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Fragile X syndrome (FXS) is the most common monogenetic cause of intellectual
disability and autism. The disorder is characterized by altered synaptic plasticity in the
brain. Synaptic plasticity is tightly regulated by a complex balance of different synaptic
pathways. In FXS, various synaptic pathways are disrupted, including the excitatory
metabotropic glutamate receptor 5 (mGluR5) and the inhibitory γ-aminobutyric acid
(GABA) pathways. Targeting each of these pathways individually, has demonstrated
beneficial effects in animal models, but not in patients with FXS. This lack of translation
might be due to oversimplification of the disease mechanisms when targeting only
one affected pathway, in spite of the complexity of the many pathways implicated in
FXS. In this report we outline the hypothesis that targeting more than one pathway
simultaneously, a combination therapy, might improve treatment effects in FXS. In
addition, we present a glance of the first results of chronic combination therapy on
social behavior in Fmr1 KO mice. In contrast to what we expected, targeting both the
mGluR5 and the GABAergic pathways simultaneously did not result in a synergistic
effect, but in a slight worsening of the social behavior phenotype. This does implicate
that both pathways are interconnected and important for social behavior. Our results
underline the tremendous fine-tuning that is needed to reach the excitatory-inhibitory
balance in the synapse in relation to social behavior. We believe that alternative
strategies focused on combination therapy should be further explored, including
targeting pathways in different cellular compartments or cell-types.
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INTRODUCTION

Fragile X syndrome (FXS) is a common X-linked hereditary cause of intellectual disability
and autism spectrum disorders (ASD), with a prevalence of about 1:7000 males and
1:11,000 females (Coffee et al., 2009; Hunter et al., 2014). FXS is mainly characterized by
cognitive and behavioral symptoms (Garber et al., 2008; Hersh et al., 2011; Kidd et al., 2014;
Lozano et al., 2014). The autistic behavior and social deficits lead to major disabilities and are
important features of FXS to evaluate when testing efficacy of potential pre-clinical therapeutic
interventions. FXS is currently treated symptomatically, using behavioral, educational and
psychopharmaceutical strategies, often with unsatisfying results. A targeted treatment is lacking.
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Since the discovery of the FMR1 gene as the causative gene of
the disease, and the generation of the Fmr1 KO mouse model,
research has focused on elucidating the molecular basis of the
disorder. The discovery of several pathways involved has revealed
possible targets for therapeutic intervention strategies, holding
the promise for a disease modifying therapy. Targeting these
pathways indeed could correct many FXS-related symptoms
in animal models, however, these promising preclinical results
could not be confirmed in clinical trials (reviewed in Braat and
Kooy, 2014; Ligsay and Hagerman, 2016). Many reasons could
explain this lack of translation frommice to human (Zeidler et al.,
2015). One striking limitation in drug discovery research so far, is
the oversimplification of the underlying molecular mechanisms
of the disorder, by targeting only one pathway at a time. The
vast amount of molecular targets of the FMR1 gene product,
FMRP, suggests that the use of a combination therapy, targeting
multiple involved pathways simultaneously, is a promising new
strategy in drug discovery for FXS. In this article we discuss
the possible use of combination therapy in FXS. In addition, we
present the first in vivo data on chronic combination therapy,
targeting both the excitatory and inhibitory system in the synapse
in Fmr1 KO mice. Our data illustrate that the two synaptic
pathways are interconnected, although tremendous fine-tuning
is probably required to restore the synaptic excitatory/inhibitory
balance.

