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Stroke is the fifth cause of death and the leading cause of 
disability affecting ≈800 000 people and costing $34.3 

billion annually in the United States.1 In spite of the severity 
and prevalence of stroke, the therapeutic options are limited 
to tPA (tissue-type plasminogen activator) and endovascular 
interventions.1 Moreover, the therapeutic window for tPA ad-
ministration is limited to 4.5 hours from onset, and the criteria 
for mechanical thrombectomy are stringent with high risk of 
hemorrhagic transformation.2–6

Visual impairment is a prevalent stroke consequence that 
negatively affects rehabilitation, functional recovery, and 
quality of life.7,8 Visual impairments occur in 92% of stroke 
patients7; and 20.5% of stroke patients display persistence 
visual impairment at 90 days.9 Furthermore, patients with mo-
nocular vision loss have a higher risk of concurrent ischemic 
stroke and vice versa.9–14 Retinal ischemia is the major cause 

of visual impairment in ≈16% of the stroke patients and shares 
a pathology with other common ocular vascular diseases, such 
as diabetic retinopathy, glaucoma, retinal vein occlusion, and 
central retinal artery occlusion.15–20 Despite many similarities 
between retinal ischemia and cerebral ischemia, the under-
lying mechanisms between them remain unclear which may 
contribute to limited effective treatments for retinal ischemia 
and stroke as a whole.21,22 Therefore, there is a need for a bet-
ter understanding of stroke pathology that incorporates retinal 
ischemia.

The multifaceted important functions of mitochondria in 
cell survival and death have been implicated in stroke and in 
various neurological diseases, for example, fragile x-associ-
ated tremor/ataxia syndrome, Alzheimer disease, Parkinson 
disease, and Huntington disease,23–28 and retinal ischemia 
and optic neuropathy.29–32 During cerebral/retinal ischemia, 
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mitochondria, the powerhouse of the cells, cannot maintain 
energy production among other metabolic activities, trigger-
ing a cascade of cell death events.33–37 Probing the role of mi-
tochondrial dysfunction in retinal ischemia pathology may 
provide mechanistic and translational insights into developing 
more effective treatments for stroke and other disorders with 
retinal ischemia pathology. Indeed, mitochondrial transfer 
from either astrocytes or stem cells to ischemic neurons is 
deemed a novel stroke therapy.38,39

Here, we used a combination of in vitro cell culture and in 
vivo rat models to examine the role of mitochondria dysfunc-
tion in stroke-related retinal ischemia and whether stem cells 
could repair the mitochondria and rescue the ischemic ret-
inal cells. Our results demonstrated that both middle cerebral 
artery occlusion (MCAO) and oxygen-glucose deprivation 
(OGD) stroke models produced consistent retinal ischemia 
accompanied by massive alterations in retinal cells’ mito-
chondrial respiration, network morphology, and dynamics and 
treatment, which were reversed by stem cell treatment.

Methods

Ethics Statement
All experiments were conducted in accordance with the National 
Institute of Health Guide and Use of Laboratory Animals and were 
approved by the Institutional Animal Care and Use Committee of the 
University of South Florida, Morsani College of Medicine. The article 
adheres to the Transparency and Openness Promotion Guidelines, 
and all data supporting the findings of this study are available from 
the corresponding authors on reasonable request.

MCAO Model
Adult male Sprague-Dawley rats (≈250 g) were subjected to transient 
intraluminal MCAO procedure (n=24) or sham surgery (n=6); see in 
the online-only Data Supplement.

Laser Doppler Blood Flow Measurement
Brain and eye blood flow measurements were measured using laser 
Doppler (Perimed, Periflux System 5000) at baseline, during MCAO, 
and 5 minutes after reperfusion; see in the online-only Data Supplement.

Mesenchymal Stem Cells Transplantation
At day 1 post-MCAO, animals were anesthetized and transplanted 
intravenously via the jugular vein with mesenchymal stem cells 
(MSCs; 4×106 cells/500 µL of sterile PBS) or with PBS only; see in 
the online-only Data Supplement.

