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3-Monoiodothyronamine (T1AM), first isolated from rat brain, is reported to be an 
endogenous, rapidly acting metabolite of thyroxine. One of its numerous effects is the 
induction of a “torpor-like” state in experimental animals. A critical analysis of T1AM, 
to serve as an endogenous cryogen, is given. The proposed biosynthetic pathway for  
formation of T1AM, which includes deiodinases and ornithine decarboxylase in the upper 
intestinum, is an unusual one. To reach the brain via systemic circulation, enterohepatic 
recycling and passage through the liver may occur. The possible role of gut microbiota is 
discussed. T1AM concentrations in human serum, measured by a specific monoclonal 
assay are up to three orders of magnitude higher compared to values obtained by MS/
MS technology. The difference is explained by the presence of a high-affinity binder for 
T1AM (Apolipoprotein B-100) in serum, which permits the immunoassay to measure 
the total concentration of the analyte but limits MS/MS technology to detect only the 
unbound (free) analyte, a view, which is contested here.

Keywords: T1AM, thyroxine, monoiodothyronamine, apolipoprotein B-100, hibernation, immunoassay, torpor, 
mass spectrometry

1. iNTRODUCTiON

Hibernation has fascinated scientists for centuries (1–3). Obligate hibernators, e.g., the 13-lined 
ground squirrel (Ictidomys tridecemlineatus) can survive many months under harsh conditions  
(no food and very low ambient temperatures) in winter. They recover in spring, apparently without 
any functional or organ damage. The squirrel enters this state, termed torpor, by rapidly decreasing 
its metabolism and lowering the core temperature down to 3 or 4°C. After a few weeks in torpor, 
brief periods (12–24 h) of “interbout euthermia”, which are essential for survival, are observed (4). 
The processes of hibernation (entry and arousal) are of interest, e.g., for organ preservation in trans-
plantation (5), ischemia–reperfusion damage and cardio protection in the context of cardiac surgery 
(6, 7), organ protection after hemorrhagic shock or global ischemia after cardiac arrest (8), and 
protection of brain from ischemic injury (9). Likewise, understanding the conservation of bone and 
skeletal muscle mass and performance (10) despite many months of inactivity may be of interest for 
NASA, planning a Mars flight, perhaps with a “torpid” crew (11). A torpor-like state, but not multiday 
hibernation, can be induced in mice by fasting and a cage temperature below their thermoneutral 
zone. The search for endogenous signals that trigger hibernation or a torpor-like state started in 1969 
(12) and remains topical, with the aim of developing drugs for therapeutic hypothermia. Among the 
endogenous compounds mentioned in reviews (13, 14) is 3-monoiodothyronamine (T1AM). This 
paper shall serve as a focused review on torpor induction by T1AM in the context of its pharmacol-
ogy and the mysteries of its biological origin.
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2. eXCiTiNG PROPeRTieS OF THe 
NOveL, THYROXiNe-DeRiveD, 
HORMONe 3-MONOiODOTHYRONAMiNe

“These unique molecules [i.e. T1AM] have developmental potential 
as cryogens for the treatment of stroke, in which rapid and prolonged 
cooling offers outstanding therapeutic benefit to patients” (15). 
“Such potent actions of 3-T1AM, its metabolites, and synthetic 
congeners are of eminent interest in emergency and critical care 
medicine, surgery, tissue transplantation, metabolic and eye clinics, 
as well as space science. Application of an endogenous biogenic 
cryogen derived from a hormone provides a rather safe and valuable 
“lead compound” to be tested and developed by the pharmaceuti-
cal industry for various medical applications…” (16). “From the 
current body of literature, potential therapeutic applications with 
T1AM are quite apparent, ranging from sleep/torpidity induction, 
conferring protection against ischemic injury, and anti-obesogenic 
by inducing increased metabolic reliance on lipid oxidation” (17). 
“The major endogenous thyroid hormone metabolite 3-iodothyron-
amine (3-T1AM) exerts marked cryogenic, metabolic, cardiac and 
central nervous system actions. It is bound to apolipoprotein B-100 
(ApoB-100), possibly facilitating its cellular uptake via interaction 
with the low density lipoprotein-receptor” (18).

