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Background: Molecular information about bladder cancer is significant for treatment
and prognosis. The immunohistochemistry (IHC) method is widely used to analyze the
specific biomarkers to determine molecular subtypes. However, procedures in IHC and
plenty of reagents are time and labor-consuming and expensive. This study established
a computer-aid diagnosis system for predicting molecular subtypes, p53 status, and
programmed death-ligand 1 (PD-L1) status of bladder cancer with pathological images.

Materials and Methods: We collected 119 muscle-invasive bladder cancer (MIBC)
patients who underwent radical cystectomy from January 2016 to September 2018.
All the pathological sections are scanned into digital whole slide images (WSIs), and
the IHC results of adjacent sections were recorded as the label of the corresponding
slide. The tumor areas are first segmented, then molecular subtypes, p53 status, and
PD-L1 status of those tumor-positive areas would be identified by three independent
convolutional neural networks (CNNs). We measured the performance of this system
for predicting molecular subtypes, p53 status, and PD-L1 status of bladder cancer with
accuracy, sensitivity, and specificity.

Results: For the recognition of molecular subtypes, the accuracy is 0.94, the sensitivity
is 1.00, and the specificity is 0.909. For PD-L1 status recognition, the accuracy is 0.897,
the sensitivity is 0.875, and the specificity is 0.913. For p53 status recognition, the
accuracy is 0.846, the sensitivity is 0.857, and the specificity is 0.750.

Conclusion: Our computer-aided diagnosis system can provide a novel and simple
assistant tool to obtain the molecular subtype, PD-L1 status, and p53 status. It can
reduce the workload of pathologists and the medical cost.
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INTRODUCTION

Bladder cancer is the most common entity of the urinary tract,
with an incidence rate of 350,000–380,000 cases being reported
per year worldwide (1, 2). Bladder cancer is broadly categorized
into non-muscle-invasive bladder cancer (NMIBC) and muscle-
invasive bladder cancer (MIBC). NMIBC frequently recurs at an
approximate rate of 50–70% and progresses to MIBC at a rate of
15% (3–5). MIBC is a serious and more advanced stage of bladder
cancer with a 5-year survival rate of < 50% (6, 7). Bladder cancer
kills around 150,000 people a year (8). However, the progress
in the diagnosis and treatment of bladder cancer is slow, and
there is still no major advance in the clinical treatment of bladder
cancer for more than 30 years until the advent of immunotherapy.
Neoadjuvant chemotherapy combined with radical cystectomy
is the standard treatment for MIBC (9). Up to half of the
patients who underwent neoadjuvant chemotherapy can obtain
clinically significant therapeutic response (10). However, which
patients with MIBC may benefit from neoadjuvant chemotherapy
is not identified in the lack of reliable markers for predicting
the effectiveness of chemotherapy (11). Therefore, it is hard
to choose the optimal individualized treatment strategy for
each patient, and there is still a lack of effective and safe
alternatives when tumor cells (TCs) show intrinsic or acquired
resistance to chemotherapy drugs. With the rapid development
of genetic engineering and molecular biology, molecular profiling
is expected to resolve this problem and may be a useful tool
for the treatment of bladder cancer. There is an urgent need
of molecular profiling for the prognosis and effective treatment
of bladder cancer.

It has been clinically proven that the use of accurate status
of molecular subtype, programmed death-ligand 1 (PD-L1),
and p53 typically helps to determine the appropriate therapy
and thus improves the survival rate for patients with bladder
cancer (12–21). At present, identifying biomarkers for molecular
profiling has mainly included the use of immunohistochemistry
(IHC) and next-generation sequencing (NGS) and evaluated by
manual quantitative evaluation. The work is expensive, time-
consuming, and laborious with subjective variations and not
adequately used for the diagnosis and treatment of bladder
cancer. Although Iwatate et al. (22) had tried to predict the P53
status and PD-L1 status of pancreatic tumors from CT images
with radiogenomics, the area under the curve (AUC) values for
p53 and PD-L1 predictive models were only 0.795 and 0.683,
respectively. Therefore, it is necessary to explore new methods
for automatic analysis of the information of tumor molecular.

In recent years, more and more attention has been paid to
the application of deep learning in the analysis and processing of
pathological images. In Nicolas et al. (23) trained a convolutional
neural network (CNN) on histopathology images obtained from
The Cancer Genome Atlas (TCGA) to accurately classify whole-
slide pathology images into adenocarcinoma, squamous cell
carcinoma, or normal lung tissue (24). This method outperforms
a pathologist and achieves better sensitivity and specificity.
Saltz et al. developed a deep learning method to generate the
mapping of tumor-infiltrating lymphocytes (TILs) from standard
pathology cancer images, which can help pathologists quickly

obtain tumor-immune information (25). In (26) Jacob et al.
showed that deep residual learning can predict microsatellite
instability (MSI) of gastric adenocarcinoma and colorectal cancer
directly from H&E histology, which can provide immunotherapy
to a much broader subset of patients with gastrointestinal
cancer (27).

