
© 2013 van Zyl et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article  
which permits unrestricted noncommercial use, provided the original work is properly cited.

Drug Design, Development and Therapy 2013:7 139–148

Drug Design, Development and Therapy

The effect of a peptide-containing synthetic lung 
surfactant on gas exchange and lung mechanics  
in a rabbit model of surfactant depletion

Johann M van Zyl1

Johan Smith2

Arthur Hawtrey1

1Division of Pharmacology, 
2Department of Paediatrics and 
Child Health, Stellenbosch University, 
Cape Town, South Africa

Correspondence: Johann M van Zyl 
Division of Pharmacology, Department of 
Medicine, Faculty of Medicine and Health 
Sciences, Stellenbosch University,  
PO Box 19063, Tygerberg,  
Cape Town 7505, South Africa 
Tel +27 21 938 9344 
Fax +27 21 932 6958 
Email jmvzyl@sun.ac.za

Background: Currently, a new generation of synthetic pulmonary surfactants is being developed 

that may eventually replace animal-derived surfactants used in the treatment of respiratory distress 

syndrome. Enlightened by this, we prepared a synthetic peptide-containing surfactant (Synsurf) 

consisting of phospholipids and poly-l-lysine electrostatically bonded to poly-l-glutamic acid. 

Our objective in this study was to investigate if bronchoalveolar lavage (BAL)-induced acute 

lung injury and surfactant deficiency with accompanying hypoxemia and increased alveolar and 

physiological dead space is restored to its prelavage condition by surfactant replacement with 

Synsurf, a generic prepared Exosurf, and a generic Exosurf containing Ca2+.

Methods: Twelve adult New Zealand white rabbits receiving conventional mechanical ventila-

tion underwent repeated BAL to create acute lung injury and surfactant-deficient lung disease. 

Synthetic surfactants were then administered and their effects assessed at specified time points 

over 5 hours. The variables assessed before and after lavage and surfactant treatment included 

alveolar and physiological dead space, dead space/tidal volume ratio, arterial end-tidal carbon 

dioxide tension (PCO
2
) difference (mainstream capnography), arterial blood gas analysis, 

calculated shunt, and oxygen ratios.

Results: BAL led to acute lung injury characterized by an increasing arterial PCO
2
 and a 

simultaneous increase of alveolar and physiological dead space/tidal volume ratio with no 

intergroup differences. Arterial end-tidal PCO
2
 and dead space/tidal volume ratio correlated 

in the Synsurf, generic Exosurf and generic Exosurf containing Ca2+ groups. A significant and 

sustained improvement in systemic oxygenation occurred from time point 180 minutes onward 

in animals treated with Synsurf compared to the other two groups (P , 0.001). A statistically 

significant decrease in pulmonary shunt (P , 0.001) was found for the Synsurf-treated group 

of animals, as well as radiographic improvement in three out of four animals in that group.

Conclusion: In general, surfactant-replacement therapy in the animals did not fully restore the 

lung to its prelavage condition. However, our data show that the formulated surfactant Synsurf 

improves oxygenation by lowering pulmonary shunt.

Keywords: pulmonary surfactant, synthetic peptides, respiratory dead space, capnometry, 

pulmonary gas exchange, oxygenation

Introduction
Surfactant-replacement therapy with animal-derived surfactant preparations is an 

established treatment modality for respiratory distress syndrome that revolution-

ized the care of preterm babies in intensive care units.1,2 Pulmonary surfactant 

is a complex mixture of phospholipids and at least four apoproteins that reduces 

surface tension at the alveolar surface.3 The mixture has unique spreading proper-

ties, promotes lung expansion during inspiration, and prevents lung collapse during 
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expiration. Of all the protein components in the mixture, 

the hydrophobic surfactant proteins B (SP-B) and C (SP-C) 

have an essential function in the spreading, adsorption, and 

stability of surfactant lipids.4–6

Over the past decade, natural and synthetic surfactants 

have extensively been tested with regard to their in vitro 

properties and in vivo physiologic effects.1 Unfortunately, 

synthetic products have lost popularity in favor of natural 

products that contain low concentrations of SP-B and SP-C, 

which are essential for adsorption and spreading of the surfac-

tant film at the air–liquid interface. However, commercially 

the large-scale production and supply of natural surfactants 

are not only time-consuming and expensive with a limited 

supply, but there are concerns about the reproducibility 

and purity and the possibility of transmission of infectious 

material.7 The development of an effective artificial surfac-

tant mixture, devoid of foreign protein, that can be prepared 

in large quantities at a reasonable cost remains challenging. 

Moreover, a common denominator in acute lung diseases is 

inactivation of surfactant by plasma and other components. 

Much work is therefore aimed at constructing a new gen-

eration of synthetic surfactants that will be more resistant 

towards inactivation.

Various research groups have chemically prepared 

peptides with amino acid sequences based on that of SP-B. 

