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Most cost-effectiveness analyses consist of a baseline model
that represents the absolute natural history under a stan-
dard treatment in a comparator set and a model for relative
treatment effects. We review synthesis issues that arise on
the construction of the baseline natural history model. We
cover both the absolute response to treatment on the out-
come measures on which comparative effectiveness is
defined and the other elements of the natural history model,
usually ‘‘downstream’’ of the shorter-term effects reported
in trials. We recommend that the same framework be used
to model the absolute effects of a ‘‘standard treatment’’ or
placebo comparator as that used for synthesis of relative
treatment effects and that the baseline model is constructed
independently from the model for relative treatment effects,
to ensure that the latter are not affected by assumptions

made about the baseline. However, simultaneous modeling
of baseline and treatment effects could have some advan-
tages when evidence is very sparse or when other research
or study designs give strong reasons for believing in a partic-
ular baseline model. The predictive distribution, rather than
the fixed effect or random effects mean, should be used to
represent the baseline to reflect the observed variation in
baseline rates. Joint modeling of multiple baseline outcomes
based on data from trials or combinations of trial and obser-
vational data is recommended where possible, as this is
likely to make better use of available evidence, produce
more robust results, and ensure that the model is internally
coherent. Key words: cost-effectiveness analysis; Bayesian
meta-analysis; multiparameter evidence synthesis. (Med
Decis Making 2013;33:657–670)

Most cost-effectiveness analyses (CEAs) consist
of 2 separate components: a baseline model

that represents the absolute natural history under
a standard treatment in the comparator set and
a model for relative treatment effects. The former
may be based on trial or cohort evidence, whereas
the latter is generally based on randomized con-
trolled trial (RCT) data.1 The natural history under
the new treatment is then obtained by putting
together the baseline natural history model with
the relative effect estimates based on the trial data.
For example, if the probability of an undesirable

event under standard care is 0.25 and the odds ratio
for a given treatment compared with standard care is
0.8 (favoring the treatment), then, ignoring the
uncertainty in these quantities, the absolute proba-
bility of an event on the treatment is p = 0.21,
obtained as

logitðpÞ5 logitð0:25Þ1 lnð0:8Þ;

where logit xð Þ5 ln x= 1� xð Þð Þ. The log-odds ratio of
treatment compared with standard care is

lnðORÞ5 ln
p=ð1� pÞ

p0=ð1� p0Þ

� �
5 logitðpÞ � logitðp0Þ;

where p0 is the probability of an event under baseline
conditions (i.e., on standard care). A similar
approach can be used with models that are linear in
log-relative risks or log-hazard rates.2

Usually, the role of trial data within an economic
evaluation—whether to inform absolute or relative
effects—is limited to the short- or intermediate-term
outcomes. Health economists expend considerable
effort in building the longer-term elements of the
model, which often take the form of a Markov transi-
tion model where the relative treatment effects will
be assumed to act on specific transitions.3 However,
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a wide range of modeling techniques may be used,
apart from Markov models. ‘‘Mapping’’ from the
shorter-term outcomes or from the Markov states
into utilities is a further component of the model.3

This article focuses on the evidence synthesis
issues that arise in construction of the natural his-
tory model, based on the general principles set out
in the National Institute for Health and Clinical
Excellence (NICE) Guide to Methods of Technical
Appraisal1 and borrowing heavily from the general-
ized linear modeling framework developed in this
tutorial series.2 There is no attempt to give recom-
mendations or guidance on principles of model con-
struction or on the type of model, except insofar as
this might affect synthesis issues. Patient-level sim-
ulation models, where patients are tracked individ-
ually throughout the economic model, are outside
the scope of this article, which is focused on evi-
dence synthesis. Readers are referred to the litera-
ture for more details.3,4

BASELINE MODELS FOR TRIAL OUTCOMES

Sources of Evidence for Baseline Outcomes

Once a baseline (or reference) intervention has
been defined,2 a reasoned protocol for systematic
study search and inclusion should be developed5–7

and potential sensitivity to alternative options
explored, if appropriate. Since the baseline response
should be as specific as possible to the population of
interest,1,3 it may be more reasonable to use only evi-
dence from recent trials, relevant cohort studies, reg-
ister studies,8 or, in certain cases, expert opinion.7 A
common approach to identifying sources of evidence
for baseline outcomes has been to use the same trials
that have supplied information on relative effects but
restricting attention to the trial arms that use the base-
line treatment. This approach needs to be justified in
each case: investigators should consider whether all
the trials used to inform the relative effects can be
considered as equally representative of the absolute
response that would be obtained in the target popula-
tion and under current circumstances, particularly if
some of the trials were carried out many years ago or
had very restrictive inclusion criteria. It is also possi-
ble to combine evidence from different types of rele-
vant randomized and nonrandomized studies.9–11

Whatever the source of evidence used to populate
the decision model, this should be transparent and
reported in sufficient detail to allow outside
scrutiny.1,5,7,12

