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Abstract

Characterizing the errors generated by common high-throughput sequencing platforms and telling true genetic variation
from technical artefacts are two interdependent steps, essential to many analyses such as single nucleotide variant calling,
haplotype inference, sequence assembly and evolutionary studies. Both random and systematic errors can show a specific
occurrence profile for each of the six prominent sequencing platforms surveyed here: 454 pyrosequencing, Complete
Genomics DNA nanoball sequencing, lllumina sequencing by synthesis, lon Torrent semiconductor sequencing, Pacific
Biosciences single-molecule real-time sequencing and Oxford Nanopore sequencing. There is a large variety of programs
available for error removal in sequencing read data, which differ in the error models and statistical techniques they use, the
features of the data they analyse, the parameters they determine from them and the data structures and algorithms they
use. We highlight the assumptions they make and for which data types these hold, providing guidance which tools to con-
sider for benchmarking with regard to the data properties. While no benchmarking results are included here, such specific
benchmarks would greatly inform tool choices and future software development. The development of stand-alone error
correctors, as well as single nucleotide variant and haplotype callers, could also benefit from using more of the knowledge
about error profiles and from (re)combining ideas from the existing approaches presented here.
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sequencing platforms and their errors not been released to general public, yet. A detailed review of the

o ) underlying technologies and further platforms is available else-
We begin with a survey of the errors generated during sequenc- where [8, 9]. For all platforms except for the MinION, independ-
ing by five commonly used high-throughput sequencing plat- ent error-assessments exist, but only few studies have
forms: Fhe GS FLX and the GS Junior by ki (1], the Complete systematically compared several platforms [10-13]—with none
Genomics platform [2], the HiSeq and the MiSeq by Illumina [3], covering more than four. Also, the analyses vary in focus, re-
the Persor}al Genome Machine (PGM) by lon Torrent [4, 5] and porting on only some of the well-known error types: insertions
the Real-time Sequencer (RS) by Pacific Biosciences [6]. Further, and deletions (often subsumed as indels), substitutions and
we include a quick summary of what is published about the coverage biases, such as reduced coverage of certain regions. To

very recent MinION platform by Oxford Nanopore [7] that has determine whether errors are introduced before library
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preparation (e.g. during pre-amplification steps), during library
preparation and amplification or in the sequencing run, com-
parative experiments under different experimental conditions
are required. Such time- and cost-intensive analyses have
rarely been performed, and therefore, such distinctions have
been made in few instances only [13]. Some properties of nu-
cleic acid sequences are known to raise the error rates for all or
most technologies, such as extremes in GC content, long homo-
polymer stretches, the presence of human promoter sequences
and the well-known decay of the base signal along each read.
After discussing the error profiles of the individual platforms,
we conclude the first part of the review with a direct compari-
son of all platforms with regard to these aspects.

454 pyrosequencing

For 454 pyrosequencers, an overall error rate for the GS FLX [14]
and the GS Junior [12] machines has been reported and the indel
rate assessed for the GS Junior [10]. All three studies only inves-
tigated sequences of intermediate GC content. Nevertheless,
their reported error rates (Table 1) support the well-known con-
sensus that—with this technology—indel errors occur an order
of magnitude more often than substitution errors. This higher
indel error rate is mostly owing to occurrences of homopoly-
mers, i.e. multiple consecutive appearances of the same nucleo-
tide. The distributions of light intensities of individual base flow
cycles in the sequencing reaction increasingly overlap for longer
homopolymer lengths, leading to insertion and deletion errors
in the base calling [18]. Owing to this phenomenon, homopoly-
mers have a higher overall indel error frequency than other se-
quence stretches [10, 14] and the indel error frequency
increases with homopolymer length [10].

454 sequencing data also contains a considerable amount of
ambiguous base calls (some callers then output an ‘N’), though
at a frequency considerably lower than that of indels and com-
parable with that of mismatches [14]. Towards the end of the
read, ambiguous base calls increase significantly in frequency,
as do substitution errors, whereas indel errors show only a
slighter but noticeable increase [14, 18]. After a certain point in
the read, depending on the machine and chemistry in use, the
GC content (as averaged over all reads) also drops drastically,
indicating a strong GC bias in later flow cycles (Figure 1 in [19]).
At the same time, longer reads surprisingly have a lower aver-
age error rate. Gilles et al. [14] suggest that reads either have a
consistently low or a consistently high error rate, i.e. shorter
reads are high error reads that have been trimmed heavily to
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remove errors towards the end, but the remaining parts still
contain more errors on average than the higher quality reads
that did not have to be trimmed as much. Finally, an inverse
pattern of insertion and deletion calls per well are found across
the technology’s picotitre plates: insertions are found more
often than deletions in certain parts of the sequencing plates,
whereas the effect is inverted for other areas. Contiguous areas
of the sequencing plate are thus either enriched for deletions or
for insertions, but these patterns do not seem to be consistent
between distinct sequencing plates or runs (Figure 3 and
Additional File 4 in [14]).

Complete Genomics DNA nanoball sequencing

Error information for Complete Genomics DNA nanoball
sequencing comes from a systematic comparison of platforms
on a human genome sample [13]. With this limitation in mind,
the reported error rates (Table 1) indicate that substitution
errors are two orders of magnitude more common with this
technology than are indel errors. The overall error rates were
found to be consistent across a wide range of GC sequence con-
tents, apart from the deletion rate that was much higher for se-
quences with high or low GC content (Figure 2B). These two GC
content extremes are also associated with substantially lower
read coverage (Figure 1). Finally, indel error rates rise markedly
with increasing homopolymer length (Figure 2A; [13]).

[llumina sequencing by synthesis

The error profiles of the current Illumina sequencing by synthe-
sis platforms HiSeq and MiSeq have been characterized in sub-
stantial detail, also drawing on the rigorous analyses of earlier
[llumina platforms such as the 1G [20, 21] and the Genome
Analyzer 1I [22]. Indel errors are an order of magnitude less fre-
quent than substitution errors and Illumina’s overall error rate
is the lowest of all the technologies (Table 1). For HiSeq, it has
been shown that deletions are more common than insertions
[15], whereas insertions are more common than deletions in
MiSeq data [23]. Substitution errors show a bias towards certain
substitutions: A <-> C and G <-> T transversions are by far the
most common, each making up around 30 and 25% of all substi-
tutions in HiSeq data [15]. A similar effect has been proven for
MiSeq data [23]. Overall, the error rate increases towards the
end of reads [15, 23], an issue that can be mostly dealt with by
trimming low-quality ends, and is significantly higher in the se-
cond read when doing paired end sequencing on the MiSeq [23].

Table 1. Error rates of high-throughput sequencing platforms (per 100 sequenced bases)

Platform Subs SD Subs Indels SD Indels aAll SD All
454 GS FLX 0.09000 bN/A 0.90000 bN/A 0.99000 bN/A
454 GS Junior 0.05430 bN/A 0.39055 bN/A 0.45540 bN/A
Complete Genomics 2.30000 PN/A 0.01900 PN/A 2.31900 PN/A
Ilumina HiSeq 0.26400 0.11238 0.02561 0.02351 0.28467 0.11875
Tlumina MiSeq 0.24551 0.11079 0.00905 0.01436 0.29652 0.18867
Ion Torrent PGM 0.16985 0.17253 ©1.45793 ©1.21924 ©1.63112 ©1.24217
Pacific Biosciences RS 1.10286 0.44761 15.56571 3.29386 16.19250 3.16667

Data from [10-17]. For all used values from these studies, please see the comprehensive Supplementary Table S1.

Only numbers based on a sufficiently large sample size to provide a standard deviation are set in bold.

Subs = substitution errors per 100 bases; Indels = insertion and deletion errors per 100 bases; SD = standard deviation

“Some studies contain only aggregated measures for indels and/or total error. Therefore, the value of All is not necessarily the sum of Subs and Indels.

YFor these platforms only one sample was available. Therefore, error rates should be considered with care as SDs are not available.

“One study with three samples (out of 12 samples in total) used indel-tolerant mapping, resulting in almost 100% of reads being mapped, but also producing much

higher indel error rates. This sample also explains the high SD.
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Figure 1. Sequencing coverage across different local GC contents in three microbes (P. falciparum, E. coli and R. sphaeroides) and a human genome. The bottom panels
show the relative fraction of 100-base windows in the respective genome having a certain GC content. The top panels show the relative sequencing coverage for 100-
base windows with a certain GC content compared to the respective platform sample’s average. This figure is aggregated and adapted from Figures 2 and 3 in [13], ac-
cording to the Creative Commons Attribution license CC-BY 2.0 (http://creativecommons.org/licenses/by/2.0/). A colour version of this figure is available at BIB online:

http://bib.oxfordjournals.org.
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Figure 2. Error rate biases in homopolymers of varying lengths and due to different local GC sequence content. (A) Top panels show the average error rates at homopol-
ymers of different lengths per genome and platform. (B) Bottom panels show error rates across different GC sequence contents of 100-base windows. This figure is
aggregated and adapted from Figures 4 and 5 in [13], according to the Creative Commons Attribution license CC-BY 2.0 (http://creativecommons.org/licenses/by/2.0/). A
colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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In the Illumina sequencers, modified nucleotides are flushed
over a flowcell in cycles. Flowcell tiles containing millions of se-
quence clusters—each performing individual sequencing reac-
tions—are arranged in lanes along each flowcell. Tiles at both
ends of a lane tend to have some cycles with an elevated
average error rate. This leads to spatially clustered and flow
cycle-specific errors [15]—a phenomenon that might explain
the substantial variation in error patterns between different
sequencing runs with the same sequencing library, as it is very
unlikely that the same templates will be located at border tiles
in two different runs [13]. However, further variation can be
observed between sequences generated from different libraries
prepared from the same material [13], demonstrating that errors
are already generated in the preparation steps. Especially the li-
brary preparation method and the sequencing primers have
been shown to introduce error biases [23]. Also, some errors
have been linked to sequence motifs: especially the indel error
rate increases after long homopolymer stretches (Figure 2A), in
GC-rich sequences (Figure 2B; GGCGGG is the most prominent
motif) and around inverted repeats [11, 13, 22]. Fortunately,
most of these error rate increases are consistently reflected in
lower quality scores for the respective read positions [15]—how-
ever, a general overestimation of base calling quality in
[llumina data has been reported (e.g. Supplementary Figure S1
in [21]) and any errors introduced in library or sample prepar-
ation [e.g. owing to polymerase chain reaction (PCR) amplifica-
tion] would not be reflected in the sequencing quality scores
[23]. But in general, this supports the practice of quality trim-
ming for errors that occur and accumulate at both ends of reads
[15] and calls for further use of the quality scores in all down-
stream analyses. In addition, some sequence-specific errors are
strand-specific, which should also help discerning them from
genuine polymorphisms in a sample [11, 15, 23]. Finally, the
[llumina platforms show a clear drop of read coverage at both
extremely high and low GC sequence contents (Figure 1), an ef-
fect that PCR-free library construction is able to reduce, but not
to eliminate completely [13].

Ion Torrent semiconductor sequencing

For Ion Torrent’s current semiconductor sequencing platform,
the PGM, errors have been assessed in detail. Here, indel errors
are an order of magnitude more frequent than substitution
errors and the overall error rate is substantially higher than in
the 454 and Illumina platforms (Table 1). The indel error rate—
when measured against a known reference genome—becomes
even higher if reads are mapped with indel tolerance: substan-
tially more reads are mapped and more of the actual indels are
counted [16]. Such methodological differences between studies
explain the high standard deviation of the error rates reported
in Table 1.