In two such studies, the treatment of preterm infant rhesus 

monkeys and human infants with respiratory distress syn-

drome was demonstrated with a peptide/phospholipid mixture 

(KL
4
-surfactant).8,9 In both studies, this synthetic surfactant 

expanded the pulmonary alveoli and promoted gas exchange. 

Based on such a design, we prepared a surfactant consisting of 

the phospholipids dipalmitoylphosphatidylcholine (DPPC), 

phosphatidylglycerol (PG), and two polymers: poly-l-lysine 

electrostatically complexed with poly-l-glutamic acid (Syn-

surf [S]). The polymers were added to the phospholipids, in 

order to mimic the hydrophobic and hydrophilic nature of 

SP-B in the mixture.

In this study, we were particularly interested to compare 

the efficacy of S as a synthetic surfactant in a comparative 

study with a previously used synthetic protein-free surfac-

tant, Exosurf Neonatal10,11 (we prepared a generic version), 

hereafter named GE. Although similar in chemical compo-

sition, we cannot guarantee that the GE used in our experi-

ments was identical to commercially manufactured Exosurf   

Neonatal, as it was discontinued at the time of the present 

study. However, in a previous study12 before its discontinua-

tion, we were able to compare the in vivo efficacy of our GE 

and its physiological effects and gas-exchange capabilities 

with the then-available commercial Exosurf Neonatal 

product. Although we found differences that we could not 

provide plausible explanations for in the on-site formulations, 

the overall outcome in performance was similar to Exosurf 

Neonatal. Moreover, the surface tension-lowering ability of 

the GE preparations were not significantly different to that 

of Exosurf Neonatal when we tested them.13 In the present 

study, we also found that the surface-lowering ability of GE 

and S is virtually similar. Although surface-tension measure-

ments strongly depend on the technique applied, our data, 

measured under dynamic conditions, are in agreement with 

the less effective surface tension-lowering ability reported 

by others in the absence of SP-B and SP-C.14

Considering reports in literature15,16 that bivalent cations 

such as Ca2+ can increase the speed of surface adsorption of 

surfactant molecules and to stabilize films in experimental 

conditions, we decided to include a GE preparation mixed 

with Ca2+ (GE
Ca

2+) to elucidate the beneficial effect. Hence 

we tested the efficacy of three surfactant preparations in 

an adult rabbit model with acute lung injury and surfac-

tant deficiency. We tested the hypothesis that a synthetic 

peptide-containing surfactant (S) would improve systemic 

oxygenation and restore the surfactant-deficient lungs to 

prelavage condition after surfactant depletion was induced 

by repeated bronchoalveolar lavage (BAL) in comparison to 

two synthetic surfactants devoid of protein.

Materials and methods
DPPC was obtained from Avanti Polar Lipids (Alabaster, AL, 

USA). PG, cetyl alcohol, tyloxapol, poly-l-lysine (molecular 

weight 16.1  kDa) and poly-l-glutamic acid (molecular 

weight 12  kDa) were purchased from Sigma-Aldrich 

(St Louis, MO, USA). Phospholipid purity was verified by 

thin-layer chromatography.17 Sterile water for injection was 

used in the preparation of surfactant. Chloroform used was 

high-performance liquid chromatography-grade (Merck, 

Darmstadt, Germany).

Experimental surfactant preparations
Synsurf (S) was prepared by mixing DPPC, hexadecanol, 

and PG in a 10:1.1:1 ratio (w/w) in chloroform. The organic 

solvent was then removed by rotary evaporation and the 

mixture was dried under a continuous stream of nitrogen at 

room temperature. Poly-l-lysine (∼100–120 residues) was 

mixed with poly-l-glutamate (approximately 80 residues) 

and incubated at 37°C in 0.1 M NaCl to give a complex that 

was 50% neutralized. The complex was prepared in such a 

manner as to be positively charged through having an excess 
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of poly-l-lysine residues. The dried phospholipid film was 

then hydrated with the polymer mixture (3% by weight of 

the phospholipid concentration) and gently mixed in the 

presence of glass beads. A Branson (Danbury, CT, USA) 

B-15P ultrasonicater fitted with a microtip was then used 

to sonicate the mixture on ice under a stream of nitrogen 

(power of 20 watts for 7 × 13 seconds; 60-second intervals). 

Hereafter, 24  mg of tyloxapol was added to the prepara-

tion, and the tube was sealed under nitrogen before use. 

The GE surfactant was also prepared in a similar fashion as 

described above and consisted of three components: DPPC/

hexadecanol/tyloxapol (13.5:1.5:1) in 0.1 M NaCl. The dose 

of S, GE, and GE
Ca

2+ used was 100 mg/kg. CaCl
2
 included in 

GE
Ca

2+ amounted to 5 mM.

