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Introduction: Resting heart rate (HRrest), heart rate variability (HRV), and HR recovery
(HRR) from exercise provide valuable information about cardiac autonomic control.
RR-intervals during acute recovery from exercise (RRrec) are commonly excluded
from HRV analyses due to issues of non-stationarity. However, the variability and
complexity within these trends may provide valuable information about changes in
HR dynamics.

Purpose: Assess the complexity of RRrec and determine what physiologic
and demographic information are associated with differences in these indices
in young adults.

Methods: RR-intervals were collected throughout maximal treadmill exercise and
recovery in young adults (n = 92). The first 5 min of RRrec were (1) analyzed
with previously reported methods that use 3-interval lengths for comparison and (2)
detrended using both differencing(diff) and polynomial regression(res). The standard
deviation of the normal interval (SDNN), root mean square of successive differences
(rMSSD), root mean square (RMS) of the residual of regression, and sample entropy
(SampEn) were calculated. Repeated measures analysis of covariance (ANCOVA) tested
for differences in these indices for each of the methodological approaches, controlling
for race, body fat, peak oxygen uptake (VO2peak), and resting HR (HRrest). Statistical
significance was set at p < 0.05.

Results: VO2peak and HRrest were significantly correlated with traditional measures of
HRR and the variability surrounding RRrec. SampEndiff and SampEnres were correlated
with VO2peak but not HRrest or HRR. The residual-method provided a significantly
(p = 0.04) lower mean standard error (MSE) (0.064 ± 0.042) compared to the
differencing-method (0.100 ± 0.033).
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Conclusions: Complexity analysis of RRrec provides unique information about
cardiac autonomic regulation immediately following the cessation of exercise when
compared to traditional measures of HRR and both HRrest and VO2peak influence
these results.

Keywords: heart rate variability, non-linear dynamics, recovery heart rate, recovery heart rate variability, cardiac
dynamics, emerging adults

INTRODUCTION

Historically, the response of heart rate (HR) and heart
rate recovery (HRR) to- or following- a perturbation, has
been commonly utilized within research and clinical settings
as a non-invasive physiological measure of cardiovascular
regulation. Several studies have shown that impairment in
autonomic function—represented by delayed HRR—indicates
adverse cardiovascular outcomes in otherwise healthy individuals
(Qiu et al., 2017; Lachman et al., 2018). While changes in
HR and traditional indices of HRR can provide important
information about differences in cardiac autonomic control,
heart rate variability (HRV) has been shown to offer a more
sensitive measure of cardiac autonomic regulation at rest (Task-
Force, 1996) and during exercise (Karapetian et al., 2008)
compared to a mean HR value. As measures of HR, HRR, and
HRV have clear associations with cardiovascular health, a better
understanding of RR intervals following various exercises and
exercise intensities during the acute recovery phase (RRrec) is
needed within the literature. Doing so, provides implications
for clinical, research, and performance-related exercise testing
and monitoring.

Michael et al. (2017) highlight and discuss the usefulness
of assessing HRV at the onset, during, and immediately
following the cessation of exercise to provide insight into
autonomic stress reactivity. They, Michael et al. (2017),
suggest that upon the onset of exercise, inputs from higher-
order brain centers feed into the medullary control of
cardiovascular function to reset the arterial baroreflex. This
shift in the operating point for the arterial baroreflex requires
a physiological shift in cardiac output that is met primarily
by a withdrawal in parasympathetic input to increase HR.
HRV provides context to changes in cardiac regulation beyond
the assessment of mean HR values but these methods are
limited to stationary time-series. The statistical estimation of
a time-series (whether that statistic is assessing the variability
or the complexity of the time-series) is dependent upon the
underlying process producing the time-series and because
each element of a non-stationary time-series can have
a different entropy, these statistical calculations become
consistently biased (Berry et al., 2020). Prior research has
examined the relations between changes in HRV and the non-
stationary (data with significant slopes in the HR response)

Abbreviations: HR, Heart Rate; HRR, Heart Rate Recovery; HRV, Heart Rate
Variability; RRrec, RR Intervals During Recovery; SDNN, Standard Deviation of
RR-intervals; rMSSD, Root Mean Square of Successive RR Differences; ApEn,
Approximate Entropy; SampEn, Sample Entropy; RMS, Root Mean Square
Index; VO2peak, Peak Oxygen Uptake; diff, Difference Calculation; res, Residual
Calculation; MSE, Mean Square Error; ARS, Adaptive Regression Splines.

trends in exercise recovery with conflicting HRV results
(Arai et al., 1989; Bernardi et al., 1990; Perini et al., 1990;
Breuer et al., 1993; Nakamura et al., 1993; Oida et al., 1997;
Perini and Veicsteinas, 2003).