3. TRACe AMiNe-ASSOCiATeD 
ReCePTORS AND 
3-MONOiODOTHYRONAMiNe

T1AM, after its isolation from rat brain, was tested as a putative 
endogenous ligand (19) for activation of trace amine-associated 
receptors (TAARs) (20, 21). Trace amines (e.g., octopamine, 
tyramine, β-phenylethylamine) received their name from their 
two to three orders of magnitude lower abundance in brain 
tissue compared to classical amine neurotransmitters such as 
noradrenaline, serotonin, or dopamine.

Trace amines are formed enzymatically from aromatic amino 
acids by decarboxylation and were, for a long time, regarded as 
curiosities. The situation changed when high-affinity binding 
sites were identified in brain membranes by classical grinding 
and binding experiments with radiolabeled trace amines. The 
sensitivity of these agonist binding sites to guanylyl nucleotide 
inhibition indicated their relationship to the family of Gαs G 
protein-coupled receptors, which finally led to cloning of the 
first prototype TAAR1 of a larger family in 2001. For a review 
of its discovery and properties, we recommend the review by 
Grandy (22). Except TAAR1, all other TAARs function as odor-
ant receptors expressed on olfactory neurons. Mice possess 14 
of such receptors in their nose epithelium (23) compared to five 
TAARs in humans. Among them is human TAAR5, which is 
activated by trimethylamine, occurring in rotten fish (24) and 
TAAR2, which also occurs in human white blood cells (25) and in 
mucosal layers of the gastrointestinal tract of mice (26). TAAR1 
protein is expressed in brain but also in the periphery [e.g., heart, 
T-lymphocytes, stomach (27), duodenum, and pancreatic β-cells 
(28, 29)]. Human TAAR1 is implicated in drug addiction, eating 
behavior, sleep-wake balance, and neuropsychiatric disorders 

(30, 31). This explains the initial excitement for T1AM that was 
postulated to be a metabolite of T4 and an endogenous physi-
ological signal acting rapidly via cell surface receptors similar to 
the actions of T4 and T3 on αVβ3 integrins (32).

Injecting T1AM into mice induces a “torpor-like” state. This 
immediately fascinated scientists and even convinced a National 
Space Lab program in South Korea to fund research on the newly 
found “hibernating” drug (33).

4. PHARMACODYNAMiCS OF T1AM

Rodents such as mice and rats have a large surface area compared 
to their volume, consequently suffering from much greater heat 
loss compared to larger animals (34). At cage temperatures below 
thermoneutrality (about 28°C for rats and 30°C for mice), the 
sympathetic nervous system and brown adipose tissue (BAT) 
are always activated (35), and a considerable fraction of the total 
energy expenditure is spent for cold-induced thermogenesis via 
BAT. Many small mammals have a natural defense mechanism 
during the colder season, upon a decline in food supply (36). The 
set point is lowered in the hypothalamus, and the core temperature 
approaches ambient temperatures. This “torpor-like” state may 
not be confused with hibernation (4) but is nevertheless often 
used as a readout for drug candidates investigated for therapeutic 
hypothermia. Among them are adenosine agonists (37–39) and 
α2 adrenergic agonists (40).

Upon intraperitoneal injection of T1AM, the rectal tempera-
ture of mice dropped in a dose-dependent manner with an ED50 
of around 25 mg/kg. Mice injected with 100 or 200 mg/kg died, 
suggesting a very small or even absent therapeutic window for 
torpor induction (19). Moreover, the heart rate dropped signifi-
cantly, and a strong negative inotropic effect was observed in the 
isolated perfused rat heart preparation. The T1AM-treated mice 
are sedated, have a hunched back, closed eyes, and the tail rolled 
around the body. This “hibernated” state could be reproduced 
several times by multidose application, provided the animals 
were always warmed up between the applications (33). Despite 
their sleep-like state, T1AM-receiving rodents are under extreme 
metabolic stress: plasma levels of corticosterone, glucagon, and 
glucose increase several-fold in rats, but insulin is not responding 
to the raised glucose levels (41). The combination of sedation, 
bradycardia, and hypothermia in rodents is typical for centrally 
acting α2 adrenoceptor agonists such as the approved drugs 
clonidine, guanabenz, the sedo-analgesic dexmedetomidine, or 
the Servier experimental compound S18116, which is one of the 
most potent and selective drugs from this class (42).