Animal preparation
Animal care and experimental procedures were performed 

under approval from the Faculty of Health Sciences Research 

Committee of Stellenbosch University. Adult New Zealand 

white rabbits weighing 2.5–3.75 kg ± 0.39 kg were premedi-

cated with ketamine (25–50 mg/kg). They were positioned on 

their back and kept in this position throughout the experiment. 

An auricular intravenous line was inserted, and an infusion 

(5  mL/kg/hour) with a Ringer’s glucose solution started. 

Animals then underwent tracheostomy, and an uncuffed endo-

tracheal tube (size 2.5–4.0 mm) was inserted and firmly tied 

to exclude air leaks. Intravenous pentobarbital (6 mg/kg body 

weight) and pancuronium bromide (0.1 mg/kg body weight) 

were administered. Anesthesia was maintained with an infusion 

of sodium pentobarbital at a dose of 6 mg/kg/hour. The left 

carotid artery was catheterized for arterial blood gas measure-

ments and hemodynamic monitoring (blood pressure and pulse 

rate). Lidocaine (1%) was used for local anesthesia at surgical 

sites. Animals were ventilated using the time-cycled pressure-

limited mode (Julian Anaesthetic Workstation; Dräger, Lübeck, 

Germany) at a peak inspiratory pressure necessary to maintain 

a tidal volume (V
T
) of 10 mL/kg and partial pressure of car-

bon dioxide in arterial blood (PaCO
2
) between 4 and 7.5 kPa 

(30–56 mmHg). The V
T
 of a spontaneously breathing young 

adult rabbit (2.775 ± 0.198 kg) varies between 19 and 25 mL, 

and the mean PaCO
2
 for rabbits weighing 2.9–3.5 kg (in the 

absence of ketamine) is 31.8 ± 1.7 mmHg (4.2 ± 0.22 kPa).18,19 

Using the same model, V
T
 varying between 8 and 12 mL/kg 

resulting in partial arterial pressure of CO
2
 between 4.5 and 

5.3 kPa have been reported.20–22 However, since a body of 

researchers used V
T
 of 10 mL/kg in adult rabbits, we decided 

to standardize our protocol accordingly.23–27 This V
T
 was 

verified by a combined neonatal CO
2
/flow sensor (CO

2
SMO 

plus respiratory profile monitor model 8000; Novametrix 

Medical Systems, Wallingford, CT, USA). At the moment of 

the incision of the trachea, continuous intravenous infusion 

of pentobarbital sodium was commenced (6 mg/kg/hour). 

Neuromuscular paralysis was achieved by administering 

intravenous pancuronium bromide (0.1 mg/kg) on an hourly 

basis. The rectal temperature was monitored, and the aim was 

to keep it between 38°C and 40°C with an electrical heating 

pad. The reported normal range of rectal temperatures in the 

rabbit is 38.6°C–40.1°C.19 The blood pressure transducer was 

intermittently flushed with saline containing heparin 5 IU 

heparin/mL. The blood pressure of the healthy rabbit varies 

between 90–130 (systolic) and 60–91 (diastolic) mmHg.19 The 

depth of anesthesia was intermittently checked by pinching 

the web of a hind-leg paw to create a painful stimulus, and by 

the flow sensor to check for spontaneous breathing efforts. 

The study lasted 5 hours before the animals were killed by 

a lethal intra-arterial injection of 15% potassium chloride.

Bronchoalveolar lavage and surfactant 
treatment
Animals were subjected to repeated warm saline (37°C) 

lavage (20  mL/kg) via the endotracheal tube, similar to 

the technique described by Lachmann et  al.28 Lavage end 

points included a decrease in arterial oxygen tension (PaO
2
) 

to below 11 kPa (fraction of inspiratory oxygen [FiO
2
] 1.0) 

and a decrease in dynamic respiratory compliance (C
dyn

) by 

40% or more. The total volume of lavage fluid (corrected 

for body weight) necessary to achieve significant surfactant 

deficiency/acute lung injury was recorded together with the 

volume retrieved. The retrieved volume was expressed as a 

percentage of the instilled volume. A 10-minute period was 

allowed for stabilization following lavage, and then animals 

were randomized into three treatment groups. Group A 

received the GE protein-free surfactant, group B the GE plus 

Ca2+ (5 mM), and group C the peptide-containing surfactant 

(Synsurf, InnovUS, Stellenbosch University) via the endo-

tracheal tube (DPPC concentration 100 mg/kg).

