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Introduction
Psoriasis (Ps) is a chronic, inflammatory predomi-
nantly skin-tropic disease that affects up to 3% of 
the general population with a geographical gradi-
ent.1–3 The most common form is plaques Ps or 
psoriasis vulgaris, which is characterized by red, 
well-demarcated plaques and silvery dry scale 
located predominantly on elbows, knees, and scalp, 
as well as in the umbilical and the lumbosacral area. 
Psoriatic skin lesions are histologically character-
ized by a hyperproliferation of premature keratino-
cytes and an incomplete cornification, leading to a 
thickened epidermis with elongated rete ridges.3,4 
The dermis is infiltrated by an abnormal number of 
dendritic cells, macrophages, and T-cells.2,3

With a concordance rate of 20–70 % in monozy-
gotic and 10–20 % in dizygotic twins, there is a 

strong genetic predisposition for the development 
of Ps,5–8 among the highest estimated for autoim-
mune or chronic inflammatory diseases.9 
However, the mode of inheritance is complex and 
cannot fully explain Ps development. Several 
chromosomal loci and single nucleotide polymor-
phisms (SNP) with a significant association with 
susceptibility to Ps have been identified. The 
highest odds ratio for the heritability of Ps is asso-
ciated with the PSORS1 locus on chromosome 6p 
spanning a segment in the class I region of the 
MHC (major histocompatibility complex), par-
ticularly the HLA-B and -C loci.2 Serological data 
suggest that the HLA-Cw6 antigen is responsible 
for Ps susceptibility within the PSORS1 locus; 
however, no specific variant has been identified so 
far.2,3 Furthermore, SNPs involved in the activa-
tion of interleukin (IL)17-producing cells (IL23R 
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and IL12B gene) are associated with Ps develop-
ment. Currently, it is widely accepted that, in 
such genetically susceptible individuals, environ-
mental triggers such as streptococcal infection/
superantigens, biomechanical stress (known as 
Koebner phenomenon in the skin, but also cen-
tral to enthesitis development), stress, and smok-
ing will initiate the disease.2,3 In as many as 30% 
of cases, Ps is accompanied by psoriatic arthritis 
(PsA), which may also be diagnosed in the 
absence of skin manifestations.3,10 PsA is charac-
terized by a widespread musculoskeletal inflam-
mation, which may affect the joints (arthritis), 
insertion sites of tendons and ligaments into bone 
(enthesitis), soft tissue of digits (dactylitis), and 
bone (osteitis) of the peripheral and axial skele-
ton.11 Family studies in PsA have demonstrated 
an increased risk of disease among first-degree 
relatives than among unrelated controls.12 As 
with Ps, PsA is associated with class I MHC 
alleles, but the reported HLA antigens and allelic 
variants differ from those in Ps. While being con-
sistently associated with Ps, the association of 
HLA-C*06 with PsA is controversial, as most 
data show no, or only a weak, association with 
PsA.13–16 The HLA antigens B7 and B27 instead 
show an increased frequency in PsA.17 Even 
though HLA-B27 is clearly associated with PsA, 
particularly in the forms affecting the axial skele-
ton, the allele is not as frequent in PsA as it is in 
ankylosing spondylitis or reactive arthritis.18 In 
addition, the HLA-B*27:05:02, the HLA-
B*08:01:01, and the HLA-C*07:01:01 haplo-
types have been associated with different clinical 
subtypes of PsA and polymorphisms in the IL-23 
receptor (IL23R),19 and the TNF-induced pro-
tein 3 (TNFAIP3) showed a stronger association 
with PsA than with Ps.20 In the present article, we 
will discuss the current immune-pathogenesis 
model of Ps leading to chronic skin inflammation 
and the progression to a systemic inflammatory 
disease primarily affecting the musculoskeletal 
system. In the second part of this article, we will 
emphasize the central role of epigenetics in the 
interplay between genetic susceptibility and envi-
ronmental risk factors in Ps pathogenesis and dis-
cuss recent literature about epigenetics in Ps.