MANY TARGETS, MANY DRUGS

The symptoms of FXS are caused by lack of FMRP, an
RNA-binding protein that plays a critical role in the process
which determines neuronal connectivity, called synaptic
plasticity (Willemsen et al., 2011). In the Fmr1 knock-out
(Fmr1 KO) mouse this synaptic plasticity is disrupted, leading
to neuronal dysfunction. Several pathways are implicated in
aberrant synaptic plasticity in FXS, revealing them as possible
targets for therapy. The metabotropic glutamate receptor 5
(mGluR5) pathway and the γ-Aminobutyric acid (GABA)
pathway are only two examples (Braat and Kooy, 2014).
Many studies have shown that we can indeed target these
pathways in the Fmr1 KO mouse, in some cases leading
to improvement of several disease characteristics (reviewed
in Braat and Kooy, 2014, 2015; Gross et al., 2015; Scharf
et al., 2015). Interestingly, FMRP is not only present in
the postsynaptic compartment, but is also expressed in the
presynaptic compartment and other cell-types in the brain,
although little is known about its function there (Wang et al.,
2004; Pacey and Doering, 2007; Christie et al., 2009; Akins et al.,
2012, 2017; Giampetruzzi et al., 2013; Higashimori et al., 2013;
Gholizadeh et al., 2014). This might implicate more options for
targeted therapy.

The mGluR5-pathway was the first proposed and best
studied pathway involved in the pathogenesis of FXS, leading
in 2004 to the ‘‘mGluR5 theory’’ (Bear et al., 2004). Activation
of mGluR5 leads to downstream local protein synthesis in
the postsynaptic compartment, which is essential for synaptic
plasticity. This local protein synthesis is controlled by FMRP and
its absence results in exaggerated mGluR5-dependent protein

synthesis and consequently aberrant synaptic plasticity. Several
studies have shown that either genetic or pharmacological
reduction of mGluR5 restores FXS related phenotypes in Fmr1
KO mice, including molecular, anatomical, electrophysiological
and behavioral characteristics (Dölen et al., 2007; de Vrij
et al., 2008; Osterweil et al., 2010; Thomas et al., 2011, 2012;
Michalon et al., 2012; Gantois et al., 2013; Pop et al., 2014;
Scharf et al., 2015; de Esch et al., 2015). Another important
pathway implicated in FXS, is the GABAergic pathway, the
major inhibitory pathway in the adult brain (D’Hulst et al.,
2006, 2009; Gantois et al., 2006; Curia et al., 2009; Pacey et al.,
2009; Adusei et al., 2010; Olmos-Serrano et al., 2010; Sabanov
et al., 2017; Zhang et al., 2017). Drugs targeting the GABAa
or GABAb receptor, have shown improvements of FXS features
in Fmr1 KO mice. The function of the ionotropic GABAa
receptor, a synaptic and perisynaptic chloride channel, can also
be indirectly influenced with the Na+-K+-2Cl−-co-transporter
1 (NKCC1) blocker bumetanide (Tyzio et al., 2014). While
the GABAa receptor inhibits depolarization in adult neurons,
its function in immature neurons during early development is
excitatory, switching to inhibitory while the neurons mature.
This important neurodevelopmental switch depends on the
intracellular chloride levels, regulated by the chloride importer
NKCC1 (Ben-Ari et al., 2012; Ben-Ari, 2015). It has been shown
to be delayed or absent in Fmr1 KO mice (He et al., 2014;
Tyzio et al., 2014) and FXS derived human embryonic stem
cells (Telias et al., 2016). Also in other disorders, a delayed
GABAergic switch has been implicated, including autism (Ben-
Ari, 2015), epilepsy (Holmes et al., 2015), Parkinson’s disease
(Damier et al., 2016) and schizophrenia (Lemonnier et al., 2016).
Reduction of chloride levels with bumetanide, forces the neuron
to switch from immature to mature chloride concentrations and
consequently also to mature GABAaergic function. This has
been demonstrated by bumetanide treatment of pregnant mice,
which restored electrophysiological and behavioral phenotypes
in their Fmr1 KO offspring (Tyzio et al., 2014). Several clinical
trials in patients with autism, have demonstrated improvement
after bumetanide treatment (Lemonnier and Ben-Ari, 2010;
Lemonnier et al., 2012, 2017; Hadjikhani et al., 2015), rendering
it a promising drug in FXS as well.