Measurement of lung mechanics, 
capnometry, and arterial blood gases
The FiO

2
 (1.0), V

T
 (aim 10 mL/kg), respiratory rate (40 breaths 

per minute, spontaneous breathing rate of a rabbit varies 

between 32 and 60/minute), positive end-expiratory pres-

sure (PEEP: 5 cmH
2
O after lavage), and the inspiratory time 

(T
I
):expiratory time (T

E
) at 1:1.5 (T

I
 0.6 seconds, T

E
 0.9 sec-

onds) were kept constant throughout the study. Arterial blood 

gases (Radiometer ABL 500 blood gas analyzer; Regent 
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Medic, London, UK), pulmonary functions (dynamic expiratory 

airway resistance [Raw
e
], V

T
, C

dyn
), ventilator settings, physio

logical parameters (rectal temperature, blood pressure, pulse 

rate), oxygenation, capnometry, and other calculations were 

recorded/measured before and after lavage and at 15, 30, 

60, 90, 120, 180, 240, and 300  minutes after surfactant-

replacement therapy. Oxygenation variables were calculated. 

The arterial/alveolar (a/A) ratio  =  PaO
2
/(P

B
 - 47) FiO

2
 - 

PaCO
2
/R (R assumed respiratory quotient 0.8). Pulmonary 

function and CO
2
 measurements were measured with the 

CO
2
SMO Plus respiratory profile monitor. The low dead-

space measurement chamber with flow sensor was placed 

inbetween the ventilator circuit wye and endotracheal tube 

adaptor. The CO
2
SMO Plus monitor measures and displays 

respiratory mechanics and carbon dioxide data and calculates 

flow, CO
2
, and oximetry-related parameters. Flow-sensor 

calibration was not necessary, since the device automati-

cally zeroed periodically by internal values. Partial pressure 

of end-tidal carbon dioxide tension (PET
CO2

) was measured 

by mainstream infrared absorption. By using the tension of 

carbon dioxide (PCO
2
)

 
and volume measurements, the ana-

tomic dead space, alveolar dead space (V
Dalv

), physiological 

dead space, physiological dead space/V
T
 ratio, and V

Dalv
/V

T
 

ratio were determined. The arterial end-tidal PCO
2
 difference 

(P[a-et]CO
2
) was obtained by subtracting the PetCO

2
 from 

PaCO
2
 of an arterial blood gas sample. The shunt was calcu-

lated as follows: Q
s
/Q

t
 = 88.77 - 2.4 (20.4 log PaO

2
/FiO

2
).29

Chest radiography
Anteroposterior chest radiographs were taken prior to lavage, 

immediately prior to randomization, and at the end of the 

study. The distance between the probe and film was kept 

at 24 cm. Changes in lung fields were assessed in a blinded 

manner in regard to whether the radiographic opacification 

following lavage (atelectasis) resolved (better), remained 

unchanged (similar), or deteriorated (worse).

Statistical methods
One-way analysis of variance and linear mixed-effects mod-

eling were used as described by Pinheiro et al30 and Maritz 

et al.31 Variables measured for groups at the predetermined 

time points were also compared using unpaired t-tests. For 

continuous variables measured over time, a linear regres-

sion of the variables over time by least-squares analysis 

was used to compare groups by differences in the initial 

responses to surfactant (y-intercepts) and change over time 

(slopes). Data are expressed as means ± standard deviation. 

A P-value , 0.05 was taken as significant (Statistica version 10; 

StatSoft, Tulsa, OK, USA). GraphPad (La Jolla, CA, USA) 

Prism 5 was used to determine correlations.

Results
Baseline characteristics
The mean (± standard deviation) values for weight and 

prelavage mean arterial blood pressure, arterial blood gases, 

capnometry, and pulmonary functions are shown in Table 1. 

The total volume of lavage fluid required to induce acute 

Table 1 Results before bronchoalveolar lavage at 3 hours and 
5 hours after surfactant treatment in twelve rabbits

Variable Synsurf group  
(n = 4)

Exosurf group  
(n = 4)

Exosurf + Ca2+ 
group (n = 4)

Weight (kg) 3.13 ± 0.56 2.95 ± 0.19 3.44 ± 0.24
Pre-VT (mL/kg)
180 minutes
300 minutes