Immunological imbalance in Ps and PsA
It has been demonstrated in several models that 
immune imbalance of T-cells plays a key role in Ps 
and PsA pathogenesis.21–23 Experimental evidence 
suggests that an environmental trigger (particu-
larly traumas as in the Koebner phenomenon) 

causes skin damage and the production of antimi-
crobial peptides by keratinocytes, particularly 
LL37. These peptides form complexes with DNA 
or RNA molecules, which can, in turn, activate 
plasmacytoid dentritic cells (pDC) via toll-like 
receptor (TLR) 7 and TLR9 signaling. pDCs pro-
duce type I interferons (IFNs), attracting myeloid 
dendritic cells and T-cells. The cytokines pro-
duced by myeloid DCs include IL-12 and IL-23. 
They activate and induce helper T (TH) cells to 
differentiate towards a TH1 and TH17 phenotype, 
respectively. The activated TH1 cells secrete IFN-
γ and tumor necrosis factor α (TNF-α), whereas 
the TH17 cells produce IL-17 and IL-22. These 
proinflammatory cytokines induce the prolifera-
tion of keratinocytes and further sustain skin 
inflammation leading to psoriatic plaque forma-
tion (Figure 1).2,24–26 This pathogenetic model is 
supported by the high efficacy of novel biologic 
therapies, such as monoclonal antibodies against 
TNF-α, the p40 subunit shared by IL-12 and 
IL-23 (i.e. ustekinumab) and IL-17/IL-17-
receptor (i.e. secukinumab, ixekizumab). These 
recently approved therapies, together with the 
small molecule inhibitor of phosphodiesterase 4 
(PDE-4) apremilast, have become the new bench-
marks in the therapy of moderate to severe Ps and 
PsA27–34 Apremilast inhibits the intracellular sig-
nal transduction involved in the secretion of sev-
eral cytokines, mainly IL-17F, thus it acts directly 
on the immunologic imbalance observed in Ps.34

How chronic skin inflammation expands systemi-
cally to musculoskeletal tissues, and how PsA ini-
tiates in the absence of visible psoriatic skin 
lesions, is still a matter of debate. Besides the 
already described genetic risk factors for the 
development of PsA, environmental factors like 
mechanical stress have been associated with PsA 
development. In genetically susceptible hosts, 
trauma, which stimulates the musculoskeletal 
inflammatory disease, could act as a biomechani-
cal trigger factor.35 Furthermore, there is an asso-
ciation with certain Ps skin phenotypes like scalp, 
inverse, and nail Ps.20,36 A severe form of Ps is 
also considered a risk factor for the development 
of PsA,20,36,37 and it was hypothesized that a 
higher burden of skin inflammation may lead to 
an increased systemic inflammation and trigger 
the onset of PsA.11 This is in line with the assump-
tion of Ps as a systemic inflammatory disease that 
is associated with several comorbidities, including 
uveitis, inflammatory bowel disease, arterioscle-
rosis, and metabolic syndrome.3,11 Besides being 
a risk factor for major cardiovascular events, Ps 
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causes vascular dysfunction at the site of inflam-
mation (skin and synovial tissue). Due to the 
increased metabolic activity in the inflamed tis-
sue, creating a hypoxic microenvironment, there 
is increased expression of angiogenic growth fac-
tors, including vascular endothelial growth factor 
(VEGF), and, therefore, neo-angiogenesis of 
immature, leaky blood vessels.3,10,38 The leaky 
blood vessels facilitate the leukocyte invasion of 
the inflamed tissues, and the hypoxic environ-
ment changes the metabolism of the immune cells 
and further enhances production of cytokines and 
increases the inflammation.3,10

Epigenetics at the crossroad of genetic 
susceptibility and environmental exposures
In most complex polygenic diseases, which 
include Ps and other chronic inflammatory dis-
eases, the current etiopathogenic models assume 

that, in genetically susceptible individuals, 
exposure to certain environmental risk factors 
elicits a disease phenotype. The inherited 
genetic and acquired environmental contribu-
tion to disease development are thereby tightly 
connected by epigenetics.39 The term epigenet-
ics summarizes all heritable changes in gene 
expression without alterations of the nucleotide 
sequence of the DNA. Mechanisms that can 
induce such heritable changes, and persist also 
in the absence of the signal that initiated them, 
include DNA methylation and specific histone 
modification.40–42 Noncoding RNAs are gener-
ally considered as epigenetic initiators that can 
ultimately lead to permanent heritable changes 
in gene expression.40,43 In the following para-
graphs, we will focus on DNA and chromatin 
modifications.