Optic Nerve Measurement and 
Immunohistochemistry
At days 3 and 14 post-MCAO, the animals were euthanized by CO

2
 

and perfused with 0.9% saline. The animals’ eyes and optic nerves 
were quickly harvested and fixed. Optic nerve images were obtained 
on a bright field Olympus microscope. Optic nerve widths were meas-
ured using the CellSens program. The retinas were stained with NeuN 
(neuronal nuclei) antibody (1:500; ab104225, Abcam), a marker for 
neuronal cells including the ganglion cells; see in the online-only 
Data Supplement.

Retinal Pigmented Epithelium 
Cells and MSC Culture
Retinal pigmented epithelium (RPE, CRL-4000;ATCC) cells and MSCs 
(T4835;abm) were cultured according to manufactures’ protocols and 

were passaged at 90% confluency. All cells for experiments were from 
passage 7 to10; see in the online-only Data Supplement.

OGD and Coculture
The OGD was slightly modified from previously described method.40 
After OGD, the RPE cells were cocultured with MSCs by placing 
the inserts into the wells of the 6-well plate for 24 hours; see in the 
online-only Data Supplement.

Mitochondrial Respiration Assay
To determine cellular oxygen consumption rate, the Seahorse ex-
tracellular flux analyzer XFe96 (102416;Agilent) was used in com-
bination with sequential injection of various compounds. Oxygen 
consumption rate measurements were performed following the man-
ufacturer’s protocol; see in the online-only Data Supplement.

Mitochondrial Network Analysis
The RPE cells were stained with MitoTracker (M22426;Invitrogen). 
Images were captured using an Olympus FV1200 Spectral Inverted 
Laser Scanning Confocal Microscope and analyzed using ImageJ 
(National Institutes of Health) with mitochondrial network analysis 
plugin. The mitochondrial network analysis’s method and measured 
parameters are described in a recent study.41 The source code for mi-
tochondrial network analysis plugin is available at https://github.com/
ScienceToolkit/MiNA; see in the online-only Data Supplement.

Cell Viability Assay
The RPE cells were incubated with calcein AM (1 µmol/L; 
4892010K;Trevigen) for 30 minutes in an incubator (37°C humidi-
fied, with 5% CO

2
, 95% air). Bright green fluorescence was retained 

within living cells. The number of cells were counted using ImageJ 
(National Institutes of Health) and averaged per field of view.

Mitochondria Live Cell Imaging
The mitochondria of RPE cells were incubated with either mitochondrial 
membrane potential probe JC-1 (tetraethylbenzimidazolylcarbocyanine 
iodide, T3168; Invitrogen) or with MitoTracker (M22426;Invitrogen). 
Live images were captured at a 5-minute interval over 25 minutes 
using an Olympus FV1200 Spectral Inverted Laser Scanning Confocal 
Microscope; see in the online-only Data Supplement.

Immunocytochemistry
The RPE cells were stained for Ki67 (NCL-Ki67P;LeicaBiosystems), 
Drp1 (dynamin-related protein 1, 70278;Life Technologies), or Mfn2 
(mitofusin-2, 711803;eBioscience); see in the online-only Data 
Supplement.

Statistical Analysis
The data were evaluated using ANOVA followed by post hoc 
Bonferroni tests except for laser Doppler data, which were analyzed 
using unpaired t test. Statistical significance was preset at P<0.05. 
Data are presented as mean±SD.