While a few studies have investigated methodological
approaches for HRV indices during and/or after exercise, these
studies have produced conflicting results (Arai et al., 1989;
Bernardi et al., 1990; Perini et al., 1990; Breuer et al., 1993;
Nakamura et al., 1993; Oida et al., 1997; Perini and Veicsteinas,
2003). As it pertains to exercise recovery, these methods are less
commonly reported in the literature than traditional measures of
HR and HRR. A recent review by Peçanha et al. (2017) examined
the strengths and weaknesses of a variety of methods that
have previously been utilized to assess post-exercise autonomic
recovery via HRR and HRV indices. As discussed in this review
(Peçanha et al., 2017), Goldberger et al. (2006) first introduced
the idea of separating-out the 5 min period following the
cessation of exercise into twenty 15s, ten 30s, and five 60s
segments, which could be assessed by different variability indices
to evaluate changes in cardiac autonomic reactivation. The
piecewise analysis of these first 5 min following the cessation of
exercise utilized HRV indices such as the standard deviation of
normal RR-intervals (SDNN), the root mean square of successive
RR differences (rMSSD), and the root mean square (RMS) (Ganio
et al., 2009) index to assess cardiac autonomic reactivation.
The authors concluded that both rMSSD and RMS of 30 s
segments adequately reflected the autonomic changes occurring
during the 5 min period of recovery (compared to 15 and 60
s segment lengths) and eventually expanded on these findings
by evaluating these methods following a submaximal exercise
bout (Ng et al., 2009). These studies show that indices of
HRR and HRV immediately following the cessation of exercise
reflect changes in cardiac autonomic modulation—as was also
discussed in Michael et al. (2017).

However, measures of complexity—approximate entropy
(ApEn) and sample entropy (SampEn), were not assessed
in previous studies, but reflect important changes in heart
rate dynamics that are not detected by traditional linear or
frequency based measures of HRV (Goldberger Ary et al., 2000).
Briefly, complexity measures stem from evaluation of non-
linear dynamics, which assess the structure of a time series
and reflects the system’s ability to adapt to internal or external
perturbations. For instance, entropy indices quantify the degree
of regularity or the appearance of repetitive patters within
a time segment vs. traditional linear measures that examine
the magnitude of variability. Thus, a low amount of entropy
corresponds to a high amount of regularity within a signal
(i.e., low adaptability of the system) vs. a higher degree of
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complexity that reflects a less-ordered signal (i.e., increased
adaptability of the system)(West and Goldberger, 1987; Manor
et al., 2010). A recent study by Berry et al. (2020), expanded on
previous research by examining the influence of non-stationarity
on indices of variability and complexity as well as various
methods of detrending these data. These findings clearly show the
biasing effects of non-stationarity on measures of variability and
complexity as well as the effects of various methods of detrending
on these indices.

To further elucidate the changes in heart rate dynamics
immediately post-exercise, this study assesses the complexity
during the entire 5 min recovery period immediately post-
exercise using both a previously reported method of assessing
HRV during the recovery from exercise (Goldberger et al., 2006)
and the methods outlined in Berry et al. (2020). In addition, we
examine the relations between various physiological measures
with indices of HRV from each of the respective methods.

MATERIALS AND METHODS

This analysis was performed on data that had been collected
as part of the larger longitudinal RIGHT Track (RT) Health
study. The overarching aim of RT Health is to examine the
influence of early childhood self-regulation on the development
of cardiovascular risk in adolescence and young adults. This study
was approved by the Institutional Review Board at the University
of North Carolina at Greensboro (IRB #11-0360). Prior to
participating, all subjects provided written and informed consent.

The methods outlined below are specific to the HRV
assessments and analyses; methods on the entire study have been
published elsewhere (Wideman et al., 2016). Participants arrived
at the laboratory between the hours of 0900 and 1400 at least 2
h post-prandial and having abstained from moderate to vigorous
physical activity for 24 h, caffeine for 12 h, alcohol for 48 h. Body
composition was assessed via air displacement plethysmography
using COSMED’s BODPOD R© system. An incremental test to
exhaustion was performed on a GE 2100 treadmill to assess peak
oxygen uptake (VO2peak) (Parvo Medics TrueOne 2400). Pre-
exercise, during exercise, and post-exercise RR intervals were
recorded using a Polar V800 watch and downloaded following
the completion of the visit. During the exercise test, participants
self-selected their running speed while grade was increased by 3%
every 2 min. Participants were asked to choose a speed that they
felt comfortable maintaining for approximately 15 min so that the
incremental increases in grade would result in maximal volitional
fatigue within 8–12 min.