The basic concepts and molecular mechanisms 
behind epigenetics have been reviewed exten-
sively and their detailed discussion is beyond the 
scope of this article.41,44–47 In brief, DNA meth-
ylation of CpG dinucleotides by the action of 
DNA methyltransferases (DNMT) generally cor-
relates with transcriptional repression. Post-
translational modifications of histone proteins 
(e.g. acetylation and methylation) can cause 
either transcriptional activation or repression 
based on the location and nature of the modifica-
tion. Both DNA and histone modifications can be 
maintained across cell cycles.41,44

In contrast to alterations of the DNA sequence, 
epigenetic modifications are relatively suscepti-
ble to environmental exposures (e.g. hypoxia, 
metabolites, drugs, chemical substances etc.).39 
This is particularly the case during embryogene-
sis, where the degree of pluripotency is high. 
During cell differentiation, the epigenome is sta-
bilized and becomes less responsive to environ-
mental conditions.48 Indeed, in adult cell types, 
regulators of DNA methylation and chromatin 
modifications are less active,48 while, as demon-
strated in monogenic twins, environmental con-
ditions can affect the epigenome also postnatally.49 
The transgenerational inheritance of epigenetic 
modifications remains controversial.47 During 
early embryonic development, most of the gam-
ete cells epigenome is erased in a process called 
‘reprogramming’ to initiate the de novo DNA and 
histone modifications necessary for cellular dif-
ferentiation. A very small percentage of genes, 
however, keep their epigenetic marks during the 
process of reprogramming, and pass unchanged 

Figure 1.  The proposed mechanisms of the 
immunological imbalance observed in psoriasis are 
summarized in the acute and chronic settings. In the 
acute phase of the disease, tissue damage induced, 
for example, by trauma or infection leads to the 
production of antimicrobial peptides by keratinocytes, 
particularly LL37. These peptides can form complexes 
with DNA or RNA molecules and, via toll-like receptor 
signaling, activate plasmacytoid dentritic cells (pDC), 
which produce type I interferons (IFN-α/β). Myeloid 
DCs are attracted and activated by IFN-α/β as well 
as from LL37/RNA complexes and secrete IL-12 and 
IL-23. They activate and induce helper T (TH) cells 
to develop a TH1 and TH17 phenotype, respectively, 
and initiate the chronic phase of the disease 
characterized by sustained production of the indicated 
proinflammatory cytokines, leading to neutrophil 
recruitment, chronic skin inflammation, and the 
formation of psoriatic plaques.
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to the progeny.50 The most extensively studied 
example of epigenetic inheritance is the Dutch 
Hunger Winter, where DNA methylation pat-
terns of metabolic genes, most likely induced by 
environmental exposure, was passed to the next 
generations, thereby affecting their susceptibility 
to metabolic disorders.47,51–53 Epigenetic modifi-
cations associated with disease can thus be either 
inherited, and contribute to an individual’s 
innate disease susceptibility, or can be induced 
by environmental exposures to risk factors during 
an individual’s lifespan.

Role of epigenetics in Ps and PsA
Given the discordance of Ps, particularly for PsA, 
in monogenic twins,54 the study of the epigenetic 
influence on the heritability and pathogenesis of 
Ps has become of major interest in recent years.55 
Furthermore, the study of epigenetics might help 
discover novel targets for therapies that may 
change the DNA methylation or function of spe-
cific genes.

Several genome-wide methylation studies have 
been performed in Ps (Table 1).55,56 Gervin and 
colleagues analyzed CD4-positive and CD8-
positive T-cells of monozygotic twins discordant 
for Ps. The authors did not identify significant dif-
ferentially methylated sites comparing discordant 
co-twins.57 However, their data showed genes in 
CD4-positive T-cells with a correlation to differ-
ences in methylation status and differences in gene 
expression comparing unaffected with affected 
twins. Among these genes, several were involved 
in immune response and cytokine signaling path-
ways.57 Other groups have studied DNA methyla-
tion in subgroups of T-cells. Brandt and colleagues 
reported the hypomethylation of the interferon 
gamma gene (IFNG) of double-negative T cells in 
Ps patients using DNA methylation qPCR.58 
Further studies have compared the methylation 
status of Ps-affected skin with adjacent unaffected 
skin using biopsy samples describing several dif-
ferentially methylated regions (e.g., in Ps suscepti-
bility regions).59–61 However, as some of these 
studies did not separate different cell types, and 

Table 1.  Genome-wide DNA methylation studies in psoriasis.