A substantial fraction of indel errors are caused by homopoly-
mers [10], with the base-calling accuracy decreasing with
homopolymer length [16]. While insertion errors are more likely
than deletion errors in PGM data in general, deletion errors are
more likely for homopolymers overall and increasingly likely, the
longer a homopolymer gets [16]—leading to an average under-
reporting of homopolymer lengths (Figure 2A; [13]). This is espe-
cially pronounced for homopolymer stretches of more than ~8 nu-
cleotides and may eventually lead to a complete loss of read
coverage for homopolymers of more than 14 nucleotides [11].
Another portion of indel errors occurs at very high frequencies at
certain positions of the reference genome [16]: these are mostly ei-
ther A or T insertions or C or G deletions; around 80% of them are
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run-specific (i.e. requiring sequencing replicates to identify them);
and around 7% of them show a significant strand-specificity. Such
strand-specific errors have also previously been reported: some
connected to homopolymer indels [10], others with no apparent se-
quence motif connected to them [11].

GC bias has a pronounced effect in PGM sequencing. While
the higher overall indel error rate is more stable across extreme
GC sequence contents than in [llumina and Complete Genomics
sequencing (Figure 2B), sequence coverage is not (Figure 1): it
drastically drops at both high and low GC sequence content,
both within the human genome and across microbial genomes
of different GC sequence content [13]. This is further confirmed
by two other studies that demonstrated a strong coverage bias
in the very low GC genome of Plasmodium falciparum [11] and the
complete failure of library preparation for the very high GC con-
tent genome of Deinococcus maricopensis alongside an elevated
error rate for a low GC content genome of Sulfolobus tokodaii [16].
It has therefore been suggested that PGM library preparation is
only safe for species with (local) GC sequence contents ranging
from approximately 20-80% [16].

Finally, error rates on average increase towards the end of
reads (Figure 2A; [10, 16]), with a clear periodicity of error rates,
which is connected to the Samba flow rhythm [16]: nucleotides
are flushed over the sequencing chip separately and certain
flows—mostly A and T flows—have significant over-call or
under-call rates, which directly connect to insertion and dele-
tion errors, respectively. A Samba flow-specific error model
might allow better error correction [16].

Pacific Biosciences single-molecule real-time
sequencing

Even though the reported error rates (Table 1) are supported by
more samples than those for 454 pyrosequencing and Complete
Genomics, the error profile of the Pacific Biosciences Real-time
Sequencer (PacBio RS) is not very well characterized by inde-
pendent studies, especially regarding PacBio’s more recent
chemistries. The overall error rate of the earlier chemistries is
approximately one order of magnitude larger than that of the
Ion Torrent PGM and approximately two orders of magnitude
larger than that of the Illumina platforms (Table 1). Within the
platform, indel errors are around 15 times more common than
substitution errors. The drawback of extremely high error
rates—and lower overall throughput, which makes it unafford-
able for the amount of DNA in larger genomes such as the
human genome [13] or in metagenome studies—is partly offset
by two factors: Firstly, very long reads (~10kb) make the plat-
form useful for scaffolding of de novo sequence assemblies of
smaller genomes that also use read data from another platform
[11]. Secondly, coverage drops only very slightly at extreme GC
sequence content, making this the platform with the lowest GC
bias (Figure 1; [13]). With recent increases in data quality and
read length, de novo assemblies of bacterial genomes from
PacBio data alone have become possible [24]. Also, two meth-
odological approaches for the reduction of the error rate have
been suggested by the platform vendor: (i) The SMRTbell tem-
plate, which is an effectively circular, double-stranded DNA
template with loops at both ends, enables multiple consecutive
readings of the same template. These are then aggregated into a
consensus read with a much lower error rate [25]. (ii)
Alternatively, redundant coverage from distinct templates of
variable sizes can be used to create a correct consensus. In this
approach, the more abundant shorter reads provide the cover-
age redundancy, while the longer reads assure assembly
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Table 2. Recommendations which tools to consider for benchmarking of which data and analysis types

Criterion Property Data sets Tools to consider
Platform 454 Any (homopolymer errors!) HECTOR, KEC, Acacia, AmpliconNoise, DeNoiser,
PyroNoise
Platform Oxford Nanopore Any (very high error rate!) Nanocorr
Platform PacBio Any (high error rate!, little bias) proovread, LoRDEC, ECTools, pacbio_gc, PBcR, LSC,
AHA
Data property Non-uniform coverage Metagenomics, transcriptomics, Trowel, Blue, BayesHammer, QuorUM, fermi,
whole genome amplified Hammer, ALLPATHS-LG, Reptile
Data property mostly substitution Complete Genomics, [llumina BFC, Lighter, Trowel, BayesHammer, QuorUM,
errors Musket, RACER, SGA, SOAPdenovo2, fermi,
REDEEM, Hammer, SysCall, DecGPU, ECHO, HiTEC,
ALLPATHS-LG, Reptile, CUDA-EC, SOAPdenovo,
Quake, SHREC, FreClu, EULER-USR
Data property indel errors prevalent Any (esp. 454, Ion Torrent, PacBio) Fiona, Blue, SEECER, Coral, ShoRAH, Hybrid-SHREC
Data property many repeats or Metagenomics, complex genomes SEECER, Acacia, SGA, SHoRAH, EULER-USR
haplotypes (e.g. eukaryotes)
Data property two haplotypes Diploid genome ECHO

Analysis type sensitive to single nu-

cleotide errors

e.g. for SNV analysis

Fiona, REDEEM, ECHO, SysCall, Quake, FreClu

Tools are given in chronological order of publication, newest tools first. Recommendations are based on this literature review of the different approaches to error

correction.

Tools from 2008 or earlier were excluded. Platform-specific tools for 454, Oxford Nanopore and PacBio are only mentioned in the first, second and third row, respect-
ively. The tools listed in the other rows should all be applicable to various data types from different platforms.

contiguity [26]. Such extra redundancy—through SMRTbell or
increased overall coverage—has been independently shown to
decrease the overall error rate by an order of magnitude to 1.3
and 2.5%, respectively ([27, 28]; section ‘Platform-specific error
correction’).

Furthermore, the error rate was found to be consistent and
random for the longest part of each read, deteriorating only
slightly for longer reads [17]. The error rate is also unbiased by
longer homopolymer stretches—with only a slight increase of
deletions and a slight decrease of insertions (Figure 2A)—and
across the entire range of GC sequence content (Figure 2B; [13]).

Oxford Nanopore sequencing

Like PacBio’s real-time sequencing, Oxford Nanopore’s MinION
promises to generate longer reads that will enable better reso-
lution of structural variants and genomic repeat content.
However, this technology is even younger than the PacBio RS
and all published studies are based on data from the platform
developers’ MinION Access Programme [29] and are only based
on short fragments of DNA (phage or bacterial genomes or sin-
gle human genes). In addition, the chemistry is under rapid de-
velopment, constantly improving data quality [30]. The here
presented values should thus be taken with care and are neither
included in Table 1 nor in the platform comparison below.
Similar to circular consensus sequencing (CCS) reads in
PacBio sequencing, a DNA hairpin loop is ligated to the end of a
double-stranded DNA molecule, linking the two strands.
However, this is only done at one end of the double strand and
the MinION thus sequences each strand only once [31]. This re-
sults in a ‘template’ read before the hairpin and a (reverse)
‘complement’ read after the hairpin. Wherever possible, a con-
sensus of both is created, a ‘two-dimensional’ (2D) read [31].
Most reported error rates refer only to these 2D reads that repre-
sent about 40 to 50% of sequenced bases for the newest pub-
lished flow cell version R7.3 [30-32] and among those only to
the 63 [32] to 90% [30] of reads that map to the respective

reference. With such reads, Ammar et al. report 7% substitution
errors, 13.3% deletion errors and 5.3% insertion errors. Jain et al.
further narrow their choice of reads down to those marked as
high quality by the vendor’s base-caller, finally analysing
around 24% of the total sequenced nucleotides. Averaging over
three replicates of the phage M13, they report 5.1% substitution
errors, 7.8% deletion errors and 4.9% insertion errors and also
apply their error estimation to the Escherichia coli data of Quick
et al., where they find 5.3% substitution errors, 9.1% deletion
errors and 6.0% insertion errors.

Altogether, these studies roughly agree that substitution and
insertion errors occur at a similar rate, while deletion errors are
about two times as common. The joint error rate of about 20—
25% still clearly exceeds that of PacBio, the other current single-
molecule sequencing technique. Also in contrast to PacBio,
errors seem to be biased: with substitution errors, A to T and T
to A errors are much less likely than all other substitution errors
[30] and homopolymer runs seem to increase insertion and de-
letion error rates [30, 33].

Platform comparison: errors in connection with GC
biases, homopolymers and human promoter sequences

On four of the five available platforms (excluding Oxford
Nanopore), sequences with GC content extremes are known to
suffer from reduced coverage in the produced reads, with some
regions covered by no reads in all platforms except for the
PacBio RS (Figure 1; [13, 19]). For 454 pyrosequencing with the GS
FLX platform, a drastic decrease in average GC content after a
certain read length is a known GC bias [19]. The other four plat-
forms were compared systematically for GC biases by Ross et al.
[13]: all platforms represent sequences with intermediate GC
content consistently and show a decreased coverage of both
high and low GC content sequences (Figure 1). PacBio RS gives
the most consistent coverage, even at extreme GC sequence
contents, but currently does not yet support the sequencing of
large genomes (e.g. human) at a reasonable cost. In practice, it
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therefore only outperforms all other platforms with respect to
GC content bias for the analysis of microbial genomes. The Ion
Torrent PGM consistently shows the strongest loss of coverage
for low and high GC sequence content regions, across both mi-
crobial and human genomes. In a low GC content genome, up to
30% of the genome were not covered at all [11], and for a high
GC content genome, library preparation failed altogether [16].
Complete Genomics—a platform specifically targeted at human
genome sequencing—performs similar to the PGM on the
human genome. Here, Illumina’s HiSeq platform outperforms
both Ion Torrent PGM and Complete Genomics [13]. The cover-
age bias of these technologies for extreme GC content se-
quences also could not be amended by combining data from
different platforms [13], possibly because the bias profiles are
not complementary but rather qualitatively similar, with differ-
ences only in the strength of the GC bias.

In addition, several platforms show correlations between GC
content or GC-motifs and different kinds of single nucleotide
errors [13]. The indel error rates of the PGM were shown to be
stable across the GC range (at a high overall level), as were the
even higher indel error rates of the PacBio RS. Complete
Genomics and Illumina had much lower overall indel error
rates, but showed a clear elevation of the deletion error rate at
extremely high and extremely low GC contents, an elevation
also seen for insertion errors in I[llumina data (Figure 2B; [13]).
Ion Torrent’s PGM is the only platform with a clear elevation of
the substitution error rate, especially at very low GC sequence
content, while Complete Genomics, [llumina HiSeq and MiSeq
and PacBio RS have a mostly stable substitution error rate
across the whole range of GC sequence contents, with only very
slight elevations at the extremes (Figure 2B). In addition, certain
strand-specific and cycle-specific errors in Illumina data have
been attributed to GC-rich sequences [11].