Results
MCAO Reduces Blood Flow to Brain and 
Eye and Induces Retinal Ganglion Cell 
Loss: Therapeutic Target for MSCs
We initially investigated whether MCAO caused a reduction in 
blood flow to the brain, as well as to the eye. Laser Doppler was 
used to measure blood flow to brain and eye at baseline, during 
MCAO and 5-minute after reperfusion (Figure 1A). At baseline, 
there were no significant differences between the control group 

https://www.ahajournals.org/doi/suppl/10.1161/STROKEAHA.119.025249
https://www.ahajournals.org/doi/suppl/10.1161/STROKEAHA.119.025249
https://www.ahajournals.org/doi/suppl/10.1161/STROKEAHA.119.025249
https://www.ahajournals.org/doi/suppl/10.1161/STROKEAHA.119.025249
https://www.ahajournals.org/doi/suppl/10.1161/STROKEAHA.119.025249
https://www.ahajournals.org/doi/suppl/10.1161/STROKEAHA.119.025249
https://www.ahajournals.org/doi/suppl/10.1161/STROKEAHA.119.025249
https://www.ahajournals.org/doi/suppl/10.1161/STROKEAHA.119.025249
https://github.com/ScienceToolkit/MiNA;
https://github.com/ScienceToolkit/MiNA;
https://www.ahajournals.org/doi/suppl/10.1161/STROKEAHA.119.025249
https://www.ahajournals.org/doi/suppl/10.1161/STROKEAHA.119.025249
https://www.ahajournals.org/doi/suppl/10.1161/STROKEAHA.119.025249
https://www.ahajournals.org/doi/suppl/10.1161/STROKEAHA.119.025249


Nguyen et al  Retinal Mitochondrial Deficits After Stroke  2199

and MCAO group in the laser Doppler measurements of ipsi-
lateral hemisphere, contralateral hemisphere, or ipsilateral eye 
(311±23 and 316±87; 296±49 and 282±18; and 592±67 and 
614±81, respectively, unpaired t tests P>0.05). During MCAO, 
there were significant differences between the control group 
and MCAO group in the percentage of blood flow reduction of 
contralateral hemisphere, ipsilateral hemisphere, and ipsilateral 
eye compared with the baseline (16±14 and 85±9; 26±14 and 
70±17; 12±11 and 67±15, respectively, unpaired t tests P<0.05). 
After reperfusion, there was a significant difference between the 
control group and MCAO in the percentage of blood flow reduc-
tion only in the ipsilateral hemisphere compared with the base-
line (12±9 and 67±26, unpaired t tests P<0.05). Altogether, these 
results indicate that MCAO caused a significant reduction in 
blood flow to the eye which mirrored the reduction in the brain.

We next examined whether the reduction in blood flow to 
the eye during MCAO caused significant ganglion cell loss and 
optic nerve degeneration in stroke animals. At days 3 and 14 
poststroke, there was a significant reduction in the ipsilateral 
optic nerve width of stroke animals compared with sham ani-
mals (P<0.001; Figure I in the online-only Data Supplement). 
There was a significant reduction in ganglion cell death at 
days 3 and 14 in the ipsilateral eye compared with sham group 
(P=0.0003 and P<0.0001, respectively; Figure 1B).

Next, we hypothesized that MSCs could rescue the gan-
glion cell death caused by MCAO. Animals received either 
MSCs or PBS via intravenously transplantation using the jug-
ular vein at 24 hours after surgery. Interestingly, transplanta-
tion of MSCs showed a trend toward a reduction in ganglion 
cell death at day 3 and a significant reduction in the ganglion 

Figure 1. Middle cerebral artery occlusion (MCAO) reduces blood flow to brain and eye and induced ganglion cell loss in the retina and transplantation of 
mesenchymal stem cells (MSCs) rescued ganglion cell death at day 14 poststroke. A, Laser Doppler was used to measure blood flow to brain and eye at 
baseline, during MCAO, and 5-minute after reperfusion. MCAO caused a significant reduction in blood flow to the contralateral (Contra) hemisphere, ipsilat-
eral (Ipsi) hemisphere, and Ipsi eye compared with control. B, Representative images and quantification of immunohistochemical staining of NeuN. Trans-
plantation of MSC rescued ganglion cell loss at day 14 poststroke. ANOVA with Bonferroni post hoc test *P<0.05; **P<0.01; and ***P<0.001. Scale bar 50 µm. 
FOV indicates field of view.
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cell loss at day 14 (P>0.05 and P=0.0026, respectively) com-
pared with respective MCAO groups. There were no signif-
icant differences between MCAO group and MCAO+PBS 
group at days 3 and 14 poststroke (P>0.05; Figure  1B). 
Overall, these results demonstrate that MCAO caused a re-
duction in blood flow to the brain and the eye which led to sig-
nificant ganglion cell loss and optic nerve degeneration; and 
intravenous transplantation of MSCs rescued the ganglion cell 
death at day 14. Statistical results are summarized in Table I 
in the online-only Data Supplement.