These agonists decrease sympathetic outflow from the brain-
stem and inhibit BAT thermogenesis in rodents (40). Guanabenz 
was able to maintain the torpid state in rats for up to 7 days without 
warming-up periods (43). Subcutaneous S18116 injection lowers 
the body temperature of mice by up to 10°C in the dose range from 
0.1 to 40 µg/kg, with an EC50 value of 2.5 µg/kg (42). None of the 
aforementioned drugs killed the animals at acutely effective hypo-
thermic doses, indicating a sufficiently high therapeutic index for 
this effect. Unfortunately, quantal dose–effect curves for T1AM 
are not available but exist for all of the drugs mentioned. T1AM is 
a highly potent agonist for the receptor subtype α2A (29). This can 
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explain the inhibition of insulin release despite hyperglycemia (41) 
and provides the most likely mechanism by which the rapid drop 
in core temperature occurs. Blockade of the sympathetic outflow 
from the brain by T1AM inhibits heat generation by BAT, which 
is further enhanced by low cardiac output. All of the mentioned 
α2 adrenoceptor agonists had much wider hypothermic windows 
than T1AM. The large number of metabolites (see Section 6) and 
already demonstrated additional targets possibly contribute to the 
pronounced toxicity. An excellent study with NMR-based metabo-
lomics in obese mice (44) supported earlier findings in rats (41). 
Upon chronic application of T1AM (10  mg/kg/day) for 7  days, 
the compound initially increased lipolysis and β-hydroxybutyrate 
concentrations in plasma, indicating acute inhibition of insulin 
secretion. On days 5–7, a shift from lipid oxidation to either car-
bohydrate or protein metabolism as macronutrients was observed. 
After 7 days, the T1AM-treated mice, in contrast to the vehicle-
treated animals, were still not gaining weight for additional 14 days 
and had increased valine and glycine concentrations in plasma. 
The authors commented on these toxic posttreatment effects as 
follows: “The discovery that protein catabolism induction can occur 
after chronic application of T1AM at low concentration is important 
and demonstrates the power of combined analyses for anti-obesity 
drug evaluations to identify unexpected side effects” (44).

Contrary to earlier expectations, TAAR1 is not responsible for 
the T1AM-induced torpor-like state. TAAR1 knockout mice still 
respond to the compound by lowering their body temperature. 
Classical activators of these receptors even increase the core 
temperature (45). Peripheral signals for the adaptive behavior of 
rodents upon fasting in a cold environment have been identified: 
lower leptin and insulin, higher ghrelin and uridine (46, 47) signal 
to the hypothalamus for a decrease of the temperature set point. 
Compared to α2A receptor agonists (either approved or experi-
mental), adenosine, its analogs or uridine (48), the low potency 
of T1AM to induce a torpor-like state in comparison to its toxic 
effects disqualify it as an “endogenous biogenic cryogen” (16).

5. IN VITRO PHARMACODYNAMiCS  
OF T1AM

Synthetic T1AM is a potent activator of rat (EC50: 14 nM) and 
mouse (EC50: 112 nM) TAAR1, stably expressed in HEK-293 cells 
(19). In another cell line, the EC50 was determined as 22.4 nM 
for the rat and 1,510 nM for human TAAR1. These values may 
be compared to those of β-phenylethylamine, which activates 
human TAAR1 with an EC50 of 106  nM and rat TAAR1 with 
206 nM (49). The low potency of T1AM for human TAAR1 was 
confirmed by others (EC50: 1,690 nM) (50). It is therefore unlikely 
that there exist any significant effects in humans via TAAR1. A 
useful comparison of these values may be drawn with data for 
a selective ligand, RO5166017 [(S)-4-[(ethyl-phenyl-amino)-
methyl]-4,5-dihydro-oxazol-2-ylamine]. RO5166017 has EC50 
values in HEK-293 cells of 3.3 nM (mouse), 2.7 nM (rat), and 
31 nM (human) (51). In addition to a favorable pharmacokinetic 
profile, a radioligand screening of RO5166017 against 123 target 
proteins revealed little or no interaction with other receptors, 
transporters, or enzymes. To prove that the effects of such selec-
tive drugs on, e.g., animal behavior (51) or metabolism (28) are 

indeed mediated by TAAR1 and not via “off-targets”, the TAAR1 
knockout mouse is employed as a negative control. Alternatively, 
actions could be blocked by a selective TAAR1 antagonist (52).