Synthesis of Aggregate Data on Baseline Response

Separate Models for Baseline and Treatment
Effect

Dias and others2 introduced a generalized linear
modeling framework for synthesis of relative effect
estimates. This can be expressed as

gðgÞ5 uik 5 mi 1 di;1kIfk6¼1g;

where

Ifug5
1 if u is true
0 otherwise

�

g() is the link function (e.g., the logit link), and uik

is the linear predictor, consisting of a trial-specific
baseline effect in a trial i, mi (for example, in a log-
odds form), and di,1k a trial-specific treatment effect
of the treatment in arm k relative to the treatment in
arm 1 (in a log-odds ratio form). Note that in a net-
work meta-analysis (NMA), the trial-specific base-
lines will relate to the treatment in arm 1, which
may not always be the baseline of interest for the
CEA. The same link functions and likelihoods used
to analyze information on relative treatment effects
can and should be applied to synthesize the evidence
on the baseline treatment. In the Bayesian framework
adopted throughout this tutorial series,2,13,14 mi are
given unrelated vague priors in models for the rela-
tive treatment effect. To model baseline effects, a sim-
ilar formulation can be adopted in which the study-
specific baselines are drawn from a distribution of
effects with a common mean and variance, and all
refer to the same baseline treatment:

gðgÞ5 ui 5 mi

mi;Nðm;s2
mÞ

ð1Þ

To complete the model, in a Bayesian framework,
vague priors can be put on the mean and on the

variance—for example, m;Nð0;1002Þ, and sm;

Uniformð0;5Þ or 1=s2
m;Gammað10�3;10�3Þ.

The proposal is, therefore, that a separate model is
run to summarize the relevant baseline data. One
option is to run this model at the same time as the
model for the relative treatment effect, ensuring that
the information in the baseline model does not prop-
agate to the relative treatment effects model. This can
be done in WinBUGS using the ‘‘cut’’ function.15 The
advantage of this approach is that both models are con-
tained in a single file and can be run simultaneously,
thereby ensuring that any new data added to the
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baseline model automatically update the absolute
effects generated from the relative effects model. It
also ensures that the samples from the posterior distri-
bution of the baseline effect are used directly. Alterna-
tively, the samples from the posterior distribution of
the baseline effect can be fed into the separate relative
effects model. A simpler alternative is to run a separate
model and then, assuming normality of the posterior
distribution of the baseline effect, take the appropriate
posterior summaries (the mean and uncertainty) and
insert them into the relative effect code. This will of
course rely on the approximate normality of the poste-
rior distribution of the baseline effect—this should
always be checked, but usually holds, in our
experience.

Program 1 in the Appendix includes WinBUGS16

code, which implements the model in equation (1) for
the 19 ‘‘no-intervention’’ arms in a smoking cessation
data set.14,17 There are 2 ways the results of this analysis
can be used. The simplest approach is to use the poste-
rior mean of m and its posterior standard deviation to
represent the baseline response. But it could be argued
that this underrepresents the variation observed in the
data: if we were to gather more and more data on the
baseline arm, our estimate of the mean would become
more and more precise, but the variation would remain
unchanged. An alternative, therefore, is to use the pre-
dictive distribution of a new baseline,

mnew;Nðm;s2
mÞ; ð2Þ

where m and s2
m are sampled from the posterior dis-

tribution. This predictive distribution for a new base-
line incorporates the uncertainty about the value
a new observation might take, as well as the observed
variation in the data. We recommend that the predic-
tive distribution, rather than the fixed effect or ran-
dom effects mean, should be used as it reflects the
observed variation in baseline rates. It is, however,
important to ensure that the uncertainty conveyed
by the predictive distribution reflects genuine
uncertainty in the baseline.18 Therefore, we reiterate
the need for careful evaluation of what studies
should be used to inform the baseline model and
whether the exchangeability assumption between
the baseline effect in the included studies and the
‘‘new’’ baseline (equations (1) and (2)) holds. Use
of the simple arithmetic mean of the baseline arms
from different studies is not recommended under
any circumstances.

Both the posterior and predictive approaches with
separate modeling are illustrated in the Appendix
(Program 1). The first column of Table 1 shows the

results obtained in the smoking cessation example,
using separate random effects (RE) models for base-
line and treatment effects. Using the posterior distri-
bution of the mean produces a mean baseline
smoking cessation probability of 0.07 with 95% cred-
ible interval (0.05, 0.09). By contrast, if the predictive
distribution is used, the mean is approximately the
same, but the wider credible interval (0.02, 0.20) bet-
ter reflects the range of variation in the observed data,
under the assumption of normally distributed ran-
dom effects (Table 1).

Note that the choice of posterior or predictive dis-
tribution will have very little effect on the differences
between treatments, but the latter will contribute
greater uncertainty in the natural history model.
The probabilities of smoking cessation for the 4 treat-
ments calculated using both the posterior and predic-
tive uncertainties are shown in Table 1. Using the
predictive distribution affects the uncertainty in the
absolute probabilities of smoking cessation, produc-
ing wider credible intervals, but the means are practi-
cally unchanged.

Simultaneous Modeling of Mean and Treatment
Effects

The separation of absolute and relative treatment
effects may seem artificial. Nevertheless, it is the rec-
ommended method because it means that the relative
treatment effects are unaffected by any assumptions
made about the baseline. It also accords with the
usual meta-analysis approach of modeling the rela-
tive treatment effects rather than the arm effects, to
respect randomization.19 However, there may be rea-
sons for modeling the baseline and treatment effects
together. One reason would be that this can increase
the stability of the model when data are very sparse
or there are a large number of zero cells.2 Another
may be that, based on other research, there are strong
reasons for believing in a particular model for the
baseline, for example, when modeling results from
cluster randomized20,21 or multicenter trials.