MSCs Ameliorate OGD-Induced RPE Cells 
Loss by Promoting Cell Proliferation
We further investigated the observed therapeutic effect of MSCs 
under in vitro settings using OGD model. Cell viability and 
cell proliferation were assessed using calcein and Ki67 stain-
ing, respectively. ANOVA revealed significant differences in the 
Ki67 intensity between groups (F(3, 76)=9.795, P<0.0001) with 
OGD-RPE cells displaying a significant decrease in Ki67 in-
tensity compared with the control (237.9±84.3 and 333.3±60.0, 
respectively, P<0.001; Figure 2A). Coculture with MSCs after 
OGD increased the Ki67 intensity compared with OGD group 
(350.8±77.9 and 237.9±84.3, respectively, P<0.001; Figure 2A). 
Additionally, ANOVA revealed significant differences in cell 
viability between groups (F(3, 20)=45.75, P<0.0001), with 
OGD-RPE cells showing a significant decrease in cell viability 
compared with the control (119±70 and 1068±110, respec-
tively, P<0.001; Figure 2B). In contrast, coculture with MSCs 
after OGD rescued the RPE cells’ viability compared with OGD 
group (512±327 and 119±70, respectively, P<0.01; Figure 2B). 
Overall, the results demonstrate that MSCs prevented cell loss 
after OGD by promoting cell proliferation.

MSCs Attenuate RPE Cells’ Mitochondrial 
Respiration Deficits Caused by OGD
Next, we examined the effect of MSCs on the RPE cells’ mi-
tochondrial dysfunction caused by OGD. RPE cells’ mito-
chondrial respiration were analyzed using Seahorse XFe96 
extracellular flux analyzer (Figure  3). OGD caused signif-
icant reduction in the overall RPE cells’ mitochondrial res-
piration compared with control characterized by decreased 
in basal respiration, decreased in spare respiratory capacity, 
and decreased in ATP (adenosine triphosphate) production 
(P<0.0001). Coculture with MSCs significantly rescued the 
overall mitochondrial respiration across all indices compared 
with OGD group as revealed by increased in basal respira-
tion, increased in spare respiratory capacity, and increased in 
ATP production (P<0.0001). Interestingly, we observed also 
a decreased in proton leak in the OGD group compared with 
the control or the OGD-MSCs (P<0.0001). In summary, these 
results revealed that MSCs restored the mitochondrial respi-
ration deficits caused by OGD. Statistical results are summa-
rized in Table II in the online-only Data Supplement.

MSCs Restore RPE Cells’ Mitochondrial 
Networks That Were Altered by OGD
We also investigated the effect of OGD on RPE cells’ mi-
tochondrial network morphology and whether MSCs could 
reverse such impairment. RPE cells’ mitochondrial network 
was analyzed using immunocytochemistry and ImageJ with 
mitochondrial network analysis plugin (Figure 4). The meas-
ured parameters were previously described.41 Compared with 
control group, OGD produced a significant reduction in total 
individual mitochondria (post hoc test P<0.0001), decreased 
in number of network (P=0.0087), and decreased in average 