With respect to the target profile of T1AM, α2 adrenoceptors 
are activated with a similar potency as noradrenaline. Neuronal 
membrane as well as vesicular transporters for dopamine and 
noradrenaline (45, 53) and all subtypes of muscarinic acetylcho-
line receptors (54) are functionally blocked in the micromolar 
or sub-micromolar range. Other identified “targets” are cited in 
review articles (16, 17, 55). One very high-affinity binding site, 
apolipoprotein B-100 (ApoB-100), is mentioned here for two 
reasons. First, ApoB-100 is suggested to be relevant for delivery 
of the novel hormone to tissues (18) and second, its seemingly 
problematic nature in the context of accurate quantification of 
T1AM via MS/MS technology (56) deserves mention. ApoB-100 
is a component of circulating VLDL and LDL lipoproteins and 
binds to T1AM in a 1:1 stoichiometry with a Kd of 17 nM (57). 
The concentration of serum ApoB-100 in healthy adults ranges 
from 500 to 1,500  nM but is considerably lowered in patients 
undergoing statin therapy.

In sum, T1AM may be genuinely termed as a “multi-target” 
compound, or in plain words: it is a “dirty” drug.

6. IN VIVO PHARMACOKiNeTiCS

Unfortunately, the pharmacological profile is worsened upon 
a review of T1AM’s pharmacokinetics and metabolism in 
rodents. A great deal of effort was spent with MS/MS technol-
ogy to elucidate the fate of injected T1AM in rodents (58). After 
intraperitoneal injection, the parent drug is rapidly cleared from 
plasma with an apparent half-life of 7–8 min during the first hour. 
Thereafter, a slower elimination with a half-life of about 50 min 
takes place (59). Oxidative deamidation by monoamine oxidase 
to 3-iodothyroacetic acid (TA1) (60, 61), glucuronidation, sulfa-
tion (62), acetylation, and deiodination are observed. Within 
3 h after a single intraperitoneal injection, the sum of the three 
main metabolites in the serum of mice is approximately 3 µM. At 
this time, the concentration of the parent compound (T1AM) is 
reduced by approximately two orders of magnitude from 16.6 to 
0.19 µM. Moreover, the concentration of TA1 (17.7 µM) is equal 
to that of T1AM (16.6 µM) after 10 min. The authors were sur-
prised about the extent and speed of T1AM breakdown: “[A] rich, 
diverse metabolism such as this is not generally seen with synthetic 
drugs or xenobiotics” (58).

In conclusion, suggestions regarding the value of such proper-
ties as a lead compound for further cryogenic drug development 
will probably not convince the pharmaceutical industry.

7. T1AM iS CLAiMeD TO Be AN 
“eNDOGeNOUS” DeRivATive OF 
THYROiD HORMONe—BUT wHeRe  
AND HOw iS iT MADe?

7.1. Tissue Distribution of T1AM
The claim of T1AM’s endogenous nature was supported by its 
presence in extracts from rat brain and liver, heart as well as blood 
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samples from mice. Mass-spectrometric fragmentation of the 
isolated biological material and the synthetic compound yielded 
identical fragmentation patterns. No absolute concentrations 
were presented in 2004 (19), but the concentration of T1AM in 
drug naïve rat serum was later reported as 300 pM, in rat liver as 
93 pmol/g, in rat brain cortex with 60 pmol/g, in rat kidney with 
36 pmol/g (63), and in mouse liver with 2.4 pmol/g (64). Others 
reported 5.4 pmol/g in rat liver (65) or less than 0.3 pmol/g (66). In 
mouse brain, 48.3 pmol/g has been reported (60, 67) but in mice 
lacking histidine decarboxylase, T1AM could not be identified. 
In the corresponding wild type, 0.22 pmol/g were found. In the 
Djungarian hamster (Phodopus sungorus), the serum concentra-
tion was determined as 6 nM, increasing 3 h after intraperitoneal 
injection of 50  mg/kg T1AM about 10-fold (68). Presence of 
T1AM in brain homogenates of the hamsters was mentioned, but 
not reported in absolute concentrations.

Taken together, such high variability in the range of orders of 
magnitude is quite unusual for a T4 derived metabolite. T4 and 
T3 levels are fairly constant in human plasma with very small 
circadian variation (69). Analytical errors can be excluded since, 
for example, the mice brain concentrations, ranging from 0 to 
48.3 pmol/g, have been reported by the same laboratory for three 
different mouse strains. The fact that rat liver concentrations are 
300-fold higher than serum concentrations, again obtained by 
the same laboratory, argue toward the liver as receiving input 
not primarily from the hepatic artery but from the portal vein. 
With respect to other mammals, the presence of T1AM in brains 
of guinea pigs was mentioned but no absolute amounts were 
reported (19). Human thyroid tissue does not contain a trace of 
T1AM (i.e., <0.30 pmol/g) (66). As other tissues, including those 
from ruminants, are easily available, a lack of such investigations 
is surprising, possibly pointing to special features of rodents that 
are often not considered of relevance for metabolite research.

