that could be adapted to allow for milder injuries.
Gutierrez ¢t al. developed a rabbit model, where impact
from a pneumatic cylinder was transferred to the skull
surface to produce a maximal rotational velocity of
212 krads/s? [78]. This led to extensive subarachnoid
hemorrhage, so would need to be scaled to produce a
milder injury. In rodents, Xiao-Sheng et a/. developed
a model where the head was rapidly rotated 90° in the
coronal plane at a rotation reported to be 1.806 x 10°
rad/second? [77]. It is unclear whether this would be
sufficient based on the Holbourn scaling relationship
to accurately represent forces seen in human TBI, given
the smaller size of the rat brain [34]. Notably even at
these forces, extensive subarachnoid hemorrhaging was
also noted [77], suggesting that it may be difficult to
accurately represent rotational forces in small animal

models given the differences in size and nature of their
brains. Indeed models have been developed in larger
gyrencephalic brains as discussed in the next section.

Adaptation of gyrencephalic models of mTBI

to investigate repetitive insults

In addition to continuing to improve rodent models,
another avenue to investigate different aspects of the
effects of repetitive impacts on the later development of
neurodegeneration may be to modify existing large ani-
mal models. There are structural differences between
the rodent (lissencephalic) and human (gyrencephalic)
brains. Importantly mechanical forces are distributed
differently, with linear forces seen in lissencephalic
brains concentrated parallel with the surface of the brain,
compared with at the base of the sulci in gyrencephalic
brains [81-83]. Computer modeling of the patterns of stress
in the gyrencephalic brain [81-83] are remarkably similar
to the tau deposition patterns observed in CTE, and
may suggest that tau deposition occurs at areas of high
mechanical stress [16] an idea that has yet to be confirmed
experimentally. Indeed, to date no repeat injury models
have been conducted in gyrencephalic brains, and only
two model of mTBI. Browne ez 2/. modified a miniature
swine model of TBI where a pneumatic actuator is used
to induce rotational acceleration of the head, using forces
of up to 28,000 rad/s? [79], higher than the reported range
0f 50227912 rad/s* reported clinically [23,24.27.28], which
was described as a mechanism to equate for the smaller
size of the brain within the miniature swine. Neverthe-
less and impact within the axial plane produced a mTBI
with loss of consciousness of between 10 and 35 minutes
associated with mild axonal injury (79, thereby equat-
ing to a more severe clinical concussion. Older studies
have also been conducted in monkeys, with acceleration
of the head without impact, severity of injury depended
on the direction of head movement, with a sagittal head
motion producing a loss of consciousness for <15 min,
without evidence of diffuse axonal injury [80]. The ability
to produce concussive insults in larger animals provides
a basis for further investigations utilizing large animal
models to investigate aspects of repeated head impacts in
the gyrencephalic brain.

Conclusion

In recent years a desire to understand the nature of
sports-related head injury has led to resurgence in interest
in modeling aspects of repeated injury. This has allowed
a greater appreciation of the idea of a window of vulnera-
bility following a concussive event, whereby a subsequent
concussion can have more detrimental effects and greater
efforts in preventing premature return to play. However,
how a prolonged history of head impacts, both concussive
and subconcussive, as seen in NFL players, may increase
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the risk of later developing the neurodegenerative disease
CTE is less clear. A number of rodent models have been
generated that aim to replicate different aspects of con-
cussive insults, with studies varying markedly in how the
concussive insult is induced, the injury severity utilized,
the number of insults and the interinjury variability.
Unsurprisingly this had led to a variable ability to rep-
licate key aspects of CTE, such as increased tau phos-
phorylation and development of cognitive and behavioral
deficits. Indeed no models have been able to replicate the
staged progression of tau pathology, where it begins in
the superficial cortex and then spreads to other regions
such as the hippocampus, or its associated features such
as TDP-43 immunoreactive nuclear inclusions. This
is in part due to the differences in murine and human
tau, but even transgenic models have not consistently
reported increased tau phosphorylation and development
of NFTs. Later time points may also need to be investi-
gated, although some reported cases of CTE have been
in young players [84]. Progression of behavioral deficits
has also been rarely seen in animal reports to date and
area that requires further investigation. Another area of
potential investigation is to determine how the gyrence-
phalic brain responds to mechanical insults and how this
may influence tau phosphorylation and deposition and
the potential later development of neurodegeneration,
although there are technical limitations to the number of
injuries that could be delivered in these models.

Future perspective
Animal models of repeated mTBI will continue to evolve,
and may begin to include injuries of varying severity and

Animal models of chronic traumatic encephalopathy

varying interinjury intervals to try and better approxi-
mate the clinical situation. With improving genetic tech-
nology, newer transgenic rodent models may be available
to better allow modeling of tau dynamics within our
rodent models. A better understanding of how a history
of repeated injury may interact with lifestyle factors, such
as drug addiction may also be incorporated in our mod-
els, given the vast majority of people who receive multiple
head impacts do not go to develop neurodegeneration.
Furthermore it is proposed that research will branch into
large animal models to utilize their gyrencephalic brains
to understand the differing effects of mechanical forces
and how this influences tau phosphorylation.
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Executive summary

have been developed to model different aspects.

e A history of repeated head injury is associated with the risk of later developing the neurodegenerative disease
chronic encephalopathy, which involves the graded deposition of hyperphosphorylated tau, accompanied by
persistent neuroinflammation and evidence of white matter damage.

e In order to understand the link between repeated head injury and later neurodegeneration, animal models

e These are typically based on adaptations of traditional traumatic brain injury models in cortical impact, fluid
percussion and weight drop, with modifications to suit a more concussive insult.

e Currently a wide range of different parameters are in use making comparisons between studies.

e There has been variable success in replicating key features of chronic traumatic encephalopathy such as
increased tau phosphorylation and progressive behavioral deficits.
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