Figure 2.  Mesenchymal stem cells (MSCs) rescue against retinal pigmented epithelium (RPE) cells loss caused by oxygen-glucose deprivation (OGD) by 
promoting cell proliferation. A, Representative images of immunocytochemical staining of Ki67 (marker for cell proliferation). OGD produced a significant 
decrease in Ki67 expression. Coculture with MSCs restored cell Ki67 expression after OGD. B, Representative images of Calcein AM cell viability test. OGD 
induced a significant decrease in cell viability. Coculture with MSCs rescued RPE cell death after OGD. C, Quantification graphs of Ki67 intensity and cell via-
bility. ANOVA with Bonferroni post hoc test *P<0.05; **P<0.01; and ***P<0.001. Scale bar 50 µm.
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branch length (post hoc test P<0.0001) while increased sig-
nificantly the circularity of the mitochondria (post hoc test 
P<0.0001). Compared with OGD group, coculture with MSCs 

significantly increased the total individuals of mitochondria 
(post hoc test P=0.0046), increased the number of network 
(post hoc test P=0.0180), and decreased circularity (post hoc 

Figure 3.  Mesenchymal stem cells (MSCs) ameliorate retinal pigmented epithelium (RPE) cells’ mitochondrial respiration deficits caused by oxygen-glucose 
deprivation (OGD). RPE cells’ mitochondrial respiration were analyzed using Seahorse XFe96 extracellular flux analyzer with sequential injection of various 
compounds (1 µmol/L oligomycin [Oligo], 1 µmol/L carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone [FCCP], 0.5 µmol/L rotenone and Antimycin A [Rot/
AA]). Coculture with MSCs restored RPE cells’ mitochondrial basal respiration, spare respiratory capacity, proton leak, and ATP production compared with 
OGD. ANOVA with Bonferroni post hoc test *P<0.05; **P<0.01; ***P<0.001.

Figure 4.  Mesenchymal stem cells (MSCs) restore retinal pigmented epithelium (RPE) cells’ mitochondrial networks altered by oxygen-glucose deprivation 
(OGD). A, Representative images of RPE cells stained with MitoTracker. B, Analysis and quantification of RPE cells’ mitochondrial network morphology. 
Coculture with MSCs increased RPE cells’ number of mitochondrial networks, number of individual mitochondria, and number of branches but not average 
length of the branches compared with OGD. In addition, coculture with MSCs decreased the circularity of RPE cells’ mitochondria compared with OGD. 
ANOVA with Bonferroni post hoc test *P<0.05; **P<0.01; and ***P<0.001. Mean±SEM. Scale bar 10 µm.



2202    Stroke    August 2019

test P=0.0028) but not the average branch length (post hoc 
test P>0.5). In addition, live imaging of RPE cells’ mito-
chondria confirmed the immunocytochemical results in that 
OGD induced visible disorganization of mitochondrial net-
work, but coculture with MSCs robustly improved the mito-
chondrial network of RPE cells (Movies in the online-only 
Data Supplement). It is worth noting that MSCs’ mitochon-
dria were observed in both OGD-MSC and control-MSC 
groups. This mitochondrial transfer phenomenon was con-
firmed with immunocytochemical staining as evidenced by 
deposition of MSCs’ mitochondria inside RPE cells (Figure 
II in the online-only Data Supplement). Altogether these 
results demonstrate that OGD significantly altered the mi-
tochondrial network morphology towards an impaired state, 
that is, fragmented circular mitochondria, whereas coculture 
with MSCs restored the mitochondrial network morphology. 

Statistical results are summarized in Table II in the online-
only Data Supplement.

MSCs Repair RPE Cells’ Mitochondrial 
Dynamics via Mfn2 After OGD
We further investigated the deleterious effect of OGD and 
therapeutic effect of MSCs on mitochondrial dynamic pro-
teins Mfn2 and Drp1. Immunocytochemical assay of Mfn2 re-
vealed that there were significant differences between groups 
([F(3, 307)=15.65, P<0.0001; Figure  5). OGD significantly 
reduced the expression of Mfn2 compared with the control 
(post hoc test P<0.0001). Coculture with MSCs significantly 
restored the expression of Mfn2 compared with the OGD-RPE 
group (post hoc test P<0.0001). However, OGD significantly 
increased the expression of Drp1 compared with the control, 
but coculture with MSCs did not significantly restore the 