10.08 ± 0.29
10.08 ± 0.17
10.05 ± 0.10

10.20 ± 0.58
9.85 ± 0.21
9.75 ± 0.24

10.03 ± 0.35
10.13 ± 0.19
9.93 ± 0.22

Pre-MABP  
(mmHg)
180 minutes
300 minutes

82.60 ± 4.07

89.50 ± 11.21
87.00 ± 15.12

92.40 ± 3.83

100.30 ± 6.99
96.75 ± 12.2

91.50 ± 7.51

93.25 ± 4.72
91.00 ± 14.67

Pre-PaO2  
(mmHg)
Post-
180 minutes
300 minutes

499.70 ± 9.46

57.95 ± 14.90
152.30 ± 49.27
281.30 ± 47.64

511.10 ± 17.38

53.25 ± 15.97
85.69 ± 25.85
74.25 ± 8.84

509.30 ± 24.08

50.81 ± 18.30
109.90 ± 46.32
85.69 ± 32.56

Pre-a/A ratio
Post-
180 minutes
300 minutes

0.76 ± 0.02
0.09 ± 0.02
0.23 ± 0.07
0.42 ± 0.07

0.77 ± 0.04
0.08 ± 0.02
0.13 ± 0.04
0.11 ± 0.01

0.76 ± 0.03
0.08 ± 0.03
0.16 ± 0.07
0.13 ± 0.05

Pre-PaCO2  
(mmHg)
180 minutes
300 minutes

40.69 ± 3.15

38.44 ± 4.99
36.75 ± 2.12

39.38 ± 6.26

38.63 ± 5.49
40.13 ± 4.18

36.19 ± 8.04

36.19 ± 4.99
38.81 ± 7.15

Pre-PetCO2  
(mmHg)
180 minutes
300 minutes

14.25 ± 3.06

9.56 ± 1.88
9.75 ± 1.50

14.63 ± 3.09

10.13 ± 2.17
9.38 ± 1.44

13.88 ± 1.3

10.69 ± 0.94
9.75 ± 2.21

Pre-P(a-et)CO2  
(mmHg)
Postlavage
300 minutes

26.44 ± 4.95

43.50 ± 15.16
27.00 ± 2.60

24.75 ± 6.15

42.66 ± 8.67
30.75 ± 3.06

22. 31 ± 7.07

42.88 ± 15.07
29.06 ± 8.58

Cdyn (mL/cm  
H2O/kg)
Prelavage
Postlavage
300 minutes

0.93 ± 0.16
0.47 ± 0.04
0.47 ± 0.01

0.98 ± 0.16
0.46 ± 0.05
0.42 ± 0.02

0.88 ± 0.17
0.42 ± 0.06
0.44 ± 0.06

Rawe

Prelavage
Postlavage
300 minutes

33.75 ± 3.59
53.50 ± 4.20
46.75 ± 11.33

45.25 ± 24.06
74.25 ± 25.93
72.00 ± 22.32

36.75 ± 11.03
59.25 ± 13.07
55.25 ± 9.85

Note: Data are shown as the means ± standard deviation.
Abbreviations: VT, tidal volume; MABP, mean arterial blood pressure; PaO2, arterial 
PO2; PAO2, alveolar PO2; PaCO2, arterial PCO2; PetCO2, end-tidal PCO2; P(a-et)
CO2, arterial end-tidal PCO2; Rawe, expiratory airway resistance; Cdyn, dynamic  
respiratory compliance; a/A ratio, arterial/alveolar ratio.
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Figure 2 Time profile of pulmonary shunt after administration of surfactant in 
rabbit groups.

lung injury and surfactant deficiency (S 74.75 ± 17.04 mL, 

GE 73.58  ±  21.2  mL, GE
Ca

2+ 73.58  ±  21.2  mL) and the 

percentage of fluid retrieved from the airways (lavage 

%: S 86.5%  ±  6.73%; GE 79.38%  ±  7.70%; GE
ca

2+ 

79.25% ± 3.30%) did not differ between the groups. The end 

points of lavage were similar between the groups. Although 

the aim was to randomize the individual animals 10 minutes 

after the final lavage and after the chest X-ray was performed, 

in reality, the randomization occurred at 9 ± 3.16 minutes. 

There were no intergroup differences.

Changes in gas exchange and shunt
The changes in PaO

2
 and a/A ratio before and after surfac-

tant treatment are given in Table 1. The PaO
2
 and a/A ratio 

decreased significantly (P , 0.05) after lavage. Following 

treatment with the respective surfactants, the following 

was noted: oxygenation as reflected by the PaO
2
 and a/A 

ratio improved significantly over time in comparison to the 

postlavage level (time point 0, P , 0.05; Figure 1, A and B). 

However, significantly better and sustained improvement in 

systemic oxygenation occurred from baseline at 60 min-

utes in the animals treated with S (P  =  0.02) compared 

to the other two groups (global test mixed-effects model 

χ2 = 58.81, P , 0.001). Improvement in oxygenation was 

also recorded for the animals treated with GE
Ca

2+, but it was 

significantly less than that recorded in the S group. A statis-

tically significant decrease in calculated pulmonary shunt 

(time period 0–300 minutes) was observed in the S-treated 

group of animals (intergroup differences S 31.49 ± 10.68 vs 

GE 41.13 ± 1.63, P = 0.01, and S vs GE
Ca

2+ 37.36 ± 5.29, 

P = 0.002; Friedman analysis of variance). At 300 minutes, 

the mean calculated value for S was 12.03% versus 32.17% 

and 40.33% for GE
Ca

2+ and GE, respectively (Figure 2).

Changes in pulmonary mechanics
Despite the significant improvement in systemic oxygenation 

(gas exchange), no real changes in pulmonary mechanics 

from baseline (time point 0) over time were demonstrated. 