To carry out such an analysis, it is only necessary
to replace the ‘‘unrelated’’ priors for mi in the stan-
dard meta-analysis code2 with a ‘‘random effects’’
prior with a mean and variance, as well as to supply
priors for the mean and between-study variance of
the baseline effects. In an NMA where not all trials
include the baseline (reference) treatment, it is neces-
sary to ensure that the mi being modeled always refer
to the same baseline treatment (i.e., treatment 1).
WinBUGS code for simultaneous modeling of base-
line and treatment effects is supplied in the
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Appendix (Program 2). Once again, we would recom-
mend that the predictive distribution of a ‘‘new’’
baseline, equation (2), is taken forward for decision
modeling.

The second column in Table 1 shows the posterior
and predictive probabilities of smoking cessation for
the 4 treatments from a simultaneous model of base-
lines and treatment effects. This model reduces the
estimated between-trial heterogeneity (posterior
median of s = 0.82 for separate models and 0.71 in
the joint model) and consequently the uncertainty
around the mean treatment effects. This, in turn, pro-
duces less uncertainty in the absolute treatment
effects based on the predictive distribution.

The heterogeneity in the observed baselines sm is
also smaller in the joint model, which reduces the var-
iability of the predictive distribution for the baseline,
given by the standard deviation of mnew in Table 1.

Standard measures of model comparison and fit
such as the residual deviance and the deviance infor-
mation criterion (DIC)2,22 should not be used to
inform choice between the separate and joint model-
ing options.

Baseline Models with Covariates

Using Aggregate Data

Covariates may be included in the baseline model
by including terms in the linear predictor. For a covari-
ate C, which could be a continuous covariate or
a dummy covariate, we would have, for arm k of trial i,

gðgÞ5 uik 5 mi 1 bCi 1 di;1kIfk6¼1g:

An estimate of the covariate effect b could be
obtained from the trial data or externally. Govan
and others23 give an example where the covariate
on the baseline is estimated from aggregate trial data
with the purpose of reducing aggregation bias.24

This is a phenomenon in which the presence of
a strong covariate, even if balanced across arms, and
even if it is not a relative effect modifier, causes
a bias in the estimation of the relative treatment
effects toward the null. A method for dealing with
missing data on covariates is also available.23 See
Dias and others13,25 for further discussion.

Table 1 Posterior Mean, SD, and 95% CrI of the Mean and Predictive Log-Odds of Smoking Cessation on ‘‘No
Contact’’ (m and mnew), Absolute Probabilities of Smoking Cessation Based on the Posterior and Predictive

Distributions of the Baseline Log-Odds, and the Log-Odds Ratio of Response Relative to ‘‘No Contact’’
(Log-Odds Ratios .0 Favor the Active Treatment)

Separate Models Simultaneous Modeling

Mean/Median SD 95% CrI Mean/Median SD 95% CrI

Baseline model parameters
m –2.59 0.16 (–2.94, –2.30) –2.49 0.13 (–2.75, –2.25)
sm 0.54 0.16 (0.32, 0.93) 0.45 0.11 (0.29, 0.71)
mnew –2.59 0.60 (–3.82, –1.41) –2.49 0.49 (–3.48, –1.52)

Absolute probabilities of response based on the posterior distribution of the baseline probability
No contact 0.07 0.01 (0.05, 0.09) 0.08 0.01 (0.06, 0.10)
Self-help 0.12 0.05 (0.05, 0.23) 0.13 0.04 (0.07, 0.21)
Individual counseling 0.15 0.04 (0.09, 0.24) 0.15 0.03 (0.11, 0.21)
Group counseling 0.19 0.07 (0.08, 0.37) 0.20 0.05 (0.11, 0.31)

Absolute probabilities of response based on the predictive distribution of the baseline probability
No contact 0.08 0.05 (0.02, 0.20) 0.08 0.04 (0.03, 0.18)
Self-help 0.13 0.08 (0.03, 0.34) 0.14 0.07 (0.04, 0.30)
Individual counseling 0.17 0.09 (0.05, 0.39) 0.16 0.07 (0.06, 0.33)
Group counseling 0.21 0.12 (0.05, 0.50) 0.21 0.09 (0.07, 0.43)

Relative treatment effects compared with ‘‘no contact’’
Self-help 0.49 0.40 (–0.29, 1.31) 0.53 0.33 (–0.11, 1.18)
Individual counseling 0.84 0.24 (0.39, 1.34) 0.78 0.19 (0.41, 1.17)
Group counseling 1.10 0.44 (0.26, 2.01) 1.05 0.34 (0.39, 1.72)
s 0.82 0.19 (0.55, 1.27) 0.71 0.13 (0.51, 1.02)