In this study, we aimed to establish a computer-aided
diagnosis system based on deep learning to predict the molecular
subtypes, the PD-L1 status, and the p53 status directly of
bladder cancer from pathological images. To complete this
system, our work can be divided into five subtasks: (1)
segment tumor area from whole slide images (WSIs); (2)
train a CNN for molecular subtype recognition; (3) train
a CNN for PD-L1 status recognition; (4) train a CNN for
p53 status recognition; and (5) evaluate the computer-aided
diagnosis system. Four independent CNNs were employed to
handle different classification tasks. Due to the outstanding
performance of ResNet in alleviating vanishing and exploding-
gradient, ResNet was employed as CNNs in this study (28).
After the training of four independent CNNs, we develop
a computer-aided diagnosis system to automatically predict
molecular subtypes and the status of p53 and PD-L1 directly
from pathological images. This system can reduce the workload
of pathologists and accelerate the identification of molecular
subtypes and the status of p53 and PD-L1.

DATA AND METHODS

Data Preparation
This study was approved by the Ethics Committee of The First
Affiliated Hospital, Zhejiang University School of Medicine with
the informed consent waived. A total of 119 patients with
MIBC who underwent radical cystectomy from January 2016
to September 2018 at the Department of Pathology, The First
Affiliated Hospital, Zhejiang University School of Medicine were
enrolled in this study. Pathologic diagnosis and tumor-node-
metastasis staging were performed according to the current
World Health Organization (29) classification of and the 8th
American Joint Committee on Cancer (30). All the pathological
sections are scanned into digital WSIs with a 3DHISTECH
Pannoramic SCAN. Due to the same molecular information
between adjacent sections, IHC results of adjacent sections were
recorded as labels of corresponding slides after confirmation by a
senior pathologist.

Programmed death-ligand 1 IHC was conducted using the
following assay: Ventana/SP263 (Ventana Benchmark Ultra, pre-
diluted antibody, pre-treatment: CC1 64 min incubation at
100◦C). Human placenta sections were used as positive controls.
Monoclonal antibodies against CK5/6 (CK5/6.007, Invitrogen),
CK20 (EP23, Invitrogen), CD44 (VFF-7, LabVision), and p53
(D0-7, LabVision) were used according to Envision protocols.
Two pathologists blinded to the patients’ outcomes evaluated
the results. PD-L1 expressions on TCs and immune cells (ICs)
were evaluated. The overall PD-L1 positivity was defined as PD-
L1 expressions on ≥ 25% of all TCs and/or ICs. p53 abnormal
staining was defined as 0 or > 50% nuclear staining. For the
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TABLE 1 | Clinical features and molecular information of patients with
muscle-invasive bladder cancer (MIBC).

Variables Values

Age (years) 70 (47–90)

Sex Male (cases) 103

Female (cases) 16

Molecular subtype Luminal (cases) 51

Basal (cases) 62

Double-negative (cases) 6

PD-L1 status Positive (cases) 40

Negative (cases) 79

p53 status Wild (cases) 103

Abnormal (cases) 16

molecular subtype in MIBC, the biomarkers CD44 and CK5/6
score as a surrogate for the basal subtype and CK20 for the
luminal subtype. Each case was designated as a basal or luminal
subtype using the method based on the highest score of any of the
above three markers (31).

Statistical Analyses
As shown in Table 1, these patients are composed of 103 male
and 16 female subjects with a mean age of 70 years (range from
47 to 90 years). For molecular subtype, there were 51 cases of
luminal type, 62 cases of basal type, and 6 cases of double-negative
type. For PD-L1, there were 40 positive cases and 79 negative
cases. For P53, there were 103 wild cases and 16 abnormal cases.
Chi-squared test was used to evaluate the relevance between
PD-L1 expression, molecular subtype, P53 expression, and the
clinicopathological parameters. After statistical analysis, the PD-
L1 positivity was significantly associated with age < 70 (p< 0.05).
Compared with non-basal subtypes, the positive rate of PD-
L1 in basal subtypes was higher (p < 0.05). There was no
significant relationship observed between PD-L1 expression, sex,
tumor stage, lymph node status, nerve infiltration, tumor size,
and p53 expression.

Method
Model Construction
The flowchart of the method is shown in Figure 1. Given
a WSI, the tumor areas were first segmented with a weekly
supervised framework, then molecular subtypes, p53 status, and
PD-L1 status of those tumor areas would be identified by three
independent CNNs. Finally, we developed a computer-aided
diagnosis system to automatically predict the molecular subtypes,
the PD-L1 status, and the p53 status directly from pathological
images. As illustrated in Figure 1, the proposed method
consists of four parts that include tumor area segmentation,
molecular subtype recognition, PD-L1 status recognition, and
p53 status recognition.

(1) Tumor area segmentation
Since cancerous urothelial cells have infiltrated into other

tissues and are fragmentary in the image, the pixel-level
annotation of pathological images is a fallible and time-
consuming task. Large number of pathological images with

pixel-level annotations were not easily accessible. Inspired by
Xu et al. (32), a weekly supervised framework, CAMEL, was
employed for tumor area segmentation using only image-level
labels. Instead of introducing more supervision constraints,
CAMEL splitted the WSI into latticed instances (1,024 × 1,024
pixel tiles at 10 × magnification) and automatically generated
their instance-level labels with a combined multiple instance
learning (cMIL) approach. After the instance-level dataset was
prepared, an instance classifier was trained in a fully supervised
manner. The architecture used in both cMIL and the instance
classifier was ResNet-34 (28). Then the label of these latticed
instances was refined using the trained instance classifier. Finally,
the refined instance-level labels were directly assigned to their
corresponding pixels. Therefore, a segmentation model based
on U-Net (33) with SE block (34) [U-SE-Net (35)] can be fully
supervised and trained with the pixel-level labels. The sequeze
and excitation (SE) block are added after the Encoder or Decoder
block in