With increasing length of homopolymers, all platforms
show an increase in the insertion error rate, the deletion error
rate or both, except for the PacBio RS with its consistently very
high indel error rate (Figure 2A; [13, 14]). Most sensitive to
homopolymers is the Ion Torrent PGM, which was found in one
study to not produce any reads for homopolymers longer than
14 nucleotides [11].

Inspired by anecdotal evidence, [13] also examined the
coverage of human promoter sequences and identified a sub-
stantial number of such promoters that are extremely under-
covered by all the tested platforms (i.e. Complete Genomics,
[llumina HiSeq and Ion Torrent PGM), an effect neither ex-
plained by GC sequence content nor by homopolymers.
Illumina showed the highest coverage, and thus best perform-
ance, when used with improved reagents. However, further
more detailed studies of this phenomenon are required.
Interestingly, for Illumina’s older platform Genome Analyzer II,
certain errors have been shown to be associated with inverted
repeats [22] and the human genome is known to contain a sub-
stantial number of bidirectional promoters [34] for adjacent and
oppositely directed genes. These bidirectional promoters are
known to have complementary and symmetric base sequence
content around their midpoint and might harbour inverted re-
peats in the form of inversely oriented transcription factor bind-
ing sites [35], a connection that could easily be tested with
existing data.

Error correction of read data

We now provide a methodological overview of high-throughput
sequencing error correction software that takes the read data as
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input and outputs corrected reads. We focus on tools where this
process can be run as a stand-alone and where a publication or
the documentation provides details of the methodology (Tables 3
and 4, Supplementary Table S2). However, we also list software
where error correction is only one step of many, as in sequence
assemblers and the haplotype inference tools ShoRAH and KEC,
especially if they have contributed important error correction
ideas or if the error correction tool can be run independently.
Initially, we outline the computational methods, i.e. which data
structures are used, and how algorithms generate and manipu
late them for error detection. Afterwards, we discuss the em
ployed error models, including which features they characterize
them by, and the statistical methods, including the utilized mod
els and their parameters. Importantly, we highlight the assump
tions made by the different tools and indicate which ones are ap
plicable to which types of data, to facilitate the choice of tools
for context specific benchmarks. There are three main assump
tions that most high-throughput sequencing error correction
approaches make: Firstly, errors (per position) are considered
rare compared with correct base calls, given sufficient coverage.
Secondly, coverage is seen as uniform across the queried se
quence. And thirdly, substitution and indel errors are all
thought to be introduced with similar probability at every se
quence template position. These assumptions might be reason
able enough, if only overall error rates are known for a certain
data type. However, considering that there are also systematic
errors (biases) that affect both coverage and error frequencies,
more sophisticated approaches allow to more adequately detect
and remove errors from sequence data. We begin by describing
approaches that are based on these three assumptions, and
later discuss error correction approaches that take such effects
into consideration.

Piling up reads over query sequence positions:
determining base frequencies by read
alignments, k-mer counting or read suffixes

To leverage the high coverage—attainable with high-throughput
sequencing—for error correction, sequence reads have to be
sorted according to the location of the underlying sequence
from which they originate. This can be achieved using a variety
of techniques, depending on whether a reference sequence is
already available, and results in a base pileup or an alignment
column. Then, positions with multiple divergent base calls are
inspected, to distinguish genuine polymorphisms from
sequencing errors—making use of the assumptions that errors
are rare and random. The initial step of determining base fre-
quencies over sequence positions is either done by aligning
reads or by inspecting the frequency of all substrings of all reads
of a defined length k (k-mers), where the latter can be done
using some form of either a k-mer counting table or a suffix
array. This classification into alignment or k-mer-based
approaches was adapted from [36].

Read alignments: Reference mapping and multiple
sequence alignment

Wherever a reference genome is available, the base pileup over
each sequence position can be done by finding an optimal map-
ping of each read onto that reference sequence (Figure 3A).
However, often no (good) reference genome is available or (sub-
stantial) divergence from the reference is expected, which
would lead to a reference bias in the alignment and thus in the
positional pileup. In this case, reference-free assembly or read


]
22
either 
,
19
];
C
Read Data
,
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Table 4. Citations and software URLs of error correction tools

Tool Author, year Citation Software URL

Acacia (Bragg et al., 2012) [88] http://sourceforge.net/projects/acaciaerrorcorr/

AHA (Bashir et al., 2012) [96] https://github.com/PacificBiosciences/Bioinformatics-Training/wiki/AHA

ALLPATHS (Butler et al., 2008) [69] http://www.broadinstitute.org/science/programs/genome-biology/computa
tional-rd/computational-research-and-development

ALLPATHS-LG  (Gnerre et al., 2011) [77] http://www.broadinstitute.org/software/allpaths-lg/blog/?page_id=12

AmpliconNoise (Quince et al., 2011) [91] https://code.google.com/p/ampliconnoise/downloads/list

ARACHNE (Batzoglou, 2002) [40] http://www.broadinstitute.org/science/programs/genome-biology/computa
tional-rd/computational-research-and-development

AutoEdit (Gajer, 2004) [80] not available (any more)

BayesHammer (Nikolenko et al., 2013) [60] http://bioinf.spbau.ru/en/spades

BFC (Li, 2015) [71] https://github.com/lh3/bfc

BLESS (Heo et al., 2014) [104] http://sourceforge.net/projects/bless-ec/

Bloocoo (Drezen et al., 2014) [105] https://gatb.inria.fr/gatb/binaries/

Blue (Greenfield et al., 2014) [64] http://www.bioinformatics.csiro.au/blue

Coral (Salmela and Schroder, 2011) [61] http://www.cs.helsinki.fi/u/lmsalmel/coral/

CUDA-EC (Shi et al., 2010a, 2010b) [106, 107] http://sourceforge.net/projects/cuda-ec/

DecGPU (Liu et al., 2011) [108] http://decgpu.sourceforge.net/homepage.htm#latest

DeNoiser (Reeder and Knight, 2010) [90] http://www.microbio.me/denoiser/

ECHO (Kao et al., 2011) [62] http://uc-echo.sourceforge.net/

ECTools (Lee et al., 2014) [99] https://github.com/jgurtowski/ectools

EDAR (Zhao et al., 2010) [75] not available

EULER (Pevzner et al., 2001) [45] http://cseweb.ucsd.edu/~ppevzner/software.html

EULER (Chaisson et al., 2004) [65] http://cseweb.ucsd.edu/~ppevzner/software. html

EULER-SR (Chaisson and Pevzner, 2008) [68] http://cseweb.ucsd.edu/~ppevzner/software.html

EULER-USR (Chaisson et al., 2009) [83] http://cseweb.ucsd.edu/~ppevzner/software. html

fermi (Li, 2012) [55] https://github.com/lh3/fermi

Fiona (Schulz et al., 2014) [52] http://www.seqan.de/projects/fiona/

FreClu (Qu et al., 2009) [21] http://mlab.cb.k.u-tokyo.ac.jp/~quwei/DeNovoShortReadclust/

Hammer (Medvedev et al., 2011) [59] http://bix.ucsd.edu/projects/hammer/

HECTOR (Wirawan et al., 2014) [92] http://hector454.sourceforge.net/

HITEC (Ilie et al., 2011) [49] http://www.csd.uwo.ca/~ilie/HiTEC/

Hybrid-SHREC  (Salmela, 2010) [47] http://www.cs.helsinki.fi/u/lmsalmel/hybrid-shrec/

KEC (Skums et al., 2012) [93] http://alan.cs.gsu.edu/NGS/?q=content/pyrosequencing-error-correction-
algorithm

Lighter (Song et al., 2014) [109] https://github.com/mourisl/Lighter

LoRDEC (Salmela and Rivals, 2014) [85] http://atge.lirmm.fr/lordec/

LSC (Au et al., 2012) [97] http://www.healthcare.uiowa.edu/labs/au/LSC/

MisEd (Tammi, 2003) [86] not available

Musket (Liu et al., 2013) [110] http://musket.sourceforge. net/homepage.htm#latest

MyHybrid (Zhao et al., 2011a) [43] not available

N-corr (Shin and Park, 2014) [111] http://nar.oxfordjournals.org/content/suppl/2014/01/27/gku070.DC1/nar-00508-
met-k-2013-File010.docx

Nanocorr (Goodwin et al., 2015) [101] https://github.com/jgurtowski/nanocorr

pacbio_qc (Jiao, 2013) [28] http://david.abcc.ncifcrf.gov/manuscripts/pacbio_qc/

PBcR (Koren et al., 2012, 2013) [26,95]  http://cbcb.umd.edu/software/PBcR/

Potts model (Aita et al., 2013) [63] not available

PREMIER (Yin et al., 2013) [79] not available

proovread (Hackl et al., 2014) [98] http://proovread.bioapps.biozentrum.uni-wuerzburg.de/

PSAEC (Zhao et al., 2011b) [51] not available

PyroNoise (Quince et al., 2009) [89] http://userweb.eng.gla.ac.uk/christopher.quince/Software/PyroNoise.html

Quake (Kelley et al., 2010) [70] http://www.cbcb.umd.edu/software/quake/

QuorUM (Marcais et al., 2013) [76] http://www.genome.umd.edu/quorum.html

RACER (Ilie and Molnar, 2013) [112] http://www.csd.uwo.ca/~ilie/RACER/

RECOUNT (Wijaya et al., 2009) [81] not available (any more)

REDEEM (Yangetal.,, 2011) [113] http://aluru-sun.ece.iastate.edu/doku.php?id=redeem

Reptile (Yanget al., 2010) [58] http://aluru-sun.ece.iastate.edu/doku.php?id=reptile

SEECER (Le et al., 2013) [78] http://sb.cs.cmu.edu/seecer/

SGA (Simpson and Durbin, 2012) [44] https://github.com/jts/sga

ShoRAH (Zagordi et al., 2010a, 2011) [41,42]  http://www.bsse.ethz.ch/cbg/software/shorah

SHREC (Schroder et al., 2009) [46] http://sourceforge.net/projects/shrec-ec/

SleepEC (Sleep et al., 2013) [73] https://ep.unisa.edu.au/view/view.php?id=46870

SOAPdenovo (Lietal., 2010) [66] http://soap.genomics.org.cn/soapdenovo.html

SOAPdenovo2  (Luo etal., 2012) [67] http://soap.genomics.org.cn/soapdenovo.html

SysCall (Meacham et al., 2011) [82] http://bio.math.berkeley.edu/SysCall/

Trowel (Lim et al., 2014) [74] http://sourceforge.net/projects/trowel-ec/
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Figure 3. Overview how to generate a pileup from a read set depending on the error correction strategy. (A) If a good and close reference is known, reads can be mapped
to it. Otherwise, one of the other approaches is necessary: (B) A MSA of reads can be formed from pairwise alignments of all read pairs, of all reads with an overlap in
an initial mapping to an available reference (dashed grey arrow from A to B), of all reads sharing part of a suffix (dashed grey arrow from F to B) or of all read pairs shar-
ing a k-mer seed, identified by a table recording all reads that each k-mer occurs in (grey table and respective dashed grey arrows). Also, a simple recording of the count

of all k-mers can be used to derive (C) a k-mer Spectrum or (D) a Hamming graph (Figure 4), and read suffixes of reads augmented with unique symbol ($x) can be used

to construct (E) a suffix trie (Figure 5) or (F) a suffix array (Figure 6).

grouping strategies can be used to generate a multiple sequence
alignment (MSA) of reads, thus generating the positional pileup.