7.2. Mass Spectrometry
Multiple reaction monitoring mass spectrometry (MRM-MS) or 
higher stage fragmentation techniques such as MS3 of selected 
precursor ions serve as the golden standard for quantification 
of endogenously formed or exogenously acquired compounds 
occurring in trace amounts in biological matrices such as plasma, 
serum, or tissues. In the context of quantification, synthetic 
T1AM and a deuterated analog, serving as an internal standard, 
are available. They facilitate the calculation of recovery during 
extraction and aid the determination of the ionization efficiency 
during mass-spectrometric analysis. Obviously, they also enable 
the exact determination of the analyte’s retention time during 
chromatographic separation, preceding the mass-spectrometric 
analysis. The lower limit of detection (LOD) for T1AM in serum 
or plasma was reported as 250 pM (66) or “…lower than 300 pM” 
(63). Later, an LOD of 35  pM (70) was reported, with human 
patients exhibiting an average T1AM concentration of 219 pM, 
ranging from 160 to 300  pM. Ackermans et  al. could not dis-
cover any T1AM above their LOD in serum or plasma of eight 
human volunteers (66). The possible lack in recovery of ApoB-
100-bound T1AM was properly accounted for by employing an 
extraction protocol including protein digestion via Proteinase K. 
Even more disturbing is the fact that Ackermans et al. could easily 

detect T1AM in the serum or liver of T1AM-treated animals but 
never in serum or liver of rats treated with vehicle (66). Their 
LOD in tissues was reported at 0.30 pmol/g, one to two orders of 
magnitude below the amounts found in rat and mouse livers by 
Scanlan’s group. The latter laboratory commented the negative 
result as follows: “Of note, a study designed similarly to ours was 
recently attempted and failed, because the investigators were unable 
to extract and detect endogenous T1AM by LC-MS/MS (32)” (64). 
The above comment could be justified if the Scanlan laboratory 
supplied their tissue samples to the Amsterdam Laboratory of 
Endocrinology, which apparently never happened. As ApoB-100 
is a major binder of T1AM, which is claimed to prevent sufficient 
extraction for the subsequent MS/MS analysis, it is noted that 
the rat liver, despite much lower production when compared to 
human liver, contains 146  mg/g of protein of ApoB-100 (71). 
After conversion into grams of wet weight, this amounts to about 
60 nmol/g, which is three orders of magnitude higher compared 
to the highest levels ever reported for T1AM, being sufficient 
to bind an equal amount of T1AM. Moreover, Ackermans et al. 
ensured quantitative recovery of protein-bound T1AM in tissue 
samples by denaturing the proteins with acetic acetone. For the 
reasons given, the presence of ApoB-100 in the matrix cannot be 
made responsible for not discovering the analyte. For a detailed 
review addressing the major pitfalls in the quantification of thy-
roid hormone metabolites including T1AM, the reader is referred 
to the work of Richards et al. (72).

The published tissue and serum concentrations (see Section 
7.6 for stability of T1AM in humans and (59) for rodents) are 
most likely correct. A few hypotheses are offered as explanations 
for the failure of Ackermans et al. to discover T1AM in the liver of 
vehicle-treated rats: firstly, Ackermans et al. kept the animals under 
different conditions as the Scanlan group, probably restrained 
and treated with antibiotics (73). Secondly, food or drinking 
water possibly contained traces of compounds which interfered 
with intestinal enzyme activities (e.g., deiodinases and ornithine 
decarboxylases), now shown to be involved in the biosynthesis 
of T1AM. Finally, levels in the liver are always a snapshot. If the 
input by whatever source occurred hours before the animals were 
sacrificed, the rapid degradation of T1AM lowered the amount 
below the reported detection limit.