Author (year) Tissue/cells N cases and controls Major findings

Gervin (2013)57 CD4-positive and CD8-
positive T-cells

54 (27 pairs of monozygotic 
twins discordant for Ps)

No significant difference in methylation status 
comparing discordant co-twins

Chandra (2018)59 Skin (psoriatic and 
adjacent normal)

39 Ps patients Identification of differentially methylated CpG 
sites in several Ps susceptibility (PSORS) regions 
and inverse correlation between methylation and 
gene expression comparing psoriatic skin with 
adjacent normal skin

Roberson (2012)60 Skin (psoriatic, 
uninvolved and normal)

12 Ps patients and 10 
controls

Identification of several differentially methylated 
CpG sites comparing psoriatic and control skin. 
With anti-TNF-α treatment, these methylation 
changes reverted back to baseline

Verma (2018)61 Epidermis (psoriatic, 
uninvolved and normal)

6 Ps patients and 6 controls Identification of more than 2000 strongly 
differentially methylated sites with a striking 
overrepresentation of the Wnt and cadherin 
pathways

Gu (2015)62 Epidermis 12 patients undergoing 
narrow-band UVB 
phototherapy and 12 
corresponding healthy 
controls

Identification of 3665 MVPs with an overall 
hypomethylation in Ps patient samples. 
DNA methylation pattern was reversed after 
successful phototherapy.

Zhou (2016)63 Skin (psoriatic, 
uninvolved and normal), 
peripheral blood 
mononuclear cells

114 Ps patients and 62 
controls

Identification of several differentially methylated 
CpG sites comparing psoriatic skin to uninvolved 
skin and normal skin of healthy controls.

MVP, methylation variable positions; Ps, psoriasis.
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did not include adequate control groups, the dif-
ferences observed may be secondary to inflamma-
tion rather than reflecting real permanent 
epigenetic changes. This is further supported by 
the fact that, after successful TNF-α inhibitor or 
UV-B therapy, CpG methylation status was 
reversed.60,62 Verma and Colleagues61 separated 
epidermal cells from skin biopsies from 6 psoriasis 
cases and 6 healthy controls and thereby ruled out 
changes in the methylation pattern most likely 
associated with cell type and the inflammatory 
response rather than with a real predisposition to 
the development of psoriasis. The study identified 
substantial differences in the methylation of genes 
involved in the Wnt and cadherin pathways com-
paring nonaffected psoriatic epidermis with 
healthy epidermis. The gene expression changes 
between the differentially methylated genes were, 
however, subtle and their functional significance 
remains unknown.61

In addition to studies assessing epigenetic changes 
as risk factors for Ps development, and the contri-
bution of epigenetics to the heritability of the dis-
ease, functional studies using Ps mouse models 
have demonstrated how epigenetic modifications 
affect Ps immune-pathogenesis.64,65 Li and col-
leagues demonstrated that a keratinocyte specific 
N-WASP (neural Wiskott-Aldrich syndrome pro-
tein) knock-out in mice provokes IL-23 expres-
sion of keratinocytes that leads to activation of 
IL-17 producing cells and to chronic skin inflam-
mation.64 IL-23A expression was thereby regu-
lated by histone 3 lysine 9 (H3K9) methylation of 
histones. In addition, they showed in human 
keratinocytes that TNF-α signaling via phospho-
rylation of N-WASP induces degradation of the 
two H3K9 methyltransferases G9a and GLP, 
leading to an increased expression of IL-23 thus 
ultimately suggesting a possible link between his-
tone modifications and the TNF/IL-23/IL-17 
cytokine cascade contributing to chronic skin 
inflammation (Figure 2).64