Translational Challenges
The promising preclinical results have motivated researchers
to initiate clinical trials in FXS patients. Some randomized,
placebo controlled clinical trials with the mGluR5 antagonists
mavoglurant/AFQ056, fenobam (Berry-Kravis et al., 2009, 2016;
Jacquemont et al., 2011) and basimglurant (Youssef et al.,
2017) have been performed. However, despite the evidence
for effectiveness of mGluR5 antagonists from animal model
studies, these clinical trials did not result in improvement of
symptoms in FXS patients. Also the larger clinical trials with
the GABAb agonist Arbaclofen, were terminated prematurely
due to lack of efficacy (Berry-Kravis et al., 2017). In fact,
none of the larger clinical trials have resulted in an effective
treatment for FXS. This raises the question whether these
observed preclinical treatment effects reflect a relevant and
versatile treatment strategy. Major limitations that could account
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for this lack of translation include the lack of reliable and robust
outcome measures, aspects of study design and the validity of
animal models in drug screening (Berry-Kravis et al., 2013;
Zeidler et al., 2015). However, one important aspect is being
consistently neglected: considering the vast amounts of targets
of FMRP, probably multiple pathways will need to be targeted
simultaneously in order to ameliorate the disease, a combination
therapy. Current studies in mice as well as in humans have
been consistently limited to targeting only one pathway at a
time.

NEW STRATEGIES IN FXS DRUG
DISCOVERY: COMBINATION THERAPY

Compelling evidence has demonstrated that aberrant synaptic
plasticity in FXS is (partly) caused by an excitatory-inhibitory
imbalance, due to malfunctioning of these pathways (reviewed
in Braat and Kooy, 2014; Ligsay and Hagerman, 2016).
Thus, we hypothesized that targeting both excitatory and
inhibitory pathways simultaneously as combination therapy,
might be more beneficial in treating FXS than targeting a single
pathway.

Only two previous publications have reported data on
combination therapy in Fmr1 KO mice. Lim et al. (2014)
observed a synergistic beneficial effect on synaptic plasticity and
behavior when targeting serotonin and dopamine-pathways in
Fmr1 KO mice simultaneously. Pacey et al. (2011b) showed
an additional synergistic effect of acute targeting of mGluR5
(MPEP) and GABAb (R-baclofen) in Fmr1 KO mice on
seizures, while for both a lower dose was needed than when
administered separately. However, these studies used acute
treatment and did not address social behavior deficits. Especially
when initiated later in life, treatment of FXS would probably
require a life-long treatment. To our knowledge we are the
first to investigate the effect of chronic combination therapy
in Fmr1 KO mice, and using social behavior as an outcome
measure.

The results of our combination therapy experiments are
depicted in Figure 1. We targeted the mGluR5 pathway by
genetically reducing mGluR5 expression, and the GABAergic
pathway using the commercially available diuretic bumetanide.
These pathways were first targeted separately (Figures 1A–F) and
then simultaneously (Figures 1G–I). We used Fmr1 knock-out
mice (Mientjes et al., 2006), their wild-type (WT) littermates
and for the double transgenics, we crossed these with mice who
were heterozygous for an mGluR5 deletion (Grm5+/−; Lu et al.,
1997). We measured the effect of the therapeutic interventions
using a social behavior paradigm, the automated tube test (ATT).
The protocols are extensively described in de Esch et al. (2015)
and van den Berg et al. (2015). Mice received bumetanide
(Centrapharm) dissolved in drinking water in a concentration
of 0.01 mg/ml, based on Tyzio et al. (2014), and kept in light-
tight bottles. Aspartame was added to reduce the bitter drug
taste. Control mice of the experiments with bumetanide, received
aspartame drinking water. Control drinking water containing
aspartame has been shown to have no effect on the Fmr1 KO

phenotype in the ATT (data not shown). Mice were chronically
treated from weaning at postnatal week 4 until the end of the
experiment, postnatal week 13–16. This study was carried out in
accordance with the recommendations of Directive 2010/63/EU,
European Commission. The protocol was approved by the Dutch
Animal Ethical Committee (DEC).