Historically, such reference-free approaches were initially
developed for the assembly of Sanger sequencing data, where
the few produced reads were longer and coverage was lower.
With such small data sets, a pairwise alignment of all read pairs
(e.g. [37]) was feasible, and from these pairwise alignments, an
MSA (Figure 3B) could easily be constructed and refined [38].
With the larger data sets from the next generation of sequenc-
ing platforms, the initial step of all possible pairwise alignments
became computationally intractable. Instead, newer approaches
first determine read pairs sharing subsequences and then only
align those pairs, thus substantially reducing the number of
alignments performed. To this end, they borrow from one of the
other three pileup approaches we review below: by creating an
index table that contains all read substrings of a specified
length k—so-called k-mers (section ‘k-mer frequencies and
spectrum’)—and recording in which reads they occur (grey read
index table in Figure 3; [39, 40]), by doing a reference mapping
(grey dashed arrow from A to B in Figure 3; [41, 42]) or by con-
structing a suffix array (section ‘Suffix tries and arrays, the
Burrows Wheeler transform and the Full-text index in Minute
space’) of all reads [43] or derivatives thereof (grey dashed arrow
from F to B in Figure 3; [44]).

Eventually, MSA tools (Supplementary Note S1) use the base
frequencies in each alignment column of the refined MSA to
take error correction decisions; either by a simple majority vote
or by one of the more sophisticated approaches discussed in the
section ‘Denoising with statistical error models’ and the
sections right after it.

k-mer frequencies and spectrum

In parallel, an approach based on k-mer frequencies for deter-
mining base frequencies in positional pileups was developed
and has dominated the field of error correction. The idea was
originally introduced in the EULER assembler for Sanger reads

in 2001 [45] and, initially, it mostly co-evolved with the assem-
bler versions of EULER.

As for the seed subsequences of the pairwise read align-
ments in MSA approaches, each k-mer that exists in the set of
all available reads is recorded. But instead of storing the infor-
mation in which reads a k-mer occurs, only the total number of
occurrences of the k-mer in the read set is counted and saved.
This gives one ‘coverage’ (occurrences) value for each k-mer
(e.g. k-mer counts table in Figures 3 and 4). Using the assump-
tion that errors are rare and random, a threshold is then chosen
to distinguish between low-frequency k-mers that are con-
sidered ‘erroneous’ (or ‘weak’ or ‘untrusted’) and high-
frequency k-mers (‘solid’, ‘strong’ or ‘trusted’; green counts in
Figure 4)—this approximates what is called the actual ‘k-mer
spectrum’ of the sequenced sample (Figure 4C). The original
k-mer spectrum correction approach was to inspect one full
read at a time and to consider it erroneous, if it contains at least
one untrusted k-mer—in other words, if the k-mer spectrum of
the read contains k-mers not in the trusted spectrum of the full
sequenced sample. Such a read is either corrected by the min-
imum number of base edits necessary to turn all of its untrusted
k-mers into trusted ones (see also the section ‘Substitutions
only versus substitutions plus indels: Hamming versus
Levenshtein distance’), or discarded if that is not possible with-
out making more than a pre-defined maximum number of
changes to the read in question. Many different error correction
approaches using the k-mer spectrum (Supplementary Note S2)
or just the k-mer frequencies have been developed. We also dis
cuss these further in relation to the choices for the frequency
thresholds and the k-mer length (sections ‘Global frequency
thresholds for trusting k-mers’ and ‘Optimal k-mer length’).

Suffix tries and arrays, the Burrows Wheeler transform
and the Full-text index in Minute space

A third popular approach for determining base frequencies per
sequence position uses data structures based on read suffixes:
suffix tries, suffix arrays and their derivatives (Figures 3E, 3F, 5
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Figure 4. Deriving a k-mer Spectrum or a Hamming graph from k-mer counts. Some error correction tools work directly with the k-mer frequencies as counted from the
read set. Others set a minimum k-mer coverage (2 in this example, green) to consider a k-mer as correct (trusted k-mers, green counts) and then derive a (C) k-mer
Spectrum of all trusted k-mers. In this simplified example, this step classifies k-mers from the end of the queried sequence as untrusted (the reference in Figure 3A
could be considered the sequence queried by the four reads). By using a Bloom filter, space usage of the k-mer spectrum can be reduced. Another concept used in
k-mer approaches is the Hamming graph, where nodes are k-mers from the read set and nodes are connected if the Hamming distance (i.e. the number of base substi-
tutions between them; see also the section ‘Substitutions only versus substitutions plus indels: Hamming versus Levenshtein distance’) is below a given threshold. In
this simplified example, k-mers are too short and the Hamming graph therefore connects three correct k-mers. In a real setting, the k-mer length must be chosen with
care (section ‘Optimal k-mer length’) and most connected components of the Hamming graph should contain only a single correct k-mer plus k-mers generated from
the same sequence with errors. A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.

Indexed
Read Set

(E) Suffix Trie

Figure 5. A suffix trie is a tree of all suffixes from the indexed example read set.
Every existing suffix can be spelled out by a path from the root node to one of
the read indices, indicated by arrowheads and read numbers at corresponding
nodes. Numbers at trie edges correspond to the number of suffixes passing
through them, i.e. edge weights give the coverage of a sequence from the root
down to the following node. For example, the 2-mer ‘CC’ occurs six times in the
four example reads.

and 6). A suffix trie, used in (Hybrid) SHREC [46, 47], is a tree of
all possible suffixes of all reads, where each edge is weighted by
the number of reads that support it (Figure 5). While a suffix trie
requires considerable memory (determined by the length of the
sequenced genetic material, the length of the reads and
the amount of errors), it allows for very quick string searches of
the whole data set. Also, the weights enumerate the number of
read suffixes sharing the same prefix down to that level in the
tree and if we regard the inspected level of the tree as the length
k of a k-mer, the trie directly provides the frequencies of all pos-
sible k-mer lengths from 1 to the maximal read length.
However, not all levels of the trie are useful for error correction,
and only intermediate levels of the trie are inspected to check
for imbalances in the weights of edges at each node (for a dis-
cussion of the sweet spot in k-mer length, see the section
‘Optimal k-mer length’ and Supplementary Note S3).

A suffix array [48], first used by HIiTEC [49], is a sorted array
of all possible read suffixes and is usually combined with an
auxiliary index: the longest common prefix (LCP, Figure 6F). For
a given position in a suffix array, the LCP gives the length of the
longest common prefix that the respective suffix shares with
the suffix preceding it in the array. With these two data struc-
tures, which require considerably less space than a suffix trie,
k-mer frequencies can be queried for k-mers (called ‘witnesses’
in HITEC) of varying length as easily as in a suffix trie. HITEC ex-
ploits this property to iterate over various k-mer lengths that
are chosen to optimize correction (section ‘Optimal k-mer

length’ and Supplementary Note S3). An optimization idea—
first introduced for suffix trees [S0]—was recently implemented
for suffix arrays in PSAEC [51] and Fiona [52]: they construct
only a partial suffix array up to a specified order h, in a process
they parallelize. This effectively means that suffixes are only
sorted according to their first h bases, which still allows k-mer
frequencies to be determined for all k-mer lengths up to h.

In the SGA assembler [44], a different optimized data struc-
ture, the Full-text index in Minute space (FM index; invented by
Ferragina and Manzini; Figure 6H; [53]), was employed for error
correction—a data structure originally introduced for string-
graph construction in de novo assembly. The FM index uses the
Burrows Wheeler transform (BWT, a lossless compression of a
suffix array; Figure 6G; [54]) in conjunction with two auxiliary
arrays: The cumulative occurrence of every symbol in the BWT
is counted in the order of the BWT index (the Occurrences table
in Figure 6H), and the total count of all bases that are lexico-
graphically lower than a certain base in the full BWT is recorded
(the five Counts in Figure 6H, one count for each symbol, cumu-
lative in the lexicographical order). In the assembler fermi [S5],
the FM index was further optimized to incorporate both of the
reverse complement strands of DNA in one index, the FMD
index, which allows for bidirectional match extension in a pat-
tern search.

Error detection and correction: telling true
polymorphisms from errors

Substitutions only versus substitutions plus indels:
Hamming versus Levenshtein distance

Instead of the Levenshtein edit distance, which allows meas-
urement of single nucleotide insertions, deletions and substitu-
tions [56], most error correction tools use the Hamming
distance [57], which accounts for substitutions only. This is usu-
ally justified by two main arguments: firstly, the number of sub-
stitution errors is an order of magnitude higher than indel
errors in the predominant Illumina data and, secondly, the
computational complexity of the approaches using only the
Hamming distance is lower, which is especially important for
error correction procedures in high-throughput data and com-
putation intensive tasks like de novo assembly. As a result, most
tools only correct substitution errors (Table 3), and some even
make the Hamming distance their central concept: the k-mer
frequency tools Reptile [58], Hammer [59] and BayesHammer
[60] create a Hamming graph in which k-mers as nodes are


Section ``
''
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbv029/-/DC1
that
``
''
s
S
``
''
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbv029/-/DC1
s
]  
s
]
s
s
T
vs.
vs.
F
T
http://bib.oxfordjournals.org/

Indexed - Concatenated Reads — Suffixes — go ed —+ (F) Suffix Array
u

Read Sel

Denoising DNA deep sequencing data | 169

- (G) Burrows Wheeler —+ (H) Ferragina Manzini Index
Transform

SRR 5 P Icongesr i £ Occurrences  Counts
ull Position rra rray + Common
é%fgg%% String  index Indei Enl:rne:'s|r Prefix Index Entries Index $A CGT $ 0
CCCAGSS A a4
A 0 1 0 5 0 0G 000 010
TACCCH2 @ 1 5 i 11 0 i ¢ 100 110 ¢ 8
C 2 3 2 17 0 2 G 200 120
¢ 3 4 3 23 0 3¢ 300 220 G 18
4 ch 8 0 T g0 221 199
1 5 ACC 5 19 3 5 500 222
6 ACCCG$1 6 0 4 6 34 6 10 222
T 7 AGE3 7 16 1 T 710 232
A 8 C 8 10 0 8C 8 10 332
C 9 C 9 22 1 9C 9 10 432
10 CC$2 9 A A 11 432
2 11 CC il 21 2 11 C 11 191 53
12 CC 12 20 2 12 A 12 12 532
C 13 CCCG$H1 13 1 3 13 A 13 13 532
G 14 CCG 14 2: 2 14 14 13 632
A 15 CCGAG$3 15 12 3 15 $2 15 23 632
16 CGP1 16 3 1 16 16 23 732
3 17 CGAG$3 17 13 2 17 C 17 23 832
18 Gl 18 4 0 18 C 18 23 932
A 19 G$3 19 16 1 19 A 19 24 932
C 20 G G?S 20 14 1 20 20 241032
(&) 21 GTACCS2 21 6 1 21 $1 21 341032
22 TACC 7 0 341042
4 23 TACCC$4 23 18 4 23 $3 23 441042

Update formulas for iterative string search in suffiz array:
f = C(z) + Ocelz, f-1)

1 = C(z) + Oce(z,l) - 1

With:

C(z) - count of occurrences of all symbols in R that are
lexicographically lower than z

f - first index of suffix array interval
1L - last index of suffix array interval

Occ(z,4) - count of occurrences of symbol z in all BWT
positions up to %

R - concatenation of all reads
@ - query string (of symbols from alphabet)
x - symbol from alphabet

Example Search for  "TAC" in read concatenation R:

(i) Initialize [f,1]
Suffix array interval corresaondmg to suffizes

starting with last letter
=C(C) =8
=C(G) -1=17

-> [8,17]

(ii) 1st interval update
To suffix array interval starting with "AC":

= C(A "‘UCCE ) =4+0=4
= C(A) + Occ(A)17) -1 =4+3-1=6
-> [4,6

(ii1) 2nd interval update
To suffix array interval startin
{-C(T)+Dcc(’l’3)-2 + 0=
= C(T) + Occ(T,6) -1 =22+2-1=23
-> [22,23]

with "TAC":
2

(iv) Positions of § in R
Entries in suffix array at indices [22,23]
-> R[7] and R[18]

Figure 6. Steps for deriving first a suffix array and then the BWT and the FM index from the running example read set. Also given is an example for a string search using
BWT and FM index, with the colours purple, red and green tracing corresponding indices and nucleotides. For suffix array construction, a unique termination symbol
($x) is appended to each read and reads are concatenated to a string R in lexicographical order of their termination symbol ($1<$2 < $3 < $4). All possible suffixes are
formed and sorted unambiguously, as termination symbols have an order, as do the other symbols $ < A < C < G < T. A suffix array entry at suffix array index i then cor-
responds to the position in string R at which the i-th (lexicographically) lowest suffix starts. The LCP of a suffix array entry and the preceding entry is then recorded
and suffix array plus LCP already form an efficient data structure for determining string occurrence frequencies. The BWT enables further compression of the data.
Here, an entry at BWT index i corresponds to the symbol before the i-th lowest suffix in R. Together with the FM index, it allows for linear time string searches (and
thus also determination of the coverage of a string) in the whole read set. The FM index gives the number of occurrences of each of the symbols up to any index of the
BWT and for each symbol counts all occurrences of all lexicographically lower symbols (e.g. 4 +4 + 10 =18 for symbol ‘G’, all counts in blue). A colour version of this fig-

ure is available at BIB online: http://bib.oxfordjournals.org.

connected by edges, if the Hamming distance between them is
below a certain very low threshold (Figure 4D). Such connec-
tions can be easily found by proximity searches in different cop-
ies of the list of all k-mer that are each sorted systematically,
ignoring a certain amount of positions, where the number of
positions disregarded in the sorting of each copy determines
the Hamming distance allowed. A similar approach in the MSA
tools Coral [61] and ECHO [62] is the use of adjacency lists. And
finally, FreClu [21] and an unnamed tool by Aita et al. [63] cluster
reads by their Hamming distance and then use different error
correction strategies on the resulting neighbourhoods (i.e. the
clusters).

On the other hand, only few tools (Table 3) explicitly imple-
ment indel correction: in MSA tools, this can be accomplished
by creating or optimizing the MSA with a pairwise alignment al-
gorithm that allows for gaps (e.g. [37]). This is the case in most
MSA error correction tools and only some more recent tools
trade the indel correction capability for computational speed:
SGA [44] uses an optimized data structure (the BWT

representation of the suffix array, Figure 6) and creates MSAs
from it with an algorithm that does not natively support indel
detection. ECHO [62] has not implemented indel correction to
save computational resources.

A recent approach, implemented in Fiona [52], is to optimize
correction possibilities over the three different single nucleotide
error types by finding optimal alignment extensions from suffix
array seeds between an erroneous and all the corresponding
correct reads. This implements the Levenshtein distance at the
error position and even allows for further insertions or deletions
in the alignment extension that are then penalized in the
optimization.

In general, the decision whether to implement an error cor-
rection of indel errors is becoming increasingly important, as
the emerging platforms by Ion Torrent, PacBio and Oxford
Nanopore produce a substantial amount of indel errors (Table 1
and Figure 2). This is further exemplified by recent k-mer tools
such as Blue [64], which explicitly consider indels, despite the
increased computational complexity.
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Global frequency thresholds for trusting k-mers

Many k-mer frequency tools create a k-mer spectrum to correct
untrusted k-mers to the closest trusted one, usually by mini-
mizing the Hamming distance between them (i.e. substitutions
only, section ‘Substitutions only versus substitutions plus
indels: Hamming versus Levenshtein distance’). To this end,
they use the assumptions that errors are rare, that different
errors are equally likely and that coverage is uniform, and rely
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Figure 7. k-mer coverage histogram with a model fit. The histogram in this
plot from the Quake paper [70] gives a nice example of an empirical k-mer cover-
age distribution. The density tells us which proportion of all existing k-mers
in the data set has a particular coverage. The solid line gives the Quake
model fit. The first peak of the distribution is formed by very low coverage error
k-mers and is usually modelled by a Poisson or a Gamma distribution. The se-
cond peak results from the majority of correct k-mers and is usually modelled
by a Poisson or a Gaussian distribution. Between these two peaks, a clear
local minimum can provide a k-mer trust coverage cut-off. The heavy tail of
higher multiplicity k-mers is the result of k-mers from sequence repeats.
Quake draws the k-mers’ sequence copy numbers from a Zeta distribution and
then projects these k-mers into the coverage range of the correct k-mers.
Adapted by font change and label addition from [70], according to the Creative
Commons Attribution license CC-BY 2.0 (http://creativecommons.org/licenses/
by/2.0/).

Read Set  k-mer Counts
é%ggG 3-mer #
CCGAG — ASG 3
TACCC &&& 3
CCCTA &f 9§
Goecs TAC 2
GAG 1
GCT 1
GTA 1
¢aC 1
GCC 1
GIT 1
90
TEe 4

on a frequency threshold to decide which k-mers to trust (e.g.
two in Figure 4). While this threshold was originally chosen
manually from experience—e.g. in EULER [45, 65] and
SOAPdenovo [66, 67]—more objective criteria to derive the
threshold from the actual data were soon developed (Table 3,
Supplementary Table S2).

In EULER-SR, the threshold was chosen manually, but an ex-
plicit reasoning for the choice was provided [68]: given the num-
ber of reads (N), their average length (L), an approximate genome
size (G) and the k-mer length (named I in the original publica-
tions), an average k-mer coverage can be computed as: a=N *
(L—1)/G. The coverage of correct k-mers is then assumed to fol-
low a Poisson distribution around that average a, and the cover-
age threshold is chosen such that only very few correct k-mers
(e.g. less than 100 k-mers in a full data set) will theoretically fall
below that threshold. Along similar lines, ALLPATHS [69]
assumed two distinct distributions underlying the empirical dis-
tribution: one for erroneous k-mers (with a very low frequency,
Figure 7) and one for correct k-mers. The peaks of these two dis-
tributions were consistently found to be separated by the first
local minimum of the empirical overall k-mer distribution and
this first local minimum was therefore taken as the threshold
(Figure 7). Most subsequently developed tools adopted similar
strategies, with some refining it further (for the nuances of the
global k-mer frequency threshold determination across tools, see
Supplementary Note S4). Most notable in this respect is Quake
[70]: here, k-mer frequencies are weighted by quality values (pro
ducing ‘q-mers’) to more clearly separate the empirical distribu
tion maxima. In addition, a third distribution accommodates for
the heavy tail of high multiplicity k-mers from repeats in the
queried sequence (Figure 7). Quake projects these repeat k-mers
into the distribution for correct g-mers and then uses a max
imum likelihood fit of its full mixture model to determine a g-
mer frequency threshold (Supplementary Note S4).

A major caveat of the approaches relying on separable k-mer
distributions is that they are only applicable when coverage is uni-
formly distributed over the queried sequence. Therefore, the here
mentioned error correction tools (and any tool with a global k-mer
trust threshold; Table 3) are not applicable to data sets with inher-
ently variant coverages, such as in metagenomics and transcrip-
tomics, or with strongly biased coverages (e.g. owing to the GC bias
of the platforms used or owing to bias-prone whole genome ampli-
fication of samples, as in single cell sequencing). To correct such

() weighted de Bruijn graph GCC
T

Figure 8. Example of a weighted de Bruijn graph from the example read set. The read set is augmented to include reads that show variation compared to the example
read set in the earlier figures: while the Ts (red and orange) could be substitution errors and the G (purple) could be an insertion error, all three could also be reads cov-
ering alternative alleles of the same sequence locus or slightly different repeats at other sequence loci. The new reads create graph structures that are commonly
removed in graph pruning (and thus correction) steps: (i) the orange T creates a bulge, a cycle in the graph that can not be traversed by a single path, as edges of the
cycle go in opposing directions (e.g. edges ACC and TCC both ending at node CC); (ii) the red T creates a tip, a short dead end of the graph; (iii) the purple G creates a
whirl, a cycle in the graph with a possible path going around the whole cycle (i.e. all edges go in the same direction). A repeat graph would have small (and assumingly
erroneous) whirls, bulges and tips removed and repeats collapsed, but care must be taken to not remove genuine variation. A colour version of this figure is available at

BIB online: http://bib.oxfordjournals.org.
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CGTAGCGTGA
GTAGAGTGAC
GTAGCGAGAC

TAGCGTGACC
TAGAGTGACGC
AGCGTGACCC
CGGGACCGC-G
CGTGACCCC-G
GTGACCCCCG
TGACCGC-GTCC
GACCCC-GGCC
ACCGC-GTCCG
ACCCC-GGC-GG
CCGC-GTCCGG
CC-GGCCGGTA
GC-GTCCGGTA
C-GGCCGGTAC
GTCCGGAACT
CCGGTACTAT
CGGTACTAGC

Figure 9. Example of a MSA of a read set, demonstrating consistent mismatches
(green nucleotides) in comparison to isolated or low-frequency mismatches and
indels (red nucleotides and dashes). The consistency of mismatches can be
tested through their linkage within reads (four in this example) and are called
DNPs in the first tool that used such information, MisEd [86, 87]. However, genu-
ine polymorphisms can only be told from sequencing errors if multiple of
the linked variant sites are within the range covered by the average read
(pair). A colour version of this figure is available at BIB online: http://
bib.oxfordjournals.org.

data sets, the software presented in the section ‘Removing the uni-
formity of coverage assumption’ can be considered.

Optimal k-mer length

Software that uses k-mer frequencies has to choose a specific
k-mer length (e.g. three in Figures 3, 4 and 8). The trade-off in-
herent to this k-mer length choice—an equally important ques-
tion for de Bruijn graph (Figure 8) assemblers—was first
discussed in detail in the paper describing Quake [70]: ‘Smaller
values of k provide greater discriminative power for identifying
the location of errors in the reads and allow the algorithm to
run faster. However, k cannot be so small that there is a high
probability that one k-mer in the genome would be similar to
another k-mer in the genome after a single nucleotide substitu-
tion because these occurrences confound error detection.’, i.e.
each k-mer has to be long enough to be unique in the queried
sequence (assuming that every k-mer is equally likely to occur
at any position throughout that sequence), but if a tool can only
detect one error per k-mer—the default setting for most tools,
as they use a Hamming distance of one between k-mers—a lon-
ger k-mer means a lower error resolution. To determine the
length, usually the user is asked to provide a k-mer length
(sometimes with some guidance as by the ‘sga stats’ functional-
ity of SGA; [44]) or the software provides a default value that
was found to work well in practice (Table 3). In contrast, the au-
thors of Quake analysed their above statement of the trade-off
more systematically and recommend the following for setting
the k-mer length: ‘[T]he probability that a randomly selected
k-mer k from the space of (4"k)/2 [...] possible k-mers occurs in
a random sequence of nucleotides the size of the sequenced
genome G, is ~0.01’. Based on this requirement, they give an ap-
proximation of kalog 4(200*G). This translated into recom-
mended k-mer lengths of 15 for the ~5Mb E. coli genome and 19
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for the ~3Gb human genome. However, longer k-mers are use-
ful for a better resolution of repeats in error correction and are
now becoming manageable: longer and more accurate reads on
average give more correct k-mers per individual read; deeper
sequencing gives high enough k-mer coverage for correction de-
cisions on longer k-mers (otherwise a problem, especially for as-
sembly contiguity [71]); and newer implementations and
hardware enable the handling of the resulting k-mer spectra.