Further evidence for the involvement of histone 
modifications in the immunological imbalance 
of Ps stems from a recent publication by Wu 
and colleagues.65 The authors used two mouse 
models of induced psoriatic skin lesions (subcu-
taneous injections of IL-23 and topical applica-
tion of the TLR7 agonist imiquimod). The 
hypoxia-induced microRNA-210 (miR-210) 
was found to be upregulated in peripheral blood 
mononuclear cells (PBMCs) and in CD4-
positive T-cells of both Ps patients and mouse 

models, miR210 knockdown or inhibition (by 
intradermal injection of antagomir-210) pre-
vented Ps-like inflammation in both model sys-
tems. Mechanistically, miR-210 targeted the 
mRNA of STAT6 (signal transducer and activa-
tor of transcription 6) and LYN (Lck/Yes novel 
tyrosine kinase), thereby inducing the TH1 and 
TH17 phenotypes and inhibiting the TH2 
phenotype. Furthermore, they demonstrated 
how the hypoxia inducible factor 1α (HIF1α), 
induced by the hypoxic microenvironment and 
further sustained by IL-23 and TGF-β, causes a 
hyperacetylation of histone H3 in the region of 
the miR-210 promoter, by recruiting the histone 
acetyltransferase p300 and thus promoting 
miR-210 expression (Figure 2).65 This study 
suggests a link between the psoriatic microenvi-
ronment and the maintenance of the immuno-
logical imbalance, highlighting a crucial role for 
miR-210, which might become a candidate as 
novel therapeutic target in Ps.

Conclusion
Despite remarkable progress in the understanding 
and treatment of Ps, several unanswered questions 
remain in the disease pathogenesis and preventive 
strategies. In recent years, an expanding number of 

Figure 2.  Epigenetic modifications involved in 
psoriasis immune-pathogenesis via activation of 
IL-17-producing cells. Hypoxia inducible factor 1α 
(HIF1α), induced by the hypoxic microenvironment, 
as well as IL-23 and TGF-β, cause hyperacetylation 
of histone H3 in the region of the miR-210 promoter. 
MiR-210 in turn targets the mRNA of STAT6 (Signal 
transducer and activator of transcription 6) and LYN 
(Lck/Yes novel tyrosine kinase), thereby inducing a 
TH17 phenotype and IL-17 production (left panel). 
TNF-α signaling via phosphorylation of N-WASP 
(neural Wiskott-Aldrich syndrome protein) activates 
IL-23A expression via decreased H3K9 methylation 
of its promotor. IL-23 is the main inducer of IL-17 
producing cells (right panel).
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susceptibility genes for Ps and PsA have been dis-
covered.66–68 However, these susceptibility genes 
cannot fully explain the high degree of heritability 
of Ps suggested by twin studies.61,66 Epigenetic 
modifications inherited to the next generation 
might be, in part, responsible for this discrepancy. 
Furthermore, somatic epigenetic modifications 
might be triggered due to diverse environmental 
exposures and change the individual disease sus-
ceptibility. So far, only a few studies have addressed 
these questions in Ps and they are almost com-
pletely lacking for PsA. Genome-wide methylation 
studies performed on blood and skin samples have 
discovered several genes and pathways that are dif-
ferentially methylated comparing Ps patients and 
healthy controls or psoriatic skin with adjacent 
normal skin.57,59–62,63 However, several limitation 
must be considered when interpreting these meth-
ylation studies, especially when they are performed 
on a complex tissue such as skin, which consists of 
different cell types. As every cell type has its unique 
epigenome, parts of the observed differences in 
DNA methylation might be explained by different 
cell- type composition between the samples. In 
addition, changes in DNA modifications caused 
by the microenvironment (e.g. inflammatory and 
hypoxic microenvironment of psoriatic skin or syn-
ovia) that are only transient in nature (i.e. not cor-
responding to the original definition of epigenetics) 
will also be identified. These DNA modifications 
do not help to identify Ps-prone individuals but are 
rather the result of the disease itself. Although their 
discovery will not help as biomarkers to identify 
individuals at risk for Ps or PsA development,  
the mechanistic understanding of the pathways 
involved in these ‘epigenetic’ modifications might 
contribute to a better understanding of Ps patho-
genesis and can help to discover novel drug 
targets.
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