All mathematical and statistical procedures were performed
using R 3.5.0. Artifact correction using linear interpolation of
preceding- and proceeding- heart periods was completed prior to
any additional analyses being performed using the open source
“RHRV” package (Rodríguez-Liñares et al., 2008). Analysis of
variance was performed using the “car” package (Fox and
Weisberg, 2019) while multivariate adaptive regression splines
were performed using the “earth” package (Milborrow, 2017). A
example of an entire HR (bpm) and RR-interval (msec) profile is
provided in Figures 1A,B, respectfully.

FIGURE 1 | (A) The heart rate (HR) profile from rest, exercise, and recovery.
The dotted vertical lines segment the immediate 5 min of recovery. (B) The
RR-interval profile from rest, exercise, and recovery. (C) The 5 min of recovery
RR-interval data fit with a third-order polynomial. (D) The residuals from the
third-order polynomial in C that were used for analysis. (E) The 5 min of
recovery RR-interval data detrended via differencing.
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Replication of Methods Outlined by
Goldberger et al. (2006)
The first 5 min of RR-interval data following the cessation of
exercise were identified (Figures 1B,C). These segments were
broken apart into twenty 15s, ten 30s, and five 60s segments
that spanned the entire 5-min of recovery (Figure 2). Following
linear regression analysis on the RR-intervals for each of the
three different segment lengths, the residuals were computed and
corresponding SDNN, rMSSD, and RMS indices were calculated.

Differencing and Polynomial Detrending
of RRrec
Two separate detrending approaches were performed and
comparisons between these two methods were evaluated. These
methods of detrending non-stationary time-series are provided
in Berry et al. (2020). Difference(diff) Calculations. Differencing
(Figure 1E) was used to detrend the time-series and the
resultant stationary time-series was subsequently analyzed to
compare differences in variability and complexity. Residual(res)
Calculations. The optimal model was determined by purposefully
overfitting the initial 5 min of RRrec data for all subjects. After
modeling the initial 5 min of RRrec from 1 to 10 orders for each
individual, a third-order polynomial was determined to be the
optimal regression line (Figure 1C), since it was flexible enough
to account for individualities in this response and reduced
the autocorrelation among the residuals without significantly
overfitting the data. The residuals from these (individualized)
lines were plotted as a secondary time-series (Figure 1D)
for analysis.

Variability and Complexity of the
Detrended RRrec Data
The aforementioned transformations of the data were completed
with the purpose of creating a time-series with a stationary mean
to analyze the variability and complexity surrounding RRrec;
allowing us the ability to characterize the patterns of variability
around the non-stationary decline in HR (rise in RR-intervals).
Variability Measures. The equivalent of common time-domain
measures of HRV, including SDNN of normal RR intervals and
rMSSD, were used to assess the variability of the detrended-RRrec.
Complexity Measures. ApEn and SampEn were used to assess the
complexity of the residuals surrounding the non-linear trend in
RRrec; a higher number indicates a greater degree of complexity,
whereas smaller values characterize more regular signals. While
SampEn is more robust against changes in data-length compared
to ApEn (Yentes et al., 2013), both indices were included in this
analysis for continuity with previously published data.

Statistical Methods
With respect to our replication of Goldberger et al. (2006),
repeated measures analysis of variance (ANCOVA) were used to
assess changes in SDNN, rMSSD, and RMS across time between
sex after controlling for race, body fat (BF), VO2peak, and HRrest.
Separate univariate ANCOVAs were used to compare differences
in SDNNdiff, rMSSDdiff, SampEndiff, SDNNres, rMSSDres, and
SampEnres between sex and race after controlling for changes in

FIGURE 2 | Mean changes of SDNN, rMSSD, and RMS from the replication
of Goldberger et al. (2006). (A) 15 s segment. (B) 30 s segments. (C) 60 s
segments. Standard deviation of the normal RR-interval (SDNN); root mean
square of successive differences (rMSSD); root mean square (RMS).
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BF, VO2peak, and HRrest. After these statistical comparisons were
performed, exploratory statistical learning-methods were used to
better understand some of the relations among these indices with
various physiologic/demographic data.