Figure 5.  Mesenchymal stem cells (MSCs) normalize retinal pigmented epithelium (RPE) cells’ mitochondrial dynamics via Mfn2 (mitofusin-2) after oxygen-
glucose deprivation (OGD). Representative images of Mfn2 expression (left columns), DAPI (middle columns), and merged (right columns). OGD caused a 
significant decrease in Mfn2 expression. Coculture with MSC significantly increased the Mfn2 expression compared to OGD. ANOVA with Bonferroni post 
hoc test *P<0.05; **P<0.01; ***P<0.001. Scale bar 50 µm.
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expression of Drp1 to normal level (Figure III in the online-
only Data Supplement). These results show that OGD altered 
the mitochondrial dynamic proteins Mfn2 and Drp1, while 
coculture with MSCs normalized the expression of Mfn2 but 
not Drp1.

MSCs Reduce RPE Cells’ Mitochondrial 
Membrane Depolarization Induced by OGD
RPE cells’ mitochondrial membrane potential was analyzed 
using JC-1 staining (Figure  6). ANOVA revealed signifi-
cant differences between groups in the JC-1 red/green in-
tensity ratio (F(3, 119)=13.50, P<0.0001). Bonferroni post 
hoc tests showed that OGD-RPE cells had significant de-
crease in the JC-1 red/green intensity ratio compared with 
the control RPE cells (0.94±0.59 and 1.63±0.49, respec-
tively, P<0.0001; Figure 6A and 6B). Coculture with MSCs 
significantly increased JC-1 red/green intensity ratio com-
pared with OGD group (1.35±0.51 and 1.63±0.49, respec-
tively, post hoc test P<0.005; Figure 6A and 6B). Confocal 
imaging revealed colocalization between MSCs’ mitochon-
dria (blue) and JC-1 (red) indicating the transfer of func-
tional mitochondria from MSCs to RPE cells (Figure 6C). 
Furthermore, a positive correlation was detected between 
the percentage of cells with transferred mitochondria and the 
cell viability (r=0.9402, n=35, P<0.0001 with an R2=0.8840; 
Figure  6B). In summary, these results indicate that MSCs 
reduced RPE cells’ mitochondrial membrane depolarization 

caused by OGD possibly via transfer of MSCs’ functional 
mitochondria.

Discussion
We demonstrated that MCAO and OGD induced retinal is-
chemia, associated with mitochondrial dysfunction. Treatment 
with MSCs rescued against retinal cell loss, likely through 
stem cell transfer of healthy mitochondria and subsequent res-
toration of mitochondrial function, network morphology, and 
dynamics.

Blood flow was reduced by 80% in ipsilateral hemi-
sphere and ipsilateral eye in our stroke animals as previously 
reported.42,43 The retinal blood flow recovered after reper-
fusion about 5 minutes faster than hemispheric blood flow, 
reflecting discrepant brain and retina reperfusion profiles 
because of increased vasculatures in the retina.44,45 However, 
the lack of collaterals in the retina likely equalized the re-
perfusion profiles, allowing retinal blood flow to mirror the 
hemispheric blood flow up to 3 days poststroke.46–48 This re-
duction in blood flow coincided with ganglion cell loss to the 
ipsilateral eye and decreased optic nerve width at days 3 and 
14 poststroke. Intravenous transplantation of MSCs showed 
a trend towards rescue at day 3 and significantly attenuated 
both cellular and optic nerve deficits at day 14. In addition, 
OGD produced similar retinal cell loss, which was amelio-
rated by MSC coculture. The retinal cell deaths in vivo and 
in vitro were accompanied by mitochondrial dysfunction, 