Posterior median, standard deviation (SD), and 95% credible interval (CrI) for the between-trial heterogeneity in baseline (sm) and in treatment effects (s)
for random effects meta-analyses with separate or simultaneous baseline and treatment effects modeling. Results are based on 50,000 iterations from 3 inde-
pendent chains, after discarding 20,000 burn-in iterations and ensuring convergence.
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Risk Equations for the Baseline Model Based on
Individual Patient Data

A far more reliable approach to informing a base-
line model that expresses difference in baseline pro-
gression due to covariates such as age, sex, and
disease severity at onset of treatment is to use individ-
ual patient data. This is considered superior to aggre-
gate data as the coefficients can be estimated more
precisely and with less risk of ecological bias. The
results are often presented as ‘‘risk equations’’ based
on multiple regression from large trial databases,
registers, or cohort studies. Natural histories for
each treatment are then generated by simply adding
the treatment effects based on trial data to the risk
equations as if they were another risk factor. The
main difficulty facing the cost-effectiveness analyst
here is in justifying the choice of data source and its
relevance to the target population. Analyses should
be presented that explore the different characteristics
of the populations in these alternative studies and
their relation to the target population for the decision.
If necessary, sensitivity analyses should be presented
to show sensitivity of results to the choice of data
source used to inform these parameters.

SYNTHESIS ISSUES IN THE REST OF THE
NATURAL HISTORY MODEL

Choice of evidence sources and statistical model
for the natural history model beyond the immediate
short-term trial outcomes is beyond the scope of
this article. However, we provide some comments
on the origin of treatment differences, or implied
treatment differences, in longer-term outcomes, as
this touches on synthesis issues, on the internal
coherence of models and their consistency with the
evidence.

Typical parameters that require values could be as
diverse as complication rates from the underlying
condition, natural history following cessation of
treatment, incidence of side effects, relapse rates,
mortality on and off treatment, ‘‘mappings’’ from sur-
rogate to clinical end points or from disease-specific
measures to quality-of-life measures, and so on. If
state transition models are used, it is possible that
the trial outcomes represent only the transition from
one specific state to another and that information
on the remaining transitions will need to be sourced
from elsewhere. Usually, identification of appropri-
ate data to inform these parameters is likely to be
more critical to the decision than technical issues of
how to synthesize the evidence once it is selected.

However, 2 specific issues deserve careful consider-
ation. In the ideal case, all predicted differences
between treatments would originate from informa-
tion from RCTs. This applies as much to the down-
stream outcomes as it does to the more immediate
short-term outcomes that are usually based on RCT
data. Any use of nonrandomized data that has a direct
bearing on between-treatment comparisons always
needs careful consideration of potential bias.13 Sec-
ond, whether information on ‘‘downstream’’ out-
comes is based on randomized or nonrandomized
data, there is a potential for conflict between the
observed long-term relative effects and those pre-
dicted by the short-term and natural history models.

Source of Information for Natural History Parame-
ters and Implications for Relative Treatment Effects

Generally, the source of evidence used for each
natural history parameter should be determined by
a protocol-driven review.1,5,7 Previous CEAs are an
important source of information on the data sources
that can inform natural history.

A common modeling strategy is to assume that
there are no differences between treatments in the
‘‘downstream’’ model, conditional on the shorter-
term trial outcomes. We can call this the ‘‘single map-
ping hypothesis’’ as the implication is that, given
information on the short-term differences, longer-
term differences can be obtained by a single mapping
applicable to all treatments. For example, in a model
to assess cost-effectiveness of various antiviral drugs
for the treatment of influenza, the base-case analysis
assumed that use of antivirals only affected short-
term outcomes and had no additional impact on
longer-term complication and hospitalization rates.26

Models with this property are attractive, although
they make strong assumptions. The assumptions are
natural if the alternative active comparators can be
considered to be a single class but may be less plausi-
ble if they are not. Such assumptions have to be justi-
fied clinically and physiologically, and for each
outcome ‘‘mapped,’’ available data, for example, on
length of hospital stay, time on treatment, complica-
tions rates, mortality, and all other downstream out-
comes, should be reviewed, examined, and
interpreted. This review should also include the
empirical and statistical literature on adequacy of
surrogate outcomes, particularly whether the evi-
dence supports the view that treatment effects on
the shorter-term ‘‘surrogate’’ translate into the same
longer-term benefits for all treatments. This review
might usefully extend beyond the class of products
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being considered, because the wider the range of
treatment for which a ‘‘single mapping’’ hypothesis
can be sustained, the more robust it is likely to be.
Eventually, however, it may be decided that the rela-
tion between surrogate and clinical outcomes is only
relevant for the subset of treatments within the deci-
sion. The use of ‘‘surrogate end-point’’ arguments in
health technology assessment (HTA) extends far
beyond the outcomes classically understood as ‘‘sur-
rogates’’ in the clinical and statistical literature.27

HTA literature makes frequent use of ‘‘mapping’’
from short-term to longer-term outcomes, as this
allows modelers to base the modeled treatment differ-
ences on short-term evidence.

If the assumption that all downstream differences
between treatments outcomes are due exclusively to
differences in shorter-term trial outcomes is not sup-
ported by the evidence, then the first option is to use
available randomized evidence to drive longer-term
outcomes. This necessarily implies different ‘‘map-
pings’’ for each treatment.