7.3. T1AM is Not Derived from Circulating 
Thyroxine
Two independent laboratories agree on the following, namely, 
that no peripheral or CNS conversion of injected T4 into T1AM 
occurs in rodents. One group delivered T4 as a 13C-labeled com-
pound (13C6-T4) for 10 days with increasing doses by an osmotic 
minipump to rats, inducing different degrees of hyperthyroidism. 
They also employed the respective 13C-labeled triiodothyronine 
(T3) as a standard (66), but not a trace of newly formed 13C-labeled 
T1AM was observed in serum or the CNS. Interestingly, this 
important result is almost never given credit to and was also not 
mentioned by Hackenmueller et  al. (64). Hackenmueller et  al. 
used13C9-15N-T4 (“heavy T4”) and the respective standards after 
induction of hypothyroidism in mice by feeding perchlorate and 
methimazole. The various explanations of their negative result 
are worth being read in the original publications but will not 
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be discussed here, especially in view of the interpretation given 
later by Hoefig et al. (74). In conclusion, there is no doubt that 
T1AM in rodents does not originate from circulating T4 under 
conditions of drug-induced hypothyroidism or various stages of 
T4-induced hyperthyroidism.

7.4. Ornithine Decarboxylase—The 
Missing Link
The entire enzymatic activity necessary to produce T1AM from 
T4 was shown to exist in intestinal tissue of mice (74). The tissue 
contained the enzyme ornithine decarboxylase (ODC) that is 
capable of decarboxylating T4 and its deiodinated intermediates. 
For analysis, the ex vivo everted gut sac model (jejunum) from 
pathogen free, but not axenic, mice was used. When the prepara-
tion (luminal side out) was incubated in solutions containing 
T4, significant amounts of T1AM were produced that could be 
identified via mass spectrometry. In vitro human ODC was able 
to decarboxylate 3,5-T2 to 3,5-T2AM and a possible sequence of 
enzymatic reactions leading to T1AM was presented. The authors 
attempted to explain the negative results by Hackenmueller et al. 
(64) and observed that a combined treatment with perchlorate 
and methimazole inhibited the intestinal expression of deiodi-
nase 1 (DIO1) and ODC genes, which was not reversed by T4. 
However, an explanation for the negative results regarding the 
hyperthyroid rats (66) was not offered.

7.5. Gut Microbiota, Cecotrophy, 
Coprophagy
In a recent review article (16), it is proposed that for T1AM forma-
tion, T4 must enter the gut and may not be formed enzymatically 
elsewhere. This could indeed explain the high levels observed by 
some researchers in the rat liver. But this may not be the end of the 
story, especially considering additional important players: the gut 
microbiota (75). It is long known that deiodination and degrada-
tion of T4 and T3 by gut microbiota occur in the intestine of rodents 
(76). Moreover, when one partially decontaminates rats by feed-
ing ampicillin, the metabolism of T4 and T3 is drastically changed 
(77). The intestinal wall contains ODC, but rodent gut microbes 
in the cecum and colon are another excellent source as Klebsiella, 
Pseudomonas, and E. coli (78) feature abundant constitutive and 
inducible (i.e., biodegradative) ODC. These enzymes appear to 
differ in some respect from the mammalian counterparts as the 
potent irreversible blocker difluoromethylornithine, currently 
in clinical cancer trials (79), inhibits ODCs of Pseudomonas 
aeruginosa but not those of Klebsiella pneumoniae and E. coli (80). 
Furthermore, there are enzymes in the gut microbiota of humans, 
and perhaps rodents, that are capable of decarboxylating aromatic 
amines (81). It is suggested to analyze T1AM in germ-free rats or 
axenic mice to refute the hypothesis about the role of gut bacteria.

If, as speculated here, the gut microbiome plays a significant 
role, a specific behavior of mice and rats may have contributed, 
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namely the consumption of soft (or night) feces, originating from 
microbiota-digested cecum content. Rats ingest between 50 and 
65% of their feces (82), which can enable several passages of T4 
metabolites. The use of anti-coprophagy cages was not specifi-
cally mentioned in the publications about T1AM.