C
dyn

 decreased significantly from the prelavage value, and 

in spite of surfactant treatment decreased nonsignificantly 

thereafter over time in the three groups (Figure  3). BAL 

resulted in significant reduction of C
dyn

 in all of the rabbits and 

an increase of Raw
e
 by approximately 52%, 64% and 61%, 

respectively, from baseline (Table 1). After surfactant instil-

lation, no significant changes for these two parameters were 

observed over time. Capnometry revealed the effects of lavage 

on dead spaces and the changes in V
Dalv

/V
T
 ratio, physiological 

dead space/V
T
 ratio, V

DPhys
/V

T
 ratio and the arterial end-tidal 

0
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Figure 1 Time profile for oxygenation in the rabbit groups, as reflected by the 
arterial PaO2 and a/A ratio after surfactant administration.
Abbreviations: a/A, arterial/alveolar; PaO2, arterial PO2. 

PCO
2
 difference P(a-et)CO

2
 before lavage and after surfactant 

treatment (Table  1 and Figure  4A–C). At randomization 

(baseline), all of these variables had significantly changed 

in comparison to the prelavage measurements. In all three 

groups, the V
D
/V

T
 ratio as well as the V

Dalv
/V

T
 ratio did not 
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change significantly from baseline, despite treatment with 

surfactant. This finding, together with the increased P(a-et)

CO
2
, indicates a ventilation–perfusion mismatch.

Correlations
We found that the best correlation could be calculated 

between the physiologic dead space and the a/A PO
2
 ratio, 

as well as the physiologic dead space/V
T
 ratio and a/A PO

2
 

ratio in all three groups of rabbits (Table 2). We also found 

good correlations between the arterial end-tidal PCO
2
 and 

V
Dalv

, as well as V
Dalv

/V
T
 components in the S- and GE

Ca
2+-

treated groups of rabbits (Table 3). There was a significant 

negative correlation between P(a-et)CO
2
 and PaO

2
 in S- and 

GEca2+-treated rabbits (S, r  =  −0.65, P  =  0.044; GE
Ca

2+, 

r = −0.74, P = 0.014) and a significant positive correlation 

between P(a-et)CO
2
 and Q

s
/Q

t
 in all three groups for shunt 

percentage above 30% (S, r = 0.86, P = 0.0014; GE, r = 0.92, 

P = 0.0002; GE
Ca

2+, r = 0.91, P = 0.0003).

Radiographic changes
Radiographic improvement was found in three out of four 

animals treated with S, in comparison to one out of four 

rabbits in the GE
Ca

2+ group and two out of four in the pure 

GE-treated rabbit group.

Discussion and conclusions
By selecting the well-established saline-lavage methodology 

introduced by Lachmann et al,28 we were able to create acute 

respiratory failure and lung injury with associated surfactant 

deficiency in adult rabbits. Repeated saline lavage brought 

about a deterioration in gas exchange, increased dead spaces, 
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Table 2 Relation between arterial/alveolar PO2 ratio and dead-
space components

Surfactant  
group

Variable Correlation coefficients

r r2 P

Synsurf VDalv 0.37 0.13 0.2704
VDalv/VT 0.31 0.10 0.3510
VDphys 0.94 0.88 0.0000
VDphys/VT 0.90 0.80 0.0001

Exosurf VDalv 0.49 0.24 0.0928
VDalv/VT 0.31 0.10 0.2675
VDphys 0.93 0.86 0.0000
VDphys/VT 0.93 0.86 0.0000

Exosurf + Ca2+ VDalv 0.60 0.36 0.0497
VDalv/VT 0.58 0.33 0.0307
VDphys 0.85 0.72 0.0006
VDphys/VT 0.83 0.69 0.0009

Abbreviations: VDalv, alveolar dead space; VDalv/VT, alveolar dead-space/tidal volume 
ratio; VDphys, physiologic dead space; VDphys/VT, physiologic dead space/tidal volume 
ratio.
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intrapulmonary right-to-left shunting, venous admixture, and 