The second and least preferred option is the use of
nonrandomized evidence. However, as with short-
term outcomes, it is essential that any use of non-
randomized data that directly affects differential
treatment effects within the model is carefully justi-
fied and that the increased uncertainty and the possi-
bility of bias are recognized and addressed.1

Joint Synthesis of Multiple Outcomes to Inform
Natural History

The natural history model usually consists of a suc-
cession of ‘‘states’’ or subprocesses and involves
a series of parameters that may affect lifetime costs,
quality, and length of life. It is preferable for these
parameters to be estimated simultaneously from all
the available data, as this is likely to allow more infor-
mation to be incorporated and more validation to be
carried out on the agreement between the model pre-
dictions and the evidence. An example of coherent
modeling of multiple outcomes is the use of the
ordered probit model for the baseline and treatment
effects.2 This guarantees coherent prediction of the
probability that patients will achieve the different
levels of response on categorical scales such as the
Psoriasis Area Severity Index or American College
of Rheumatology (ACR) scale, where it is common
to report the percentage of patients who have
improved by more than certain benchmark relative
amounts. Thus, the ACR20 would represent the pro-
portion of patients who have improved by at least
20% on the ACR scale. By contrast, if ACR20,

ACR50, and ACR70 responses are analyzed sepa-
rately, it is possible to end up with a model that makes
impossible predictions, for example, that more
patients experience a 50% improvement on the
ACR than experience a 20% improvement.

However, use of advanced modeling techniques
may not have a substantial impact on cost-effective-
ness, and the usual approach in which each natural
history parameter is sourced independently from
data is more commonly adopted.

Joint modeling of multiple trial outcomes to obtain
the relative treatment effects has particular advan-
tages. As well as reflecting a ‘‘coherent’’ view of the
different outcomes and correctly capturing the corre-
lations between them, these methods address the fre-
quently encountered problem of different outcomes
being reported by different trials. The option of
choosing a single outcome as the basis for the
between-treatment comparison may result in a high
proportion of the information being discarded. It
may be preferable, and lead to more robust results,
if a model can be devised that expresses the relation-
ships between the different outcomes and thus
allows all the evidence on treatment efficacy to be
incorporated. Examples of models of treatment
effects on multiple outcomes include treatment
effects at multiple follow-up times28,29 and multivar-
iate models for continuous outcomes.30–32 It is also
possible to synthesize 2 separate trial outcomes and
parameters that link the outcomes but are based on
observational data.10,33

Somewhat more complex examples have arisen in
the analysis of influenza treatments,26,34 which
included a model of the relation between ‘‘time to
end of fever’’ and ‘‘time to end of symptoms’’ or syn-
thesis of outcomes on tumor response, time to pro-
gression, and overall survival in advanced breast
cancer.35,36 However, model structures vary across
different diseases and, even within types of condi-
tions, the structure of the evidence available to
inform models can vary considerably. It is therefore
difficult to provide general recommendations, other
than to note that a single model encompassing several
outcomes, as long as its assumptions are clear and
reflect a consensus view among clinical experts, is
likely to provide a more robust basis for cost-effec-
tiveness modeling.

Synthesis of State Transition Models

As with other natural history models, state transi-
tion model parameters may each be informed from
different sources or may be modeled jointly,
although, as before, there are advantages in using
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methods that are capable of incorporating available
information from all relevant sources. However, syn-
thesis of state transition model parameters raises
some special considerations because of the great vari-
ety of forms in which information is made available,
for example:

1. Data in study j may be reported as the probability
of state transitions during a time interval Tj while
the modeler may wish to use these data in a model
with a cycle time T0. It is important to note that the
standard adjustment37 is only valid for 2-state
models.

2. Information may be available on risks or on rates.
3. Information may be available on hazard ratios, but

these cannot be easily converted into relative risks
(or vice versa) in multistate models, as the relative
risk depends on the cycle time.

4. Information may be available on state transitions
from state A to state B, where individuals may have
visited other states in between. This is sometimes
referred to as an incompletely observed Markov
process.

Methods are available for synthesizing a wide range
of information on transitions, reported in different
ways, over different time periods, and between differ-
ent states in a model.38 Furthermore, these methods
can be used to simultaneously model natural history
and treatment effect parameters,39 as before. Such
methods also provide examples of a synthesis
approach to calibration, described below. To date,
these methods have all been limited to the case where
all transition times are exponentially distributed. It
remains to be seen how and under what conditions
the methods can be extended to other distributions.

MODEL VALIDATION AND CALIBRATION
THROUGH MULTIPARAMETER SYNTHESIS

Natural history models should be validated against
independent data wherever possible. For example, in
CEAs comparing a new cancer treatment to a standard
comparator, the survival rates predicted in the stan-
dard arm could be compared with published survival
rates, perhaps after suitable adjustment for age or
other covariates. With other conditions, given an ini-
tial estimate of incidence or prevalence, together with
statistics on the size of the population, the natural
history model may deliver predictions on absolute
numbers admitted to the hospital with certain
sequelae, complications, or mortality. Once again,
these predictions could be checked against indepen-
dent data to provide a form of validation.