Previously, we have published that Fmr1 KO mice display a
robust dominant ATT phenotype compared to WT littermates,
resulting in significantly increased percentage of matches won by
Fmr1 KO mice (de Esch et al., 2015). Figures 1A–C display the
results of previously published experiments, showing that genetic
reduction of mGluR5 results in a partial correction of social
behavior of Fmr1 KO mice in the ATT (de Esch et al., 2015).
A complete correction would lead to a 50%–50% distribution of
the matches between WT and Fmr1 KO mice. The correction is
partial, since no change in the phenotype is observed in those
matches, after genetic reduction of mGluR5 in the Fmr1 KO
animals (Figure 1A). However, compared to ‘‘untreated’’ Fmr1
KO mice, they do lose their phenotype (Figure 1B), illustrating
the treated mice do no longer behave as Fmr1 KO mice. If there
would have been no effect of treatment, a 50–50 distribution of
wins over the two groups was expected. This partial correction
indicates that targeting the mGluR5 pathway does significantly
influence the social behavior phenotype, but is not sufficient
to fully restore deficits in this type of social behavior. A quite
similar effect was observed when targeting the GABAergic
pathway, using chronic bumetanide treatment. Figures 1D–F
depict the results of chronic bumetanide treatment, leading
again to a partial correction of the FXS ATT phenotype. These
results indicate that treatment with bumetanide by itself is
insufficient as well. However, these results do underline that
bumetanide might have a beneficial effect on social behavior
in FXS patients. Since we administered bumetanide after the
GABAergic developmental switch has occurred (He et al.,
2014), the improvement we measure is encouraging in terms of
treatment initiation later in life, although the exact underlying
neurochemistry changes remain to be elucidated.

After the partial correction observed for both ‘‘treatment
interventions’’ separately, we combined those. However,
combination therapy leads to an opposite effect than expected.
First, the Fmr1 KO mice with combination therapy remain
dominant in matches against WT animals (Figure 1G).
Moreover, Fmr1 KO mice with combination therapy show a
mild but significant dominant phenotype against ‘‘untreated’’
Fmr1 KO mice (Figure 1H), implicating worsening of the
phenotype. Improvement of the phenotype would lead to
dominant behavior of untreated mice, which is opposite to what
we observed. To evaluate whether a subtle synergistic effect
occurs with two treatments compared to one treatment alone,
we performed the test comparing Fmr1 KO mice with either
mGluR5 reduction alone to Fmr1 KO mice with a combination
of mGluR5 reduction and bumetanide. A synergistic effect
would have led to dominant behavior of Fmr1 KO mice with
one intervention, compared to those with a combination
therapy. However, we did not observe a synergistic effect, but
instead we observed a slight worsening of the ATT phenotype
in Fmr1 KO mice with a combination therapy, compared to
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FIGURE 1 | Reduction of metabotropic glutamate receptor 5 (mGluR5) or enhancing γ-aminobutyric acid (GABA) separately, partially improves the Fragile X
syndrome (FXS) phenotype, while a combination therapy slightly worsens this effect. Results are indicated as percentage of matches won by Fmr1 KO mice and
wild-type (WT) littermates. To explain what is meant by a partial correction in the tube test: a full correction would implicate a 50%–50% result of the matches
between WT mice and treated Fmr1 KO mice. In that case, both groups show a similar social behavior phenotype. When a partial correction is observed, there is a
clear dominant phenotype of untreated Fmr1 KO mice compared to treated Fmr1 KO mice, while treated Fmr1 KO mice do not show a correction in matches against
WT mice. (A–C) Previously published results from de Esch et al. (2015) presenting that genetic reduction of mGluR5 partially corrects the automated tube test (ATT)
phenotype in Fmr1 KO mice. (A) Fmr1 KO mice who are Grm5+/− continue to show a strong phenotype compared to their WT littermates (p < 0.001, n = 12 per
group). (B) Strong reduction of ATT phenotype with mGluR5 reduction: Fmr1 KO win most matches against Fmr1 KO mice who are Grm5+/− (p < 0.001, n = 10 per
group). (C) Genetic reduction of mGluR5 induces an inverse phenotype in the WT animals in the ATT (p < 0.001, n = 6 per group). (D–F) Chronic treatment with
bumetanide partially correct the ATT phenotype in Fmr1 KO mice. (D) Fmr1 KO mice treated with bumetanide continue to show a strong phenotype compared to
their WT littermates receiving aspartame drinking water (p < 0.01 on day 1 and p < 0.001 on day 2–4, n = 12 per group). (E) Strong reduction of ATT phenotype
after bumetanide treatment comparing treated and untreated Fmr1 KO mice: Fmr1 KO receiving aspartame water win most matches against Fmr1 KO treated with
bumetanide after day 1 (p < 0.01 on day 2, p < 0.001 on day 3 and 4, n = 12 per group). (F) WT mice receiving bumetanide in their drinking water and WT mice
receiving aspartame drinking water win equal amounts of matches (p > 0.1 for all days, n = 6 per group). (G–I) Combination of genetic mGluR5 reduction and
bumetanide treatment results in a slight worsening of the ATT phenotype compared to mGluR5 reduction or bumetanide treatment alone. (G) Fmr1 KO who are
Grm5+/− and treated with bumetanide lose most matches against WT receiving aspartame drinking water on day 1 (p = 0.02) but win most matches on day 3 and 4
(p < 0.001, n = 10 mice per group). (H) Fmr1 KO mice who are Grm5+/− and treated with bumetanide win slightly more matches than Fmr1 KO receiving
aspartame drinking water (p = 0.04 on day 1 and 4 and p < 0.01 on day 2 and 3, n = 18 mice per group). (I) Fmr1 KO who are Grm5+/− and treated with
bumetanide win slightly more matches than Fmr1 KO Grm5+/− receiving aspartame drinking water (p = 0.01 to p = 0.002, n = 17 mice per group). Data shown as
mean percentage ± SEM. P-values were calculated using a binomial distribution test was: in an experiment, both groups are similar if approximately 50% of matches
are won per group, ∗∗<0.001, ∗<0.01, ∧<0.05.