impaired lung mechanics.29,32,33

Following lavage, alveoli become unstable and tend to 

collapse abruptly during expiration when the transalveolar 

pressure decreases below critical closing pressure.34 In the 

presence of continuing capillary perfusion of these unstable 

gas-exchange units, venous admixture (intrapulmonary 

shunt) increases. Surfactant deficiency induced by BAL 

elevates alveolar and physiological dead space,25 lowers 

mean lung volume above residual volume,35 decreases arte-

rial PaO
2
, increases arterial PaCO

2
, decreases the a/A ratio, 

elevates pulmonary arterial pressure,36 elevates systolic right 

ventricular pressure,23 increases right-to-left shunting/venous 

admixture,23,25 and increases perfusion of low ventilation–

perfusion regions.37 In the adult rabbit, whole-lung lavage 

increases V
Dalv

 almost fivefold and the V
Dalv

/V
T
 ratio from 

zero to one-third of V
T
.25 If not treated with surfactant, the 

majority of lavaged rabbits deteriorate over 1–2  hours in 

regard to static lung compliance and oxygenation status.38 

Like others, we found that lavage increased the alveolar and 

physiologic dead space/V
T
 ratio.25 The increase in physiologi-

cal dead space would indicate that less of the tidal volume 

is involved in gas exchange. In addition we found a good 

correlation between alveolar and physiological dead space/

V
T
 ratio and arterial end-tidal PCO

2
 differences for the S 

and GE
Ca

+2 groups, but not for the GE group (Table 3). In 

general, higher arterial end-tidal differences were based on 

an increase in dead space/V
T
 ratio. The alveolar dead space/

V
T
 ratio has previously been shown to be the best indicator 

of ventilation disorders and to indicate right-to-left shunt, 

based mainly on atelectasis.25 Regions of high ventilation–

perfusion ratios contribute to dead space, and the P(a-A)CO
2
 

value is accepted as an indicator of high ventilation–perfusion 

lung regions.39 Within 3 hours following surfactant instil-

lation, we found a significant and sustained improvement 

in oxygenation in S-treated animals compared to the other 

groups. Concurrent with the improved oxygenation status, 

we observed a significant decrease in the P(a-et)CO
2
 in the 

S and GE
Ca

2+ groups, which led us to conclude that S clearly 

improved (decreased) high ventilation–perfusion regions, 

more so than was the case in the other two groups.39

An increase in oxygenation following instillation of 

surfactant is largely due to an increase in lung volume, more 

specifically the functional residual capacity (FRC),40,41 and it 

is reasoned that the increase in FRC is due to stabilization of 

already open but underventilated air spaces and recruitment 

of atelectatic gas-exchange units. In the presence of sur-

factant, the relative contribution of these two mechanisms 

may depend on ventilator settings, ie, employment of PEEP, 

mean airway pressure, and other recruitment maneuvers. In 

the present study, PEEP and mean airway pressures did not 

differ between groups. We did not measure FRC and could 

not standardize dynamic compliance for changes in FRC. 

Did we overventilate open lung units? In that regard, we 

checked and reviewed the quantitative change in compli-

ance during the last 20% of inspiration (C
20

) and compared 

this value to the total compliance value for the entire breath 

(C) using the ratio C
20

/C.42 In patients with overdistention, 

the C
20

/C values decrease below 0.8. Reviewing the same 

in our groups showed that no rabbits were overventilated 

for any significant period of time. However, the 300-minute 

values were significantly lower than the 15-minute values, 

correlating with higher and lower compliance values at 

the corresponding time points, respectively. This corre-

lation suggests that some degree of overventilation was 

taking place that influenced dynamic compliance values 

towards the end of the study. Another factor that has to be 

considered in regard to changes observed in oxygenation 

and shunt over time is lavage-induced pulmonary vascular 

constriction. In addition to surfactant deficiency, large-

volume saline lavage (.20  mL/kg) has previously been 

shown to increase intrapulmonary right-to-left shunt, with 

a simultaneous increase in systolic right ventricular pres-

sure.23 We speculate that a raised systolic right ventricular 

pressure reflects a raised pulmonary vascular resistance, 

which could have adversely affected cardiac output, with 

lowered saturation of mixed venous blood. We substituted 

the true calculation of shunt (which requires measuring 

of mixed venous blood) with the calculated shunt29 whilst 

Table 3 Relation between arterial end-tidal PCO2 difference 
and dead-space components

Surfactant  
group

Variable Correlation coefficients

r r2 P

Synsurf VDalv 0.88 0.78 0.0004
VDalv/VT 0.87 0.75 0.0005
VDphys 0.63 0.40 0.0382
VDphys/VT 0.70 0.49 0.0172

Exosurf VDalv 0.74 0.54 0.0096
VDalv/VT 0.19 0.04 0.5788
VDphys 0.51 0.26 0.1071
VDphys/VT 0.35 0.13 0.2861

Exosurf + Ca2+ VDalv 0.90 0.81 0.0002
VDalv/VT 0.93 0.87 0.00003
VDphys 0.74 0.55 0.0091
VDphys/VT 0.81 0.66 0.0024

Abbreviations: VDalv, alveolar dead space; VDalv/VT, alveolar dead space/tidal volume 
ratio; VDphys, physiologic dead space; VDphys/VT, physiologic dead space/tidal volume 
ratio.
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animals were receiving 100% oxygen. Several variables 

may affect this calculation. In this regard, the effect of 

FiO
2
 was taken out of the equation, since FiO

2
 remained 

at 1.0. In regard to possible hypoventilation, we measured 

serial PaCO
2
 levels and attempted to deliver a constant tidal 

volume and minute ventilation throughout the study period. 

Furthermore, PEEP was kept constant, with intermittent 

checks for inadvertent PEEP, and blood pressure and pulse 

rates and rectal temperature did not vary between groups. 