Further examples of an explicitly motivated k-mer length
choice come from the realm of suffix tries and arrays (Figures 5
and 6), where the data structures natively allow for the inspec-
tion of several different values of k. (Hybrid) SHREC [46, 47] only
inspects node weights at intermediate levels of the tree, corres-
ponding to intermediate k-mer lengths, where tree height is
determined by the read length. HiTEC [49] determines the val-
ues of k that minimize the probability of false-negative correc-
tions and those that minimize the probability of false-positive
corrections. It then uses multiple k-mer lengths around those
two optima. Fiona [52] also adopts this approach and further
adapts it to account for varying read lengths. Altogether, these
approaches automatically determine the k-mer lengths they
use and are less prone to k-mer length effects as they use mul-
tiple k-mer lengths within a correction run (details in
Supplementary Note S3).

Finally, a recent tool originally aimed at k-mer length deter-
mination for assembly with de Bruijn graphs, called KmerGenie
[72], has the potential to also automate the determination of op-
timal k-mer lengths for k-mer-based error correction. It uses an
extension of Quake’s k-mer distribution model that it fits to the
empirical k-mer count distribution for different values of k sep-
arately. This model fit estimates the number of distinct correct
k-mers for each k (i.e. k-mers of that length that would be in a
correct reference) and the k with the largest number of correct
k-mers is considered optimal. To make the k-mer counting for
the empirical k-mer distributions computationally tractable for
multiple values of k (regarding both runtime and memory con-
sumption), KmerGenie subsamples the k-mers by a factor ¢ (the
authors used ¢ = 1000).

Removing the uniformity of coverage assumption

As discussed above, the k-mer approaches mostly rely on a glo-
bal threshold for the decision if a k-mer count is to be trusted
and such a threshold makes a very strong assumption, namely,
that coverage is uniform across the whole queried sequence.
Thus, this method will mis-classify k-mers from low coverage
regions that do exist in the query as untrusted, no matter how
sophisticated the threshold determination is, and will equally
fail on data sets with inherently variant coverages. The auto-
matic determination of a global threshold from the empirical
k-mer frequency distribution is even discouraged for uneven
coverage for Quake [70], and will usually fail: no discernible
histogram peaks of correct and erroneous k-mers (Figure 7) can
be found in data with non-uniform coverage.

For this reason, some newer k-mer-based tools avoid the use
of such a global threshold, and instead use one of the following
strategies:

i. Reptile [58], Hammer [59], BayesHammer [60] and a tool by
Sleep et al. [73] implicitly group reads by their Hamming dis-
tance, by creating a Hamming graph of k-mers (for
Hamming distance and Hamming graph, see also the sec-
tion ‘Substitutions only versus substitutions plus indels:
Hamming versus Levenshtein distance’ and Figure 4D). In
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the Hamming graph, they examine connected components
of very similar k-mers, calling them a k-mer neighbour-
hood. Based on the relative frequencies of k-mers within
such a Hamming neighbourhood, Hammer chooses a con-
sensus k-mer for each connected component, thus taking
one local decision per Hamming neighbourhood and out-
puts corrected k-mers. BayesHammer subdivides Hamming
neighbourhoods further by k-means clustering, with the
subclusters’ probabilities approximated by the contained
reads’ sequencing quality scores. This subclustering distin-
guishes very similar k-mers that initially share a neighbour-
hood but originate from distinct sequence locations (e.g.
repeats), but should not create new subclusters from erro-
neous k-mers. It then creates a k-mer spectrum from high-
quality clusters, expands it based on high-quality reads and
does a read-based correction. Reptile also focuses on the
read as a unit in its correction approach. It inspects several
k-mers of each read in an order specified by what they
name a ‘tiling’, searches for higher-frequency k-mers
within the respective Hamming neighbourhoods and finally
corrects a read to an alternative tiling (a set of alternative
k-mers) if it has a substantially higher coverage than the re-
spective set of k-mers of the original read. Thus, this correc-
tion decision integrates more contextual information than
Hammer and does, at least locally, rely on a more uniform
coverage.

Blue [64] uses a k-mer spectrum (which initially uses a very
low global exclusion threshold), but creates its k-mer trust
threshold for correction for each read separately. In this
way, it adapts it to the local coverage and allows for k-mer
coverage variations between reads.

Trowel [74] does not use a coverage threshold for its k-mer
spectrum at all. Instead, it initially includes only k-mers
whose bases all have quality values within the top 8% of
the data set in at least one read and then iteratively ex-
pands the spectrum by ‘boosting’ the quality values of cor-
rected bases to the maximum quality value known for the
correcting k-mer. In this way, no coverage assumptions are
made at all.

EDAR [75], like BayesHammer, Reptile and Blue, also
focuses on one read at a time in its correction ap-
proach. It classifies regions of each read, thereby cir-
cumventing a global threshold. Using the variable
bandwidth mean-shift method, it identifies contiguous
stretches along a read with consistent k-mer coverage
and identifies breakpoints where the coverage rapidly
changes to a different consistent level (with the unique
feature of a GC-bias correction of the k-mer frequen-
cies). Then, it classifies read regions—instead of k-mers
or full reads—as untrusted (very low coverage) or as
trusted and further subdivides the trusted regions
into unique and repeat regions (very high coverage).
This is done by inherently local clustering decisions
(Figure 1 of [75]).

Not looking at full k-mers at a time, but instead only at one
base column of a pileup, also avoids a global threshold alto-
gether: decisions can be taken on relative base frequencies
at individual positions with no assumptions about global
coverage uniformity. QuorUM [76] does just this: it uses a
refined voting scheme relying on the base frequencies
at each position. ALLPATHS-LG [77] and fermi [S5] fur-
ther weight these frequencies with the associated quality
scores from the original reads, adapting Quake’s
‘q-mer’ idea to the individual pileup position (compare with

the section ‘Global frequency thresholds for trusting
k-mers’).

What requires a special focus on single positions instead of
k-mers in the k-mer tools comes more natural to the MSA
approaches: a global threshold can easily be avoided, as a deci-
sion can be taken directly on relative frequencies at each base
column of the alignment. However, SGA’s [44] MSA module
nevertheless uses a global threshold for the sake of simplicity,
but all the other MSA tools conduct some sort of column-based
majority voting or statistical testing, effectively taking genu-
inely local decisions.

Finally, the two hidden Markov model (HMM)-based
error correction approaches, SEECER [78] and PREMIER [79],
also take inherently local decisions with their emission proba-
bilities derived from MSA alignment positions or k-mers,
respectively.

Altogether, the software described here is especially inter-
esting for sequencing data sets with non-uniform coverage,
such as in transcriptomics, metagenomics and single cell gen-
omics. But however important it may be to avoid the assump-
tion of uniform coverage, taking local decisions (often at one
query position at a time) will usually ignore contextual informa-
tion. We have already glimpsed at the use of such context infor-
mation over the range of a whole read in BayesHammer, Reptile
and EDAR in this section. But a more exhaustive account of how
tools use a longer context range around each inspected position
for their correction decisions is given in the section ‘Repeat and
haplotype models’.

Denoising with statistical error models

Whereas most tools have no error model at all, others accom-
modate for some of the error biases we have reviewed to more
precisely distinguish between sequencing errors and genuine
sequence variation at low frequencies. The simplest error mod-
els use a global (i.e. uniform) error probability that is empirically
known for the respective sequencing platform or take the as-
signed PHRED quality score as a substitute for a local error prob-
ability (e.g. [60, 63, 74]), as they have been proven to generally
correlate with sequencing errors for most platforms. However,
as we have reviewed, error frequencies are known to be biased
by platform specifics (different base confusion probabilities and
signal decay throughout a read), local sequence content (GC
content or sequence motifs, such as homopolymer stretches
and inverted repeats) and preparation steps that precede the
sequencing protocol (e.g. pre-amplification).

Therefore, an approach used by several tools
(Supplementary Note S5) is to employ an empirically deter
mined base confusion matrix that gives the probability of every
possible base substitution separately instead of assuming a uni
form substitution probability (i.e. a matrix with 4 by 4 substitu
tion probabilities). Here, a general known matrix for the respect
ive platform can be used, but most tools learn the matrix from
the data and incorporate further features (Supplementary Note
S5). An analogous concept for 454 pyrosequencing, where homo
polymer length miscalls are the most prominent error type, is to
use a distribution of light intensities per homopolymer length
that has been determined empirically from sequencing of
known sequences, e.g. by Balzer et al. [18].

Several tools also use other specific approaches to estimate
errors: AutoEdit [80] combines information from the alignment of
a read with three measures of the peak resolution of its original
capillary sequencing flowgram, to determine the probability if a


``
''
) 
datasets
,
S
``
''
in order 
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbv029/-/DC1
,
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbv029/-/DC1
http://bib.oxfordjournals.org/lookup/suppl/doi:10.1093/bib/bbv029/-/DC1

base call was correct. RECOUNT [81] calculates error probabilities
for each position in each read by taking the quality value average
of that positions alignment column. And pacbio_gc [28], aimed at
CCS with the PacBio RS platform, aggregates the number of read-
ing passes over a read (a special feature of CCS) and the mean
quality value into an error probability.

Finally, three tools use more refined error models that are
worth a more detailed look:

i. The authors of SysCall [82] first analysed error occurrences
and identified a new type of systematic error when using
Mlumina platforms. These errors show: (a) a drop in cover-
age compared with surrounding bases, (b) a very specific
base confusion matrix at the error site and a bias in the two
bases directly upstream and (c) a strong strand bias. Based
on these characteristics, they trained a logistic regression
classifier to distinguish genuine heterozygosity from such
errors at potential heterozygosity sites, using reads from
known sequences as training data.

ii. PREMIER [79] fits a HMM of k-mer transition probabilities
across all reads in the data. This probability, for a certain
position within a read, to transition to the next position,
given a certain emission k-mer, is derived from four values:
(a) the position within the read, (b) the probability of a sub-
stitution error at this position given the quality value at
that position, (c) a general base confusion matrix and (d)
the count of the possible emission k-mer in the data.
However, the authors do not provide any benchmarking re-
garding runtimes, suggesting that the approach might not
scale to larger sequencing data sets.

iii. Fiona [52] employs a hierarchical statistical model of the
sequencing process for its decision whether a position is er-
roneous. Using the assumptions of a uniform coverage and
a uniform error probability, it determines the log odds ratio
of an error given the observed k-mer coverage of a specific
possible error k-mer and the general log odds ratio of an
error in any k-mer. If the log odds ratio of an error in the
specific k-mer is higher than the log odds ratio of an error in
a general k-mer, the k-mer is considered erroneous (more
details of the model in Supplementary Note S6). As the au
thors note, this threshold can easily be varied, if more ap
propriate thresholds are found or a different sensitivity of
error correction is required. But not only this aspect of the
model can easily be adjusted, making the model an attract
ive starting point for the development of more flexible error
correction tools in the future.