7.6. Serum Levels in Humans
With respect to humans, a chemiluminescent immunoassay (LIA) 
with a mouse monoclonal antibody for T1AM was developed. A 
median concentration of 66 nM in sera from healthy individu-
als and of 120 nM in thyroid cancer patients substituted with 
oral thyroxine was reported (56). In some of these patients, 
excessive amounts of up to 240 nM have been quantified. Most 
surprising was that for 10 T4-substituted patients with pituitary 
insufficiency, when tested 6 days after withdrawal, the initially 
observed T1AM levels did not change (i.e., 97 compared to 
92  nM). Somewhat lower concentrations (14.5  nM) were 
observed in patients undergoing heart surgery (83). For this 
LIA, the capture antibody for the mouse monoclonal antibody 
originated from goat and the reporting label was horseradish 
peroxidase, coupled to T1AM. Unfortunately, problems with 
this assay do exist, as heterophilic antibodies, especially human 
anti-mouse antibodies (HAMAs), may interfere (84). For rea-
sons unknown, many cancer patients feature HAMAs (85). But 
a more serious problem is the human serum itself, introducing 
the very high-affinity binder, ApoB-100 in significant concen-
trations. It is suggested here that HAMAs, ApoB-100 as well as 
related lipoproteins observed in LDL with a Kd of 48 nM (57) 
may be responsible for these data, which differ from the MS/MS 
results by three orders of magnitude.

More recently, healthy controls were shown to have a 
median concentration of 8 nM whereas intensive care patients, 
often treated with antibiotics, had 4.8 nM (86). Here, the assay 
conditions have been changed as follows: the surface-bound 
capture is now T1AM, coupled to albumin, the mouse antibody 
is biotinylated, and the discovery system is Streptavidin-
Europium. The authors mention ApoB-100 concentrations, 
apparently well aware of the aforementioned problems with 
the original assay. MS/MS measurements reported that T1AM 
concentrations in human sera or plasma are far below 1 nM 
(70). Roy et al. proved excellent stability of deuterated and non-
deuterated T1AM in pooled human serum by incubating it for 
24 hours at 37°C (57). However, in fetal bovine serum, which 
is often employed for cell culture experiments, pre-analytical 
degradation, different for internal standard and analyte (iso-
tope effect), is suggested by preliminary experiments (87). The 
difference to rodent and human sera may be explained by the 
very high activity of soluble amine oxidases in bovine plasma. 
Their activity is very low in healthy humans and almost absent 
in rodent plasma (88).

It is hence anticipated that the ambiguities in the literature are 
resolved in the near future, especially in the context of proper 
sample preparation techniques and in adherence of analytical 
guidelines such as those published by the FDA or the EMEA. The 
publication by Rathmann et al. (89) serves as an excellent example 
of a thoroughly validated analytical method in this context.

8. CONCLUSiON

The discovery of T1AM as an endogenous novel metabolite of 
T4 exemplifies the great analytical power of MS/MS technology 
to identify and quantify molecules occurring in various matri-
ces, including human plasma or animal tissues at incredibly 
low concentrations. The exciting finding that T1AM activates 
rodent TAARs with nanomolar EC50 values (19) stimulated 
further research. A breakthrough in the mysterious biological 
pathway regarding the formation of T1AM was that in addition 
to deiodinases such as DIO1, ODC is involved (74). One may 
conclude that the rise of fame of T1AM started with a rat brain 
extract and ended in the gut, but the question of a route from 
gut to brain remains (see Figure  1). T1AM shares an analogy 
with another hormone, abscisic acid (ABA). This phytohormone 
was isolated from pig and rat brain in 1986, guided by a highly 
specific antibody. The identity of ABA was proven by MS/MS and 
the purified compound was shown to be functionally active in 
a conventional ABA bioassay (90). The authors were surprised 
about the presence of a phytohormone in mammalian brain 
and kept rats on an ABA-deficient diet for a long time. To their 
surprise, the ABA diet-deficient rats almost doubled the content 
in the brain, suggesting that ABA is possibly synthesized in the 
absence of external supplies. Some years later, others discovered 
greatly reduced ABA concentrations in brain samples of rumi-
nants but confirmed the high concentrations in rodents (91). As 
an explanation, the authors pointed out that ruminants had bac-
teria in the upper intestine whereas rats have them in the distal 
part. Indeed, ABA is produced by gut bacteria (92, 93). Before 
discarding these citations as completely irrelevant to T1AM, one 
should take notice that ABA is circulating in human plasma in 
nanomolar concentrations. ABA is not an inert contaminant 
from plant-derived sources. Instead, it is a powerful regulator of 
glucose metabolism in humans in doses of a single microgram 
per kilogram (94–97). One can agree with Hoefig et al. (16), that 
it will take much less time today compared to earlier discoveries, 
to unravel the mysteries of the novel T4 metabolite.
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