one intervention alone (Figure 1I). This might be explained
as an antagonistic effect. Although no synergy was observed,
clearly targeting the two pathways simultaneously, does create

a combined effect, attenuating their therapeutic efficacy on
FXS social behavior deficits, and confirming the pathways are
interconnected.
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OPTIMAL WINDOW IN COMBINATION
THERAPY

Interestingly, the partial rescue that we observed for both
treatments separately, is reduced when they are combined,
even leading to a slight worsening of the phenotype. These
results implicate that the treatment effect might be managed by
adding different interventions and titrating those to reach an
optimal effect. It has been previously suggested by Auerbach
et al. (2011) that synaptic plasticity is a tightly regulated
process. The authors demonstrated an optimal window for
protein synthesis levels. Deviations to either side of this
optimum, resulted in decreased functioning of the synapse
and aberrant synaptic plasticity. This idea of an optimal
synaptic function due to a balanced interconnection of involved
pathways, could be generalized to the excitatory/inhibitory
balance of the synapse or to synaptic performance in general.
Considering this optimum, our results might be explained by
either an opposing effect of both treatments, or by an overshoot
effect of both treatments when combined (Figure 2). In both
cases, this means that restoring this tightly regulated balance
will need tremendous fine-tuning. Unfortunately, it is poorly
understood how the mGluR5 and GABAergic pathways are
interconnected at the synapse and no biochemical read-out
is available to test whether the right balance has been
reached (Martin and Huntsman, 2012; Fatemi and Folsom,
2015). To complicate matters, the required balance might
be significantly different in different brain regions or even
differ at the synaptic level within one neuron, since FMRP is
not localized in every spine (Feng et al., 1997; Antar et al.,
2004).