Multivariate adaptive regression splines (ARS) produce
continuous derivatives and are not only more powerful but also
more flexible in determining the interaction among variables
(Friedman, 1991). The original dataset was split, via random
sampling, into a training-dataset (n = 46) and a testing-dataset
(n = 46). Subsequently, the selected model was tested on the
remaining data (the testing-dataset) to determine the validity
of the models produced with the training-dataset. Physiological
measures considered for each model included: height (Ht),
weight (Wt), body fat (BF), body mass index (BMI), maximal
oxygen uptake (VO2peak), resting HR (HRrest), maximal HR
(HRmax), HR at 1 min (HRone), and 5 min (HRfive) following the
cessation of exercise, recovery (1 bpm) at 1 min (HRRone) and at

5 min (HRRfive). These measures were scaled and centered prior
to being used within the ARS analysis.

RESULTS

Data from N = 92 young adults (male = 46, female = 46) were
included in this study. Subject demographics, separated by sex,
are provided in Table 1.

Replication of Previously Established
Methods of Assessment of RRrec
Results from replication of the methods established in Goldberger
et al. (2006) are provided in Table 2 and visual representation of
means from the segmented-analysis throughout the first 5 min of
recovery are provided in Figure 2.

TABLE 1 | Subject demographics.

Males Females Combined

n = 46 n = 46 N = 92

Age (years) 18.5 (± 0.5) 18.5 (± 0.6) 18.5 (± 0.6)

Height (cm) 178.0 (± 8.1) 164.7 (± 7.1) 171.4 (± 10.1)

Weight (kg) 74.8 (± 15.7) 69.3 (± 16.1) 72.1 (± 16.4)

BF (%) 16.8 (± 9.0) 30.8 (± 9.8) 23.8 (± 11.7)

BMI (kg/m2) 23.6 (± 4.4) 25.6 (± 5.8) 24.6 (± 5.2)

VO2 (ml/kg/min) 52.5 (± 10.0) 36.2 (± 9.4) 44.4 (± 12.7)

HRrest (bpm) 55 (± 12) 62 (± 10) 59 (± 12)

HRmax (bpm) 199 (± 12) 192 (± 14) 196 (± 14)

HRone (bpm) 162 (± 16) 160 (± 17) 161 (± 17)

HRfive (bpm) 105 (± 14) 105 (± 15) 105 (± 15)

HRRone (bpm) 39 (± 13) 37 (± 12) 38 (± 13)

HRRfive (bpm) 95 (± 11) 92 (± 11) 94 (± 11)

Values are presented Mean (± SD). BF, Body fat; BMI, body mass index; VO2max, Maximal oxygen update; HRrest, resting heart rate; HRmax, maximal HR; HRone, HR at
1 min; HRfive, HR at 5 min; HRRone, HR recovery at 1 min; HRRfive, HR recovery at 5 min.

TABLE 2 | P-values from ANCOVAs assessing differences for sex and race after controlling for body fat (BF), maximal oxygen uptake (VO2peak), and resting heart rate
(HRrest) for each of the segmenting-analyses of post-exercise HRV.

15 s 30 s 60 s

SDNN rMSSD RMS SDNN rMSSD RMS SDNN rMSSD RMS

Sex 0.43 0.36 0.45 0.45 0.41 0.44 0.74 0.76 0.59

Race 0.44 0.40 0.40 0.73 0.43 0.49 0.79 0.46 0.69

BF (%) 0.42 0.26 0.31 0.38 0.21 0.43 0.20 0.10 0.36

VO2peak (ml/kg/min) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

HRrest (bpm) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Time 0.08 < 0.001 0.001 0.07 < 0.001 < 0.001 0.75 < 0.001 < 0.001