Figure 6.  Mesenchymal stem cells (MSCs) reduce retinal pigmented epithelium (RPE) cells’ mitochondrial membrane depolarization caused by oxygen-
glucose deprivation (OGD). RPE cells’ mitochondrial membrane potential was analyzed using JC-1 staining. A, Representative images of JC-1 dye and 
transferred MSC’s mitochondria. B, Bar graph represents red/green (healthy/unhealthy) intensity ratio of JC-1 staining and correlational analysis between 
mitochondrial transfer and cell viability. OGD-RPE cells displayed a significant decrease in the JC-1 red/green intensity ratio compared with the control RPE 
cells. Coculture with MSCs significantly increased JC-1 red/green intensity ratio compared to OGD. C, Confocal imaging revealed colocalization between 
MSCs mitochondria (blue) and JC-1 (red, arrows) indicating the transfer of functional mitochondria from MSCs to RPE cells. ANOVA with Bonferroni post hoc 
test *P<0.05; **P<0.01; ***P<0.001. Scale bar 10 µm.
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which was reversed by MSCs characterized by restored mito-
chondrial respiration and normalized mitochondrial network 
morphology. Mitochondrial network protects mitochondrial 
DNA integrity, improves respiratory capacity, and response 
to energy demand or cellular stress. The overall morphology 
of mitochondrial network may depend on a balanced ratio 
between mitochondrial fusion and fission, which is necessary 
to maintain tubular shape and form interconnected network 
in healthy mitochondria. Conversely, a low ratio of fusion to 
fission creates fragmented spherical mitochondria. Coculture 
with MSCs increased the numbers of mitochondrial network 
compared with OGD. MSCs also rescued the overall mito-
chondria that exist outside of network (individuals) with less 
spherical shape (lower circularity). Our results concur with 
previous observations that OGD altered the mitochondrial 
dynamics by upregulating fission protein Drp1 and down-
regulating fusion protein Mfn2.49–52 We observed that MSCs 
significantly restored Mfn2 but not Drp1 expression level. 
Finally, using JC-1 mitochondrial membrane dye and live 
cell imaging, we are the first to show that MSCs transferred 
functional mitochondria to retinal cells and attenuated mito-
chondrial membrane depolarization caused by OGD.

Visual impairment is a common and significant symptom 
in stroke patients.7–9 Because of the anatomic juxtaposition 
of the ophthalmic artery to the MCA, blood flow to the oph-
thalmic artery is easily hindered in the event of MCAO, caus-
ing retinal ischemia,53 which is a major predisposing factor of 
visual impairment and shares a pathology with other common 
ocular vascular diseases.15–21 Time is of the essence for cere-
bral and retinal ischemia with early detection and intervention 
likely to improve outcomes.54–57 Because of the unique dosing 
of vasculatures and collaterals in the brain and the retina, their 
discordant reperfusion profiles may affect the stem cell distri-
bution or mitochondrial transfer in these tissues. Despite the 
lack of collaterals, retinal cells exhibit resistance to ischemic 
insults.18,20 Indeed, clinical studies suggest that the effective 
time window for central retinal artery occlusion with intrave-
nous tPA is 6 to 6.5 hours.20,58,59

Here, we provided evidence that stem cell transplantation 
afforded functional benefits against cerebral60–63 and retinal 
ischemia53,64–67 by abrogating mitochondrial dysfunction, in 
part, by stem cell-mediated mitochondrial transfer. However, 
other well-known mechanisms mediating stem cell therapy, 
such as the bystander effects68–70 stand as equally potent cell 
survival pathways. Mitochondrial transfer may occur via tun-
neling nanotubes, extracellular vesicles, gap junctions, and 
cell fusion.37,71–75 Ischemic cells release help me signals which 
could be used to guide the migration of stem cells and their 
mitochondria to reach ischemic regions.37,76 Optimizing the 
routes of delivery and the timing of transplantation as stand 
alone or in combination with tPA may improve functional 
outcomes of mitochondria-based stem cell therapy for ret-
inal ischemia. Diagnosis of stroke warrants examination of 
retinal ischemia, with ample consideration for treating visual 
impairments.﻿﻿﻿﻿‍
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