We were able to show that the intrapulmonary right-to-left 

shunt increased from baseline to approximately 45% after 

lavage, thereafter significantly decreasing over time fol-

lowing surfactant instillation. The initial postlavage value 

was very similar to values obtained by Boynton et al35 who 

determined venous admixture and found that the percentage 

venous admixture varied between 35% and 55% at a mean 

airway pressure between 10 and 15 cmH
2
O, respectively. 

We therefore conclude that in the S-treated group, mean 

airway pressure changes possibly altered lung volumes and/

or redistributed ventilation within alveoli already ventilated, 

which affected shunt values.

Since we did not measure pulmonary vascular resistance, 

mixed venous oxygen content, or assessed lung volume, 

we speculate that the decrease in shunt fraction after sur-

factant instillation could be related to one or more of the 

following: shunting of blood from poorly to better-ventilated 

lung regions (improved ventilation–perfusion matching), a 

decrease in pulmonary vascular resistance (relief of hypoxic 

vasoconstriction) in the open but not hypoventilated com-

partment, or lung-volume recruitment. Similar to our study, 

Wenzel et al25 found that protein-containing bovine surfactant 

replacement after BAL improved gas exchange but failed 

to restore the lung to its prelavage condition, which they 

concluded indicates that exogenous surfactant affects only 

partly the recruitment of the atelectatic areas.

A criticism of the present study is the lack of lung his-

tology, and this would have to be addressed in future stud-

ies involving animal models treated with newer synthetic 

surfactants. A paucity of studies in this regard, especially 

following surfactant treatment after saline lavage of adult 

rabbits, was noted. Repetitive total lung lavage in adult rab-

bits leads to a reproducible severe surfactant-deficient lung 

injury. The most prominent light-microscopy findings include 

varying degrees of atelectasis, edema, intra-alveolar protein 

leak, hyaline membrane formation, congestion, patchy intra-

alveolar hemorrhage, lymphatic dilatation, and infiltration 

of neutrophils associated with peripheral neutropenia. After 

treatment with surfactant, these changes are still evident, 

albeit more marked in placebo controls.12,43,44 In addition, 

some authors have described better aeration of alveoli, mea-

sured by volume density, in surfactant-treated groups.43

Poly-l-lysine can exist in a variety of conformations, 

depending on the degree of ionization of the amino groups 

in the side chains, temperature, and salt concentration. 

When we examined the circular dichroism spectrum of the 

poly-l-lysine–poly-l-glutamic acid complex, it showed a 

maxima at 218 nm, indicative that the mixture exists in the 

native random-coil conformation (JM van Zyl, unpublished 

results, 2000). This is in accordance with the findings of 

Chittchang et al45 who found that the random coil is the native 

secondary structure of polylysine. Although hydrophobicity 

of poly-l-lysine significantly increases in the order; random 

coil , α-helix , β-sheet conformers,46 we know from our 

previous experience that complexes of poly-l-lysine and 

poly-l-glutamic acid have a degree of hydrophobicity, as we 

have shown that conjugates of polylysine electrostatically 

bind to DNA and make good cell-transfecting agents.47 More-

over, poly-l-lysine adopts a β-sheet conformation from the 

random coil during interaction with phospholipids.48 On the 

other hand, the random coil (disordered state) of a polymer 

mixture will favor the exposure of the basic charged surface 

groups on the lysine side chains whereby the peptide could 

interact flexibly with other molecules to perform a functional 

role in cell membranes. The overall effect could then pos-

sibly be electrostatic binding to phospholipid monolayers.49 

With regards to SP-B, the α-helical and β-sheet secondary 

structure is proposed to penetrate into the lipid acyl chains 

of the phospholipid membrane lining in alveolar walls, thus 

providing stability and preventing atelectatic collapse.50 We 

therefore make the assumption that the charged amino groups 

of poly-l-lysine in our S preparation could also possibly 

interact with the phospholipid bilayer and thus could mimic 

some structural and/or functional properties of SP-B. On the 

other hand, as positive charges are important for maintaining 

the structure and function of SP-C,51 it can alternatively be 

argued that the overall positive character of poly-l-lysine 

residues in S could then rather contribute to the mimicking 

of SP-C structural and/or functional properties.

To conclude, in keeping with the finding of similar 

experimental and human studies, the best indicator of the 

efficacy of the surfactant was the changes observed in  

systemic oxygenation over time. In addition to this, the 

statistically significant decrease in pulmonary shunt found 

for the S-treated group of animals suggests that the present 

phospholipid mixture formulated with poly-l-lysine–poly-

l-glutamic acid as a complex (cationic and hydrophobic) 
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improves oxygenation in the rabbit model of acute lung 

injury/surfactant depletion.

Disclosure
Johan Smith, Johann van Zyl and Arthur Hawtrey are code-

signers and developers of the peptide-containing synthetic 

surfactant. The surfactant has been patented by InnovUS 

(Stellenbosch University).
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