In summary, many error correction tools do not model errors
statistically—usually for the sake of simplicity. At the same
time, the few tools presented here that do incorporate some
sort of error model show considerable diversity in their
approaches, with some form of standard or learned base confu-
sion matrix at the heart of most models. Especially in platforms
like Illumina’s, where errors are well characterized, read error
correction could benefit from such more specific approaches.

Repeat and haplotype models

The central issue in sequencing error correction is to distinguish
errors from genuine variation, no matter if such variation is
owing to repeats within a genome, or different alleles or haplo-
types within a population or a single cell. Most tools are based
on the assumptions that errors are rare and random and that
coverage is uniform, while others ignore reads or k-mers from
repetitive regions in their correction procedures, e.g. Fiona [52].
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We describe four approaches that model the expected footprint
of genuine variation to make decisions clearer: (i) ECHO models
a diploid genome; (ii) EULER-USR provides a repeat model by
using the repeat graph; (iii) MisEd, SGA, Acacia and SEECER all
determine whether mismatches between a read and the con-
sensus are linked within reads to disentangle inexact repeats;
(iv) ShoRAH assigns reads to an arbitrary number of haplotypes
using a Gibbs sampler.

i. ECHO [62] maximizes an a posteriori estimate of each pos-
sible genotype at a particular read position, given a prior
probability that this site is heterozygous (versus being
homozygous) and given the base frequencies from a MSA
containing the read position. For a haploid genome, this
probability can simply be set to 0. Therefore, this model ef-
fectively allows for one or two haplotypes at each inspected
site.

ii. EULER-USR [83] uses its assembly data structure, the repeat
graph, to make its error correction repeat-aware. First, the
read prefixes are error corrected using a simple k-mer spec-
trum approach, as they are deemed the most accurate part
of reads (error rates increase with read length in most plat-
forms, see the section ‘Sequencing Platforms and their
Errors’). Then, an A-Bruijn graph is constructed from the
corrected read prefixes: this is a generalized version of
the de Bruijn graph (Figure 8), where all edges connecting
the same vertices are summarized into one edge with a
weight reflecting the number of original edges covering it
[84]. Inconsistent graph structures are removed (i.e. bulges,
tips and whirls, Figure 8), which effectively amounts to the
elimination of sequencing errors from the graph and the
only remaining tangles in the simplified graph should be
genuine repeats (or haplotypes), thereby giving the repeat
graph [84]. The less accurate read ends can then be cor-
rected by mapping the whole read into this read prefix re-
peat graph and correcting it to the consensus. A similar
approach is taken by the recent PacBio hybrid error correc-
tor LoRDEC [85]: here the long error-prone PacBio reads are
corrected by threading them through a de Bruijn graph con-
structed from more accurate short reads from a different
platform (see also the section ‘Platform specific error cor-
rection’). This graph-based error correction approach and
its graph abstraction—designed with de novo assembly in
mind and not population resequencing—models repeats (or
heterozygosity) within a genome implicitly but will most
likely err on the side of removing low-coverage
polymorphisms.

iii. MisEd [86] was the first tool to capitalize on the fact that,
given long enough reads, genuine discrepancies stemming
from (inexact) repeats will consistently be linked across
several reads, while errors (assumed to occur rarely and at
random) should be isolated on single or at least fewer reads
(Figure 9). To this end, they used their previously developed
concept of defined nucleotide positions (DNPs; [87]):
Columns with a deviation from the (MSA) consensus are
considered candidates, and pairs of candidates are tested
for significant co-occurrence within reads, i.e. they approxi-
mate the expected amount of coincidences between two
sites, given the number of reads covering both sites, and
model the respective quality values at the sites as Poisson
distributed. From this, they compute the probability of
observing at least the seen amount of reads that share both
deviations from the consensus and regard the two sites as
DNPs if this probability exceeds a pre-defined threshold.
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MisEd does a DNP analysis of regions with a higher than ex-
pected amount of mismatches relative to the MSA consen-
sus and the subsequent error correction, done by
consensus calling over every column of the MSA, skips the
identified DNPs as genuine repeats. MisEd thus uses an ex-
plicit repeat model that protects all the repeat (or haplo-
type) variation it can identify from false-positive error
corrections. The MSA module of the SGA assembler [44]
uses a similar, but simpler, check before correction: it iden-
tifies conflicting columns in the MSA as columns where at
least two different bases surpass a given minimum cover-
age threshold. It then excludes reads from the original
alignment before performing the error correction, if they
consistently differ from the consensus at all conflict col-
umns they cover and thus effectively incorporates a sim-
pler repeat model than MisEd. Acacia [88], a tool developed
for 454 pyrosequencing data (section ‘Platform specific error
correction’), also uses linkage between mismatches as in
SGA. However, it clusters and aligns run-length encoded
reads (i.e. collapsing all their homopolymer stretches) and
then identifies alignment columns with significant differ-
ences in homopolymer length between reads (section
‘Platform specific error correction’). Reads that share several
of such significant homopolymer length differences across
an alignment are separated into a new cluster that is fed
back into the original process. SEECER [78], a tool mainly
aimed at RNAseq data, works along similar lines: it refines
MSA contigs by separating different inexact repeats (or
haplotypes) within the initial contig. Columns with mis-
matches to the MSA consensus are identified and clustered
by the set of reads sharing the respective mismatch (spec-
tral clustering and spectral relaxation of k-means). With this
approach, consistent and homogeneous subsets of reads
can be separated for further analyses and the clustering
thus implies a model of repeats and possibly haplotypes
(more SEECER details in Supplementary Note S7).

iv. ShoRAH [41, 42] aims at heterogeneous samples containing
many haplotypes of the same species, like viral communities
of quasispecies. It inspects overlapping windows of defined
length (chosen so that each position is covered by three dis-
tinct windows) in a mapping-derived MSA and then recon-
structs their (local) haplotypes. To this end, the reads in that
window are clustered into haplotypes using a Gibbs sampler
to iteratively draw from the posterior distribution of a
Dirichlet process mixture (DPM). The DPM assumes a prior
probability of assigning a read either to an existing haplotype
or to a newly instantiated one. Around this prior, it builds a
haplotype model, effectively generating a multivariate pos-
terior distribution over: (a) the read assignments to haplo-
types, (b) the sequence of the haplotypes, (c) the per-position
probability of a correct base call (i.e. one minus the probabil-
ity that a sequencing error occurs at any random position)
and (d) the per-position probability of a haplotype being iden-
tical to the reference at that position (i.e. one minus the prob-
ability that a mutation occurred between reference and
haplotype at any position). This iterative sampling eventually
leads to a stable population of clusters that represent haplo-
types, and correction is then done by a majority vote over the
haplotype reconstructions from the three different window
sets that overlap each MSA position. Altogether, the cluster-
ing in ShoRAH explicitly models an arbitrary number of
haplotypes.

In summary, four approaches to model genuine variation in
similar sequences exist in error correction tools: (i) The model

of a diploid genome in ECHO. However, this is neither applicable
to (mixtures of) populations nor if multiple inexact repeats ap-
pear within a genome. (ii) The model of the repeat graph in
EULER-USR (and LoRDEC). This can accommodate an arbitrary
number of inexact repeats and/or haplotypes, but is aimed at de
novo assembly and will thus probably underestimate diversity,
especially in the face of non-uniform coverage of different
haplotypes or repeat copies. (iii) The linkage of mismatches (to
a consensus) within a read is examined by MisEd, SGA, Acacia
and SEECER, with an approach that implicitly models inexact
repeats. This will also work for haplotypes when several of the
respective polymorphisms distinguishing haplotypes lie (well)
within the distance covered by a read (or a read pair in paired-
end sequencing), but will fail to protect isolated polymorphisms
(e.g. in similar long repeats or closely related strains in a popu-
lation) from false-positive correction. (iv) The most flexible
haplotype model that can accommodate an arbitrary number of
haplotypes is implemented in ShoRAH. It could thus be well
suited not only for error correction in viral quasispecies com-
munity sequencing but also in metagenomic sequencing data.

Platform-specific error correction

454 pyrosequencing

Some approaches consider the Levenshtein distance and thus
include the correction of the prevalent indel errors of 454 pyro-
sequencing data. However, some tools have even been designed
especially for this type of data, mostly for the smaller data sets
from amplicon sequencing. The first tool in this field, PyroNoise
[89], introduced the idea of flowgram clustering. Flowgrams re-
cord the light intensities from the consecutive flushes of the
four different nucleotides across the sequencing plate, and the
total amount of consecutive integrations of the respective nu-
cleotide (i.e. the homopolymer length) can be determined by
rounding the light intensities to integers. However, this process
is error prone and Quince et al. [89] thus went back to the flow-
grams for their error correction. They use a mixture model of
light intensities (of a single flush) for different homopolymer
lengths with probability distributions learned from sequencing
of known sequences. On this, they apply an expectation-
maximization algorithm to maximize the likelihood that the
observed set of flowgrams (and their frequencies) was gener-
ated from an assumed set of true sequences (with one cluster
per assumed true sequence). Eventually, the most abundant
read in a cluster is taken as the representative for all the con-
tained reads. DeNoiser [90] increased the speed of this approach
by using a heuristic for the construction of initial clusters: it first
filters out reads that are prefixes of other reads and then uses
the identified read prefix clusters, ordered by their abundance,
as the starting point for a clustering. In contrast,
AmpliconNoise [91] made the approach more accurate by also
accounting for errors introduced in the PCR step of amplicon
production, using a learned base confusion matrix
(Supplementary Note S5).

Three other tools instead look at the reads after base calling:
Acacia [88], HECTOR [92] and KEC [93]. The first two each use
run-length encoding (RLE) on homopolymers. This idea of col-
lapsing homopolymer runs into a single nucleotide to allow
analysis of pyrosequencing data disregarding homopolymer
length errors, was first introduced in a version of the Celera as-
sembler [94]. Acacia [88] hashes RLE read prefixes (disregarding
the run-length of individual homopolymers at this point), thus
creating initial read clusters (reminiscent of DeNoiser’s pre-
clustering). The clusters are then refined by merging clusters
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whose consensuses have similar 6-mer spectra and by creating
new clusters from read sets whose run-lengths at homopolymer
sites differ significantly from the rest of the cluster. Eventually,
all reads are corrected towards the consensus of their cluster.
HECTOR [92] also uses the RLE, but instead of applying the clus-
tering approach to the RLE sequences, it applies the k-mer spec-
trum approach (a ‘k-hopo spectrum’), including the automatic
determination of a k-hopo coverage trust threshold from its em-
pirical distribution (Supplementary Note S4). KEC [93] also uses
a k-mer spectrum approach, but without a previous RLE encod
ing. Instead, it adopts the strategy of EDAR (compare the section
‘Removing the uniformity of coverage assumption’) that identi
fies erroneous read regions by clustering the k-mers of a read by
their frequency with the variable bandwidth mean-shift
method. But instead of just removing the identified erroneous
regions, as EDAR does, KEC corrects them, taking homopolymer
length errors into account.

PacBio

In the long reads from the PacBio platform, the very high overall
error rate is the major challenge. Currently, the two major strat-
egies to address this are to either use less error-prone short
reads from another platform with enough coverage to correct
the long PacBio reads (called the hybrid approach), or to exploit
the fact that errors seem to be unbiased in this platform and
can therefore all be corrected, given enough coverage.