Obviously, the results presented in Figure 1 regard only one
specific social behavior paradigm, which does not inform us on
the effect on other FXS behavioral and cognitive phenotypes.
In addition, only two pathways were targeted. Possibly, other
pathways are more important for social behavior and targeting
those might result in a beneficial effect. Even though we currently

FIGURE 2 | A simplified depiction of the relationship between the synaptic
pathway performance and the neuronal function. The black dot represents the
optimal function, as is the case in WT animals. Either increased (red dot) or
decreased (blue dot) performance leads to a suboptimal function of the
neuronal synapses. In order to correct FXS, therapy needs to be fine-tuned, to
prevent an overshoot (going from the red to the blue dot) or a worsening of the
synaptic pathway performance (going from the red dot further to the right).
The figure is based on the article by Auerbach et al. (2011).

cannot demonstrate a synergistic effect, it seems plausible that
targeting only one pathway is not sufficient to ameliorate FXS
completely. While considering the lack of translation from mice
to human, combination therapy has received little attention,
even though we are only starting to grasp the complex role of
FMRP in synaptic plasticity. FMRP binds many post-synaptic
mRNAs, that are involved in important neuronal synaptic
pathways. Moreover, FMRP does not only have a postsynaptic
function, but is also present in the presynaptic compartment
and other cell types, including glia cells (Wang et al., 2004;
Pacey and Doering, 2007; Pacey et al., 2011a; Giampetruzzi
et al., 2013; Higashimori et al., 2013; Myrick et al., 2015). Thus,
absence of FMRP potentially disrupts many cellular pathways,
each with its own function. Recently, a missense mutation in
FMR1 has been identified in a patient, demonstrating a specific
function of FMRP in the presynaptic compartment (Myrick
et al., 2015). The patient only displayed ID and seizures, but
did not display the behavioral problems associated with FXS,
suggesting different pathways in different cellular compartments
might be associated with specific FXS symptoms and phenotypes.
Additionally, FMRP is present in other non-neuronal cell-types,
where its function is even less understood (Wang et al., 2004;
Pacey and Doering, 2007; Higashimori et al., 2013). For example,
compelling evidence demonstrates the role of astrocytes, in
neuronal maintenance, but also in active control of synaptic
function, leading to the new concept of the tripartite synapse
(Cheng et al., 2012). FMRP is present in the astrocytes, and
its absence has been demonstrated to hamper normal astrocyte
function, opening a new field of possible therapeutic strategies.
An additional reason that advocates combination therapy, is
the presence of compensational mechanisms that add to the
individual differences. Targeting more than one unit of a
pathway could be more effective and specific, with a lower dose
needed, reducing the chance for side effects.

Other research fields have a longer history of combining
targeted treatments to improve therapy. For example, studying
the complex genetics of cancer has led to the identification
of key-oncogenic cellular pathways, enabling the use of
a combination of targeted pharmacological treatments to
selectively block and kill tumor cells (Yap et al., 2013). However,
these settings often have access to high throughput study
models in cell culture and well-defined outcomemeasures, which
are lacking in neurodevelopmental research. In recent years,
combination therapy in neurodevelopmental syndromes have
been proposed, for example in Rett syndrome (Sahin and Sur,
2015) and tuberous sclerosis complex (Lee et al., 2006). In FXS
patients, one case report mentioned combination therapy with
two drugs in combination with intensive educational treatment
in two children, resulting in improvement of cognition and
behavior (Winarni et al., 2012). In the near future, a clinical
trial treating FXS patients with a combination of lovastatin
and minocycline, will start (NCT02680379). New pre-clinical
studies are needed to further evaluate the role of FMRP in
other cell-types and to reveal new targets for therapy. Those
targets should be used to investigate whether combination
therapy is the key solution for FXS treatment, by targeting
multiple pathways in different cellular compartments or cell-
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types. Probably, all those interventions must be applied in
combination with stimulating behavioral and cognitive therapy,
to maximize therapeutic effects.

CONCLUSION

In conclusion, the complexity of the pathophysiology of FXS
and the lack of translation from mouse to human, indicates
that combination therapy is essential in the development of a
targeted therapy for FXS syndrome. This approach needs to
be further explored and might become successful, using other
drugs, or targeting pathways in different cellular compartments,
for example pre- and postsynaptic, or even other cell-types.
However, combination therapy will need to be fine-tuned, in
order to restore the tightly regulated synaptic pathway balance.
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