Sex:BF 0.35 0.36 0.46 0.36 0.41 0.40 0.43 0.73 0.44

Sex:Time 0.11 0.46 0.42 0.52 0.24 0.20 0.72 0.14 0.65

BF:Time 0.24 0.03 0.45 0.24 0.02 0.20 0.98 0.04 0.65

Race:Time 0.21 0.74 0.54 0.66 0.86 0.22 0.14 0.38 0.26

VO2peak:Time 0.23 0.07 0.21 0.07 0.01 0.01 0.78 < 0.001 0.005

HRrest:Time 0.20 0.05 0.45 0.65 0.01 0.32 0.24 < 0.001 0.39

Sex:BF:Time 0.28 0.58 0.55 0.52 0.41 0.40 0.53 0.17 0.84
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Replication of these previously established methods in our
young adults provided similar results to those of the healthy
middle-aged adults reported in Goldberger et al. (2006).
Extending on the comparisons previously made between healthy
individuals and those with coronary artery disease (Goldberger
et al., 2006), we examined the relationships between sex and
race after controlling for BF, VO2peak, and HRrest. While
neither SDNN, rMSSD, or RMS were different between sex or
race with any of the three segment-lengths, we did observe
significant relationships between VO2peak and HRrest with
each of these analyses. More interestingly were the significant
interactions between VO2peak and HRrest with the changes
in SDNN, rMSSD, and RMS across time and the lack of
consistency in these findings across different segment-lengths
(Table 2).

Differencing and Polynomial Detrending
of RRrec
Pearson correlations among demographic and the detrending
(differencing- and residual-approaches) measures for the entire
5 min time series immediately post-exercise are presented in
Table 3. The correlations between demographic characteristics
and SDNN, rMSSD, and RMS of differenced and residual
methods produced correlations ranging from −0.67 to 0.65.
Similarly, the correlations between traditional indices of HRR
with SDNN, rMSSD, and RMS ranged from −0.83 to 0.75.

Means from the newly proposed detrending methods are
provided in Table 4 and results from the ANCOVAs are provided
in Table 5. Similar to our findings with the segmenting-method,
we did not observe significant group differences based on sex or
race but we did observe significant associations between VO2peak
and HRrest with SDNN, rMSSD, ApEn, and SampEn for all but
SampEndiff.

Results from ARS models are provided in Table 6. The
residual-method provided a significantly (p = 0.04) lower

TABLE 4 | Means (± SD) of the differencing- and residual- methods.

Differencing Residual

SDNN 6.27 (± 4.70) 13.38 (± 7.47)

rMSSD 9.41 (± 6.95) 6.27 (± 4.70)

ApEn 1.09 (± 0.30) 1.10 (± 0.09)

SampEn 2.27 (± 0.39) 1.57 (± 0.28)

Standard deviation of the normal RR-interval (SDNN); root mean square of
successive differences (rMSSD); approximate entropy (ApEn); sample entropy
(SampEn).

mean standard error (MSE) (0.064 ± 0.042) compared to the
differencing-method (0.100 ± 0.033).

DISCUSSION

The major findings from these analyses were (1) reproducibility
of previously established methods (Goldberger et al., 2006)
for immediate post-exercise HRV in a young-adult population,
(2) a unique dichotomy in the simple correlations between
traditional measures of HRR and the complexity measures
from the differencing- and residual-methods of RRrec, and (3)
reliable models that demonstrate the complex nature of these
indices. Additionally, these results provide preliminary insight
into what physiologic variables may contribute to differences in
these complexity indices when calculated on the detrended time
series from the 5 min immediately post-exercise compared to
traditional indices of HRR.

The replication of the segmenting-method, as described in
Goldberger et al. (2006), (used to assess acute changes in RRrec)
in our young adult population mirrored the patterns of change in
SDNN, rMSSD, and RMS previously reported by Goldberger et al.
(2006), however, the true raw values assessed for SDNN, rMSSD
and RMS across the 5 min segment appeared to be different.

TABLE 3 | Correlations among demographic and the differencing- and residual- detrending measures.

BF VO2peak HRrest HRmax HRone HRfive HRRone HRRfive SDNNdiff rMSSDdiff ApEndiff SampEndiff SDNNres rMSSDres ApEnres