A more sophisticated approach is to use these
external data to ‘‘calibrate’’ the natural history model.
This entails changing the ‘‘progression rate’’ parame-
ters within the model so that the model accurately
predicts the independent calibrating data. Calibra-
tion, in a Bayesian framework particularly, can also
be seen as a form of evidence synthesis.40 In this
case, the calibrating data are characterized as provid-
ing an estimate of a complex function of model
parameters. This approach offers a remarkably sim-
ple form of calibration because, in principle, all that
is required is that the investigator specifies the func-
tion of model parameters that the calibrating data
estimate and that a term for the likelihood for the
additional data is added to the model. The informa-
tion then propagates ‘‘backwards’’ through the model
to inform the basic parameters. There are many
advantages of this method over standard methods of
calibration, which have recently been reviewed41:

1. It gives an appropriate weight to the calibrating data,
taking account of sampling error.

2. It avoids the ‘‘tweaking’’ of model parameters until
they ‘‘fit’’ the calibrating data, a procedure that fails
to capture the uncertainty in the data.

3. It avoids forcing the investigator to decide which of
several natural history parameters should be changed
(see below).

4. Assessment of whether the validating data conflict
with the rest of the model and the data supporting
it can proceed using standard model diagnostics or
cross-validation.10,13,22,42

Examples of this approach have appeared in descrip-
tive epidemiology43–46 and also in screening applica-
tions. In a model of early-onset neonatal group B
streptococcus disease (EOGBS), the natural history
model involved a series of parameters47: probability
of maternal carriage of group B streptococcus, proba-
bility of transmission to the newborn given maternal
carriage, and probability of EOGBS given transmis-
sion. Although information was available on each
of these probabilities, the model was ‘‘calibrated’’ to
data on the numbers of cases of EOGBS that had
been reported in the British Isles through a pediatric
clinical surveillance scheme.47 The effect of this
form of calibration in this case is to put extremely
weak constraints on the individual progression
parameters but to place quite strong constraints on
their product.

This kind of approach could potentially be applied
in a number of clinical areas where independent data
on long-term follow-up, registration of disease, or
cause-specific mortality are available, although
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more research is needed before clear recommenda-
tions can be made.

DISCUSSION

We have recommended separate modeling of the
baseline and relative effects whenever possible, not
only because they are often based on different data
sources but also to avoid the assumptions made on
the baseline model affecting the relative treatment
effects. RCTs are designed to provide unbiased evi-
dence on relative effects, and this is at the core of rec-
ommended methods for meta-analysis that model the
relative effects of interventions. However, simulta-
neous modeling of baseline and relative treatment
effects affects not only the uncertainty around the rel-
ative effects but also their mean, producing poten-
tially biased and overly precise estimates. The
magnitude of this impact is hard to predict in general
so separate modeling should be the default option,
when possible.

Joint modeling can be considered if it is required to
obtain model stability due to very sparse evidence but
should always be justified. If simultaneous modeling
is chosen for any other reason, a sensitivity analysis
to show the effect on the relative treatment effects
should be carried out.

Apart from the actual model chosen to inform the
parameters of the baseline natural history of the dis-
ease and the relative treatment effects, it is also
important to consider the sources of information for
other parameters and how they will affect the deci-
sion. In particular, issues such as the joint synthesis
of multiple outcomes and model calibration should
be given careful consideration.

Attention should also be paid to the potential for
conflict between the observed long-term relative
effects, where available, and those predicted by the
short-term and natural history models, although
this is an area that requires further research.
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APPENDIX

WinBUGS Code for Illustrative Examples

Below we set out code for a separate baseline model (Program 1) and a model that estimates baseline and 
treatment effects simultaneously (Program 2), with random effects, a binomial likelihood, and logit link func-
tion, using an example of smoking cessation from a study by Hasselblad and others.17 In Dias and others,2,42 
a generalized linear model framework was introduced, with explanations and examples of how the code for 
the binomial/logit model could be adapted for other likelihoods and link functions, including Poisson/log, 
Normal/identity, and others. The baseline models below can be adapted in the same way.

All programming code is fully annotated. The code below is fully general, and Program 2 will work for 
pairwise or network meta-analysis with any number of trials with any number of arms. The program codes 
are printed here but are also available as WinBUGS system files from http://www.nicedsu.org.uk. We have 
provided the codes as complete programs. However, the majority of the code for Program 2 is identical to 
Program 1(c) in the appendix to Dias and others,2,42 with new lines of code identical to code in Program 1, 
the separate baseline model. We have therefore highlighted the common lines of code between Programs 1 
and 2, in blue and bold, to emphasize the modular nature of the code.