The first approach was initially implemented in PBcR [95] as
a stand-alone tool and as a pipeline stage in the assembler AHA
[96], the latter developed in direct cooperation with the machine
vendor. In both approaches, the more accurate short reads from
another platform are mapped onto the long reads. AHA then
simply corrects the long reads towards the consensus of the re-
sulting short read mapping, whereas PBcR further optimizes the
alignments, creating a short read MSA that is then used for the
consensus calling. The tool LSC [97] improved the alignments in
this approach, by using the idea of RLE—or homopolymer com-
pression, as the authors call it—that had been used in 454 pyro-
sequencing error correction shortly before (compare with
Acacia and HECTOR in the section right above). Mapping RLE
short reads to RLE long reads disregards homopolymer length
errors and thus improves the mapping sensitivity.

A very recent tool, proovread [98], instead improves the plain
mapping approach: Firstly, it makes it more sensitive by using
alignment penalty values adapted to the error profile (separate
penalties for insertions, deletions, substitutions and gap elong-
ation). Secondly, it makes it scalable by parallelizing the pro-
cess. It looks at mappings of short reads onto individual long
reads and uses an iterative mapping and correction procedure
that gradually includes more reads and allows for mapping
with more mismatches in each round. Thirdly, it recognizes and
splits chimeric long reads.

ECTools [99], recently published via bioRxiv, pre-assembles
the more accurate short reads into unitigs using the Celera
Assembler. It then aligns the long reads against those unitigs,
optimizes this alignment by solving the longest increasing sub-
sequence problem and corrects towards the unitigs.

LoRDEC [85], another recent hybrid approach, also does a
pre-assembly and draws upon an existing strategy: the idea of
threading reads through a generalized and weighted de Bruijn
graph, first introduced as a k-mer approach solely on short
reads in EULER-USR [83]. Where EULER-USR used only the more
accurate prefixes of short reads to build the graph (section
‘Repeat and haplotype models’), LoRDEC uses only the short
reads from a different platform, as they are more accurate than
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the PacBio reads. And where EULER-USR then threads the full
short reads through the graph to correct them (including their
less accurate suffixes), LORDEC threads the long PacBio reads.

For the nonhybrid PacBio error correction approach, PBcR
was adapted to use the higher abundance shorter reads from a
PacBio RS sequencing run to provide the coverage for correcting
all reads, including the lower abundance longer reads from the
same run [26]. This approach was also implemented in the ven-
dors assembly pipeline, called HGAP at the time [100].

Oxford Nanopore

For this technology, only one tool has so far been described via
a bioRxiv publication: Nanocorr [101]. With the error rates simi-
lar to earlier stages of PacBio development, it adopts a similar
hybrid error correction approach. Here, BLAST is used to align
short MiSeq Illumina reads to the long Oxford Nanopore reads.
This alignment is then optimized similarly to the ECTools strat-
egy (see right above; [99]) and finally, a consensus of the short
read alignment is called as the corrected long read [101].

Conclusions

The choice of an error correction tool depends strongly on the
type of analysis one wants to perform and on the sequencing
platform that generated the data, as assumptions of a particular
approach might not hold for the data set at hand. In general, error
correction has also been proven beneficial for single nucleotide
variant (SNV) calling [70] and haplotype reconstruction [102], but
the tools are mostly used before genome assembly to reduce the
complexity of alignments and the size of intermediate data struc-
tures. Most end-users just rely on the built-in error correction ap-
proach of their assembler of choice, as there are almost no
systematic and independent benchmarks of error correction tools
that could justify a different choice (notable exceptions are [36,
103]). We therefore believe that context-specific benchmarks are
needed for many different data types and applications, and pro-
pose the following six aspects for choosing tools to benchmark
for a particular set-up (Tables 2 and 3 and Supplementary Table
S2): First and most foremost, the tool needs to be freely available,
as are 52 of the 60 here presented tools (Table 4 and
Supplementary Table S2). Second, whether the tool needs to ac
count for substitution errors only, or should also consider indel
errors, depends on the sequencing platform that generated the
data. For Illumina and Complete Genomics data, indel errors are
not as relevant as they are for the 454, Ion Torrent and PacBio plat
forms. Third, if coverage is expected to vary over the queried se
quence(s), as in transcriptomics, metagenomics, heterogeneous
cell samples or pre-amplified libraries (e.g. amplicon or single cell
sequencing), then most k-mer tools (and the associated auto
matic k-mer trust threshold) are ill-suited—except e.g. the newer
tools using a Hamming graph and Hamming neighbourhoods. In
contrast, most MSA tools will be applicable to such data (section
‘Removing the uniformity of coverage assumption’). Fourth, if
your analysis is rather sensitive to single nucleotide errors (e.g.
when calling SNVs), you might want to use a tool with a more
sophisticated (and/or more specific) error model (e.g. tools in the
section ‘Denoising with statistical error models’, Supplementary
Notes S5 and S6), although this will usually come at a computa
tional cost. Fifth, if your data set does not come from a homoge
neous haploid sample, one of the tools with a repeat and/or haplo
type model will probably improve error correction (e.g. tools in
the section ‘Repeat and haplotype models’), but will also require
more computational resources. Sixth, how important scalability
is, mostly depends on the size of your data set and will also influ
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ence which type of tool, regarding the used data structure, can be
used. However, for all major approaches—the MSA approach, the
basic k-mer approach and the read suffix approach—the most re
cent tools use efficient implementations and should all scale to
large data sets. Thus, in the end, the choice of a tool will rather de
pend on the requirements for error correction in each instance.

In general, only few tools take into account (some of) the
here presented knowledge about errors, their biases, coverage
biases and their dependency on the particular sequencing plat-
form. But more specific approaches would improve the accuracy
of error correction and thereby improve downstream analyses:
read mapping and de novo assembly would become more tract-
able computationally and would give better results, variant calls
derived from such alignments would be more accurate.
However, higher specificity will potentially limit the scope of a
tool to a certain platform or a type of data set. Instead, bearing
the six aspects that we just discussed in mind, we believe that fu-
ture efforts should aim at a whole error correction toolkit, that
should be freely available for any use and open-source to encour-
age distributed development, as is e.g. being developed for vari-
ant discovery by the Genome Analysis Toolkit (GATK; [114]) or for
sequencing data analysis in general by SeqAn [115], a library kit
that the error corrector Fiona is built upon. Depending on the
data set at hand, such a toolkit should optimally be able to op-
tionally consider indels, to give a choice whether to assume an
even coverage to reduce computational load, or to avoid this as-
sumption, to have platform-specific error models to choose from
(or even learn parameters of the model from the data set), to
allow using prior information on the expected haplotype and re-
peat composition of the queried sequence(s) if available or be
able to infer haplotypes and repeats from the data itself and to be
flexible in the use of one of the three major approaches, depend-
ing on which will be most efficient computationally for the com-
bination of requirements of a particular data set. This suggests a
modular approach to error correction, similar to the above men-
tioned GATK and SegAn and as software tools in other fields (e.g.
variant discovery) also employ error models, individual modules
of such a toolkit will be useful beyond stand-alone error correc-
tors and assembly pipelines.

We believe, that the overview and comparison of error cor-
rection approaches and tools given here will inform both users
and developers and will enable the community: to pursue the
proposed modular development of error correction software in
the future, to use such a modular approach to flexibly combine
ideas from different error correction approaches (as has been
recently begun for PacBio, Oxford Nanopore and 454 error cor-
rection), to use more of the knowledge about errors and their
biases in development in this field and beyond (e.g. for SNV call-
ing) and to create meaningful comparative benchmarks of the
here listed tools on comprehensive and representative data sets
for many different data types and analysis set-ups.

Key Points

* Each sequencing platform has a distinct error profile
that relates to the respective sequencing technology.
This includes substantial undercoverage of extreme
GC contents in all platforms except the PacBio, with
Ion Torrent showing the strongest bias. Regarding sin-
gle nucleotide errors, Illumina and Complete
Genomics show more substitution errors than indel
errors, for all other platforms it is the other way
around. Overall, the short Illumina reads have the

lowest error rates, while the long single molecule
sequencing reads of PacBio and Oxford Nanopore have
the highest error rates. However, PacBio errors appear
to be genuinely random, while especially Illumina
errors show specific biases, e.g. owing to certain se-
quence motifs.

The earliest approach to explicitly address error cor-
rection in raw read data, with the intention of facilitat-
ing a de novo assembly of them, is based on the k-mer
spectrum. The idea is to create a list of trusted
k-length sequences (k-mers) from the read data and to
correct all untrusted k-mers towards this spectrum,
where trusting a k-mer usually requires a certain min-
imum coverage. The most important parameters that
need to be determined for this method are the k-mer
length and the coverage threshold. For both, there is
no choice that works best in all instances and newer
tools try to completely avoid a global coverage thresh-
old to be applicable to data with non-uniform coverage
across the queried sequence. Major performance im-
provements have recently been achieved by using
bloom filters to store the k-mer spectrum and related
information.

Another early approach to error correction that is
closely connected to de novo assembly, was to generate
MSAs of all reads and to correct to a consensus.
However, the initial all-versus-all alignment approach
became intractable with the read numbers of high
throughput next generation sequencing and was only
later adapted using intelligent indexes of possible read
overlaps to seed the alignments (e.g. using a k-mer
index or read clustering techniques). In general, MSA-
based methods are usually well-suited for the reso-
lution of indel errors, do not require a global frequency
threshold or the choice of a k-mer length and can eas-
ily integrate read context information in the correction
decision (e.g. repeat disambiguation or haplotype link-
age). Recently, they have become more popular with
the advent of single molecule sequencing technologies
that produce fewer but longer reads.

The third major approach is to use a suffix array (or
derivatives thereof) for error correction. The sorted list
of all possible suffixes of all reads in a data set can not
only be used to seed a MSA, but can also itself be
queried efficiently to provide coverage values for
k-mers of any possible length. In effect this yields a
more flexible version of the k-mer spectrum approach
and recent implementations using the BWT and the
FM index have made this approach tractable for high
throughput data sets. It is noteworthy, that the re-
spective tools were among the first to employ statis-
tical models of errors in the sequencing process and to
automatically choose and check multiple k-mer
lengths for error decisions.

In the past years, error and repeat models have
evolved significantly. Whereas earlier tools only
worked with uniform error rates, newer tools often
use confusion matrices for substitution errors, that
can be conditional on quality scores and read position,
and some employ separate insertion and deletion
rates. Such values are either known for the platform
or can be approximated from the respective data set
under consideration. Also, tools have begun to
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explicitly model the sequencing process in a probabil-
istic manner. In parallel, models have tried to account
for repeats or haplotypes in the queried sequence(s):
by using particular data structures; by looking at vari-
ation linkage within reads; or by estimating haplo-
types probabilistically.

Only two studies have so far provided benchmarks of
a subset of the here presented tools. As a result, most
use cases of an error corrector do not allow an in-
formed tool choice without performing a specific
benchmark and especially end-users of assemblers
mostly rely on the error corrector built into their soft-
ware of choice. The high-throughput sequencing com-
munity would greatly benefit from specific compara-
tive benchmarks on comprehensive data sets. These
should represent different data types and use cases.
The methodological overview provided here can in-
form the choice of tools to benchmark for a particular
set-up.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/. This includes detailed tables, supplementary
notes and vector graphic versions of all figures in this
publication.
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