VO2peak −0.78‡‡

HRrest 0.27†
−0.29†

HRmax −0.31† 0.47‡‡ 0.12

HRone −0.21* 0.36‡ 0.25* 0.78‡‡

HRfive −0.05 0.20* 0.37‡ 0.72‡‡ 0.84‡‡

HRRone −0.03 −0.04 −0.27†
−0.1 −0.69‡‡

−0.50‡‡

HRRfive −0.32† 0.29†
−0.38‡‡ 0.21* −0.21* −0.52‡‡ 0.59‡‡

SDNNdiff 0.12 −0.29†
−0.26†

−0.62‡‡
−0.76‡‡

−0.83‡‡ 0.49‡‡ 0.41‡‡

rMSSDdiff 0.09 −0.23* −0.28†
−0.58‡‡

−0.72‡‡
−0.79‡‡ 0.47‡‡ 0.41‡‡ 0.99‡‡

ApEndiff 0.17 −0.06 0.39‡‡ 0.43‡‡ 0.60‡‡ 0.70‡‡
−0.46‡‡

−0.47‡‡
−0.51‡‡

−0.51‡‡

SampEndiff −0.22* 0.31†
−0.06 0.26† 0.24* 0.26* −0.08 −0.04 −0.55‡‡

−0.55‡‡
−0.29†

SDNNres 0.20* −0.36‡
−0.26†

−0.67‡‡
−0.81‡‡

−0.87‡‡ 0.53‡‡ 0.42‡‡ 0.91‡‡ 0.86‡‡
−0.50‡‡

−0.45‡‡

rMSSDres 0.12 −0.29†
−0.26†

−0.62‡‡
−0.76‡‡

−0.83‡‡ 0.49‡‡ 0.41‡‡ 1.00‡‡ 0.99‡‡
−0.51‡‡

−0.55‡‡ 0.91‡‡

ApEnres −0.15 0.28† 0.32† 0.65‡‡ 0.68‡‡ 0.75‡‡
−0.34‡

−0.26†
−0.70‡‡

−0.68‡‡ 0.55‡‡ 0.41‡‡
−0.75‡‡

−0.70‡‡

SampEnres −0.28† 0.40‡‡ 0.04 0.37‡ 0.32† 0.41‡‡
−0.09 −0.13 −0.38‡‡

−0.33‡ 0.08 0.45‡‡
−0.56‡‡

−0.38‡‡ 0.63‡‡

VO2max , Maximal oxygen update; HRrest, resting HR; HRmax , maximal HR; HRone, HR at 1 min; HRfive, HR at 5 min; HRRone, HR recovery at 1 min; HRRfive, HR recovery at
5 min; SDNN, standard deviation of the normal RR-interval; rMSSD, root mean square of successive differences; ApEn, approximate entropy; SampEn, sample entropy.
Differencing method (diff ); residual method (res).‡‡p < 0.0001; ‡p < 0.001;†p < 0.01; *p < 0.05.
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TABLE 5 | P-values from ANCOVAs assessing differences for sex and race after controlling for body fat (BF), maximal oxygen uptake (VO2peak), and resting heart rate
(HRrest) for each of the differencing- and residual- methods.

Differencing Residual

SDNN rMSSD ApEn SampEn SDNN rMSSD ApEn SampEn

Sex 0.82 0.75 0.19 0.03 0.41 0.82 0.71 0.17

Race 0.48 0.33 0.26 0.95 0.66 0.48 0.42 0.80

BF 0.20 0.28 0.43 0.09 0.72 0.20 0.38 0.34

VO2peak < 0.001 0.003 0.08 0.09 < 0.001 < 0.001 0.007 0.02

HRrest < 0.001 < 0.001 0.001 0.44 < 0.001 < 0.001 < 0.001 0.05

Sex:BF 0.69 0.63 0.29 0.12 0.31 0.68 0.73 0.52

This discrepancy may be associated with the difference in age
between the two samples as our sample included adolescents
and young-adults compared to Goldberger et al. (2006) which
included adults and older-adults. The individuals included in our

TABLE 6 | Parameters from the multivariate adaptive regression spline (ARS)
models for each of the differencing- and residual-methods.