Program 1. Smoking Cessation: Binomial Likelihood, Baseline RE Model with Predictive Distribution

# Binomial likelihood, logit link
# Baseline random effects model
model{     # *** PROGRAM STARTS
for (i in 1:ns){    # LOOP THROUGH STUDIES
    r[i] ~ dbin(p[i],n[i])   # Likelihood
    logit(p[i]) <- mu[i]   # Log-odds of response
    mu[i] ~ dnorm(m,tau.m)        # Random effects model 
  }
mu.new ~ dnorm(m,tau.m)   # predictive dist. (log-odds)
m ~ dnorm(0,.0001)                # vague prior for mean
var.m <- 1/tau.m    # between-trial variance
tau.m <- pow(sd.m,-2)      # between-trial precision = (1/between-trial variance)
sd.m ~ dunif(0,5)                  # vague prior for between-trial SD
}

Absolute probabilities of response can be calculated for any treatment by inputting the estimates for base-
line predictive mean and uncertainty from the analysis above (i.e., the posterior mean and variance obtained 
from monitoring mu.new) into the treatment effects model, as detailed in the appendix to Dias and others.2,42

Alternative prior distributions can be used for the baseline random effects variance (see Dias and others,42 
Section 6.2, for a discussion of prior distributions). For example, the last 2 lines of code in Program 1 can be 
replaced by a vague Gamma prior on the precision parameter, which is sometimes also referred to as a vague 
inverse Gamma prior on the variance:

tau.m ~ dgamma(0.001,0.001)
sd.m <- sqrt(var.m)

Additional code can be added before the closing brace to estimate the probabilities of response on the 
baseline treatment, based on the posterior (R) or predictive (R.new) distributions of the mean baseline log-
odds of response.

logit(R) <- m                     # posterior probability of response
logit(R.new) <- mu.new           # predictive probability of response
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The data structure has 2 components: a list specifying the number of studies (ns) and the main body of 
data in vector format, in the order r[] then n[], the numerators, and denominators for all of the trial arms 
containing the baseline treatment.

# Data (Smoking Cessation: baseline arms only)
list(ns=19)  # ns=number of studies

r[] n[] # Study ID
9 140 # 1
75 731 # 3
2 106 # 4
58 549 # 5
0 33 # 6
3 100 # 7
1 31 # 8
6 39 # 9
79 702 # 10
18 671 # 11
64 642 # 12
5 62 # 13
20 234 # 14
0 20 # 15
8 116 # 16
95 1107 # 17
15 187 # 18
78 584 # 19
69 1177 # 20
END

# Initial values
#chain 1
list(mu=c(0,0,0,0,0,   0,0,0,0,0,   0,0,0,0,0,   0,0,0,0), sd.m=1, m=0)
#chain 2
list(mu = c(-1,-1,-1,-1,-1,   -1,-1,-1,-1,-1,   -1,-1,-1,-1,-1,   -1,-1,-1,-1), sd.m=2, m= -1)
#chain 3
list(mu = c(1,1,1,1,1,   1,1,1,1,1,   1,1,1,1,1,   1,1,1,1), sd.m = 0.5, m = 1)

Program 2. Smoking Cessation: Binomial Likelihood, Simultaneous Baseline and Treatment Effects RE 
Model with Predictive Distribution

This code implements the simultaneous modeling of baseline and treatment effects. Inclusion of a model 
for the baseline effect has a strong impact on the posterior distributions of the relative treatment effect. 
Therefore, we do not recommend this model unless under very special circumstances, such as those dis-
cussed in the main article. Use of this model should be justified in detail.

# Binomial likelihood, logit link
# Simultaneous baseline and treat effects model for multi-arm trials
model{                                   # *** PROGRAM STARTS
for(i in 1:ns){                          # LOOP THROUGH STUDIES
    w[i,1] <- 0         # adjustment for multi-arm trials is zero for control arm
    delta[i,1] <- 0                 # treatment effect is zero for control arm
    mu[i] ~ dnorm(m,tau.m)       # model for trial baselines re treatment 1
    for (k in 1:na[i]) {                 # LOOP THROUGH ARMS
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        r[i,k] ~ dbin(p[i,k],n[i,k])     # binomial likelihood
        logit(p[i,k]) <- mu[i] + delta[i,k]     # model for linear predictor
        rhat[i,k] <- p[i,k] * n[i,k]     # expected value of the numerators 
        dev.NA[i,k] <- 2 * (r[i,k] * (log(r[i,k])-log(rhat[i,k])) #Deviance contribution including NAs
            +  (n[i,k]-r[i,k]) * (log(n[i,k]-r[i,k]) - log(n[i,k]-rhat[i,k])))
        dev[i,k] <- dev.NA[i,k]*(1-equals(n[i,1],1))   #Deviance contribution with correction for NAs
       }
    resdev[i] <- sum(dev[i,1:na[i]])          #  summed residual deviance contribution for this trial
    for (k in 2:na[i]) {                 # LOOP THROUGH ARMS
        delta[i,k] ~ dnorm(md[i,k],taud[i,k])   # trial-specific LOR distributions
        md[i,k] <-  d[t[i,k]] - d[t[i,1]] + sw[i,k]    # mean of LOR distributions (with multi-arm trial correction)
        taud[i,k] <- tau *2*(k-1)/k     # precision of LOR distributions (with multi-arm trial 

 correction)
        w[i,k] <- (delta[i,k] - d[t[i,k]] + d[t[i,1]])   # adjustment for multi-arm RCTs
        sw[i,k] <- sum(w[i,1:k-1])/(k-1)    # cumulative adjustment for multi-arm trials
      }
  }   
totresdev <- sum(resdev[])              # Total Residual Deviance
d[1]<-0             # treatment effect is zero for reference treatment
for (k in 2:nt){  d[k] ~ dnorm(0,.0001) }   # vague priors for treatment effects
sd ~ dunif(0,5)          # vague prior for between-trial SD
tau <- pow(sd,-2)         # between-trial precision = (1/between-trial variance)
mu.new ~ dnorm(m,tau.m)           # predictive dist. for baseline (log-odds)
m ~ dnorm(0,.0001)          # vague prior for mean (baseline model)
var.m <- 1/tau.m             # between-trial variance (baseline model)
tau.m <- pow(sd.m,-2)        # between-trial precision = (1/between-trial variance)
sd.m ~ dunif(0,5)            # vague prior for between-trial SD (baseline model)
}                                        # *** PROGRAM ENDS         