Differencing Residual

Parameter Estimate Parameter Estimate

SDNN H(206-HRmax ) 0.033 H(BF-29.9) 0.011

H(HRRone-26) 0.012 H(HRone-169) −0.014

H(98-HRRfive ) −0.026 H(106-HRfive ) 0.036

H(HRRfive-98) 0.035 H(HRfive-106) −0.012

R2 0.79 0.86

MSE 0.084 0.067

rMSSD H(21.5-BMI) 0.120 H(206-HRmax ) 0.033

H(52-HRrest ) 0.037 H(HRRone-26) 0.012

H(206-HRmax ) 0.031 H(98-HRRfive ) −0.026

H(98-HRRfive ) −0.020 H(HRRfive-98) 0.035

H(HRRfive-0.042) 0.042

R2 0.77 0.79

MSE 0.127 0.084

ApEn H(37.2-BF) −0.009 H(HRmax-192) 0.027

H(50-HRrest ) −0.029 H(HRmax-195) −0.023

H(HRrest-50) −0.042 H(HRRfive-88) −0.004

H(HRrest-57) 0.051

H(HRmax-192) 0.135

H(HRmax-195) −0.133

H(95-HRRfive ) 0.023

R2 0.73 0.61

MSE 0.061 0.005

SampEn H(18.5-BF) 0.044 H(52-HRrest ) 0.033

H(90-HRRfive ) −0.037 H(32-HRone ) 0.022

H(HRRfive-90) −0.026 H(HRRone-35) 0.054

H(HRRone-44) −0.077

H(HRRfive-95) −0.016

R2 0.39 0.47

MSE 0.128 0.100

SDNN, Standard deviation of the normal RR-interval; rMSSD, root mean square of
successive differences; ApEn, approximate entropy; SampEn, sample entropy; BF,
body fat; HR, heart rate; HRrest, resting HR; HRmax , maximal HR; HRone, HR at 1
min; HRfive, HR at 5 min; HRRone, HR recovery at 1 min; HRRfive, HR recovery at 5
min; MSE, mean square error.
Estimates for parameters where the variable precedes the hinge-point [e.g.,
H(HRrest-60)] represent the slope of the line after the hinge-point whereas estimates
for parameters where the hinge-point precedes the variable [e.g., H(60-HRrest)]
represent the slope of the line before the hinge-point.

sample have completed puberty and linear growth by this age,
and these data fall within the normal range of values for young
healthy adults. However, these individuals are still developing
psychologically and physiologically, which may contribute to
these differences.

The ANCOVAs testing for effects with the segmenting-
method, as well as the new residual-method (from the entire
5 min period immediately following the cessation of exercise)
proposed in this paper, produced similar results: no effects for
sex or race were observed for any of the tests, while both VO2peak
and HRrest were significantly associated with SDNN, rMSSD, and
RMS from both methods.

The correlations among various demographic variables and
the variability and complexity indices from the differencing-
and residual-methods in Table 3 show a unique relation
between VO2peak and HRrest with HRRone, SampEndiff, and
SampEnres. While the variability measures (SDNNdiff, SDNNres,
rMSSDdiff, and rMSSDres) were each significantly correlated with
traditional metrics of HRR (VO2peak, HRrest, HRmax, HRone,
HRfive, HRRone, and HRRfive), SampEndiff and SampEnres had
either no correlation with, or much-lower correlations with
these indices. These findings suggest that indices of variability
calculated on the entire 5 min segment using either differencing
or residual methods, share large amounts of variance with
traditional indices of HRR—in other words, the information
provided by assessing either SDNNdiff/res or rMSSDdiff/res
does not provide innovative or novel information beyond the
traditional indices of HRR investigated in this, and many other,
studies. Considering the physiological mechanisms associated
with sympathetic withdrawal and the role of vagal input following
the cessation of exercise to reduce HR, these observations are
in-line with what is expected.

However, the complexity metrics obtained surrounding the
increase in RRrec (i.e., SampEndiff, and SampEnres) immediately
following the cessation of exercise are differentially correlated
with demographic measures and various traditional indices of
HRR. This suggests that the complexity indices may provide
distinct and unique information about the changes in HR
immediately following exercise. While the ANCOVAs further
supported these observations, the best support for this idea came
from the ARS models (Table 6). Contrary to the ANCOVA
analyses, the ARS models are exploratory and do not test specific
hypotheses. These models progressively add predictors (and any
combination of predictors), to the model and test for various

Frontiers in Physiology | www.frontiersin.org 7 February 2021 | Volume 12 | Article 627320

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-12-627320 February 1, 2021 Time: 18:8 # 8

Berry et al. HR Dynamics Post-exercise

non-linearities among them. The optimal model is determined
by comparing changes in model fit. The optimal model was
calculated on a training-dataset (a randomly selected 50% of the
entire dataset) and then tested on the test-dataset.

Both SampEndiff and SampEnres were significantly associated
with VO2peak and neither was significantly correlated with HRrest,
HRRone, or HRRfive, but these variables (or some combination
of these variables) were repeatedly selected in the ARS models
as significant predictors of the complexity metrics (ApEndiff,
ApEnres, SampEndiff, and SampEnres). Similarly, HRrest, HRRone,
and HRRfive were commonly identified by ARS as significant
terms in other models, suggesting that the variability surrounding
the trend in RRrec immediately following the cessation of
exercise does not provide information about changes in cardiac
autonomic regulation that is not already observed in traditional
indices of HRR. However, the repeated selection of HRrest,
HRRone, and HRRfive by ARS models to predict SampEndiff, or
SampEnres despite the lack of significant correlations between
any of these variables is an interesting finding that highlights
the novelty of these detrending methods. These findings suggest
that the complexity surrounding the trend in RRrec provides
information about cardiac autonomic regulation not detected
through traditional HRR indices or the variability surrounding
the trend in RRrec.

Although the segmenting-method can be used to separate
out the fast-phase and the slow-phase of the cardiac autonomic
response to the cessation of exercise, we suggest that assessing
the entire 5 min together may provide a more holistic and
comprehensive assessment of the cardiac dynamics associated
with RRrec. Furthermore, calculating the residuals from a
third-order polynomial fit to the first 5 min of RRrec is
less computationally intense and likely to be more robust
against acute changes in RRrec compared to the segment
approach previously described (Goldberger et al., 2006). When
considering data length, it’s important to remember that
although time is a constant, there could potentially be drastic
differences in the number of RR-intervals that occur within
each segment being analyzed. Furthermore, the influence of
irregular and/or erroneous beats would have a larger impact on
the variability (McNames et al., 2003; McNames and Aboy, 2006;
Thuraisingham, 2006) and complexity (Rhea et al., 2011) score
calculated across a shorter segment when compared to a longer, 5
min, sampling period. Thus, we recommend the residual-method
(as outlined in our methods) as a method of assessing the cardiac
dynamics associated with recovery from exercise. In line with
the findings of Berry et al. (2020) this method also produced
more accurate and reliable models compared to the differencing-
method—observed through a significantly higher MSE in the
ARS models calculated on the differenced data compared to the
residual data.

Although the time course for parasympathetic reactivation
post-exercise has been investigated previously, the exact timing
of these changes is likely to be highly impacted by an individual’s
health and training status and thus, to vary from person
to person. As such, the interindividual variability in post-
exercise parasympathetic reactivation may provide a nuanced
assessment of cardiac autonomic regulation and subtle changes

in this exercise-induced responsiveness may reflect the early
stages of disease—an important target for future studies. While
the development of an algorithm capable of reliably parsing-
out these points in the recovery phase is feasible, automating
this analysis would be computationally intensive—more-so than
the method (SampEnres) outlined here, which we have shown
can be predicted by non-linear relations among demographic
information and traditional measures of HRR.

Several other methodological approaches have been
suggested in the scientific literature to address HRV assessment
immediately post-exercise, but a variety of concerns and
confounds (Task-Force, 1996; Rhea et al., 2011; Peçanha
et al., 2017), such as segment length, significantly limit the
utility of these metrics in the exercise literature. Importantly,
while many of these metrics are mathematically rigorous and
computationally more feasible than ever before, the crux of their
utility in exercise physiology hinges on their ability to translate
into meaningful physiologic contexts. Herein lies one of the
major advantages to complexity assessments surrounding the
RRrec, since it translates easily into a meaningful physiological
construct. Highly adaptive systems show increasing entropy
(greater complexity) and are known to be associated with healthy
responses (Shaffer and Ginsberg, 2017) and increased adaptability
of the system (West and Goldberger, 1987; Manor et al., 2010).

In summary, we assessed the variability and complexity
surrounding the non-stationary trend in RRrec through two
methods including differencing and residual approaches. Results
of SDNN, rMSSD, and SampEn calculations from the two
detrending methods were similar, however, the multivariate
ARS models produced from the residual approach had a
lower MSE when compared to the differencing approach. This
suggests that information about the individual recovery response
immediately following the cessation of maximal exercise may be
better represented through (third-order) polynomial regression
detrending methods compared to differencing approaches.
The complexity surrounding the trends in RRrec immediately
following the cessation of exercise provides unique information
and novel context related to cardiac autonomic regulation
and the dynamics of RRrec not observed through traditional
measures of HRR. Whereas the variability surrounding RRrec
does not provide additional information beyond traditional
HRR metrics already utilized in the literature. Further research
is needed to establish the utility of this approach in other
settings (i.e., field) and in other populations (i.e., older adults,
clinical populations and athletes) as well as investigating other
psychophysiological factors that may contribute to the dynamic
regulation of cardiac control following the cessation of exercise.
In addition, the relations of other commonly utilized metrics
(e.g., spectral analyses) within the HRV literature should be
applied to these methods.
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