Alternative prior distributions can be used for the baseline random effects variance as before.
Additional code can be added before the closing brace to produce estimates of absolute effects of each 

treatment based on the posterior or predictive distributions of the mean baseline log-odds of response for 
treatment 1 (the baseline/reference treatment).

# Provide estimates of treatment effects T[k] on the natural (probability) scale based on posterior distr of 
baseline model 

# and T.new[k] based on predictive distr of baseline model
for (k in 1:nt) { 
    logit(T[k]) <- m + d[k]  
    logit(T.new[k]) <- mu.new + d[k]  
  }

The data structure is similar to that presented in Dias and others.2,42 Briefly, ns is the number of studies 
in which the model is to be based, nt is the number of treatments, and in the main body of data, r[,1] and 
n[,1] are the numerators and denominators for the first treatment; r[,2] and n[,2] are the numerators and 
denominators for the second listed treatment; r[,3] and n[,3] are the numerators and denominators for the 
third listed treatment; t[,1], t[,2], and t[,3] are the treatments being compared in the trial arms; and na[] gives 
the number of arms in the trial. Text is included after the hash symbol (#) for ease of reference to the original 
data source.

No Contact was chosen as the baseline/reference treatment because it was the current practice. However, 
in this example, some trials do not include the baseline treatment 1 (trials 2 and 21 to 24 in the data list 
below). To ensure that the model is put on the correct baseline parameter µ, an extra arm containing treat-
ment 1 was added to these trials, with r[,1]=NA and n[,1]=1 and the number of arms in the trial amended 
accordingly.
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# Data (Smoking Cessation)
# nt=no. treatments, ns=no. studies
list(nt=4,ns=24 )

r[,1] n[,1] r[,2] n[,2] r[,3] n[,3] r[,4] n[,4] t[,1] t[,2] t[,3] t[,4] na[] # ID
9 140 23 140 10 138 NA NA 1 3 4 NA 3 # 1
NA 1 11 78 12 85 29 170 1 2 3 4 4 # 2
75 731 363 714 NA NA NA NA 1 3 NA NA 2 # 3
2 106 9 205 NA NA NA NA 1 3 NA NA 2 # 4
58 549 237 1561 NA NA NA NA 1 3 NA NA 2 # 5
0 33 9 48 NA NA NA NA 1 3 NA NA 2 # 6
3 100 31 98 NA NA NA NA 1 3 NA NA 2 # 7
1 31 26 95 NA NA NA NA 1 3 NA NA 2 # 8
6 39 17 77 NA NA NA NA 1 3 NA NA 2 # 9
79 702 77 694 NA NA NA NA 1 2 NA NA 2 # 10
18 671 21 535 NA NA NA NA 1 2 NA NA 2 # 11
64 642 107 761 NA NA NA NA 1 3 NA NA 2 # 12
5 62 8 90 NA NA NA NA 1 3 NA NA 2 # 13
20 234 34 237 NA NA NA NA 1 3 NA NA 2 # 14
0 20 9 20 NA NA NA NA 1 4 NA NA 2 # 15
8 116 19 149 NA NA NA NA 1 2 NA NA 2 # 16
95 1107 143 1031 NA NA NA NA 1 3 NA NA 2 # 17
15 187 36 504 NA NA NA NA 1 3 NA NA 2 # 18
78 584 73 675 NA NA NA NA 1 3 NA NA 2 # 19
69 1177 54 888 NA NA NA NA 1 3 NA NA 2 # 20
NA 1 20 49 16 43 NA NA 1 2 3 NA 3 # 21
NA 1 7 66 32 127 NA NA 1 2 4 NA 3 # 22
NA 1 12 76 20 74 NA NA 1 3 4 NA 3 # 23
NA 1 9 55 3 26 NA NA 1 3 4 NA 3 # 24
END

# Initial values
#chain 1
list(sd=1, m=0, sd.m=1, d=c(NA,0,0,0), mu.new=0, mu=c(1,1,1,1,1,   1,1,1,1,1,   1,1,1,1,1,   1,1,1,1,1,   1,1,1,1)  )
#chain 2
list(sd=1.5, m=2, sd.m=2, d=c(NA,2,1,2), mu.new=1, mu=c(-1,1,-1,1,-1,   2,1,-2,1,2,   1,1,2,1,-2,   1,2,1,-2,1,   1,2,1,2)  )
#chain 3 
list(sd=3, m=.5, sd.m=.5, d=c(NA,-2,5,-5), mu.new=-1, mu=c(-1,5,-3,1,-1,   5,1,2,3,2,   1,5,2,1,-5,   1,2,-5,-3,1,   5,2,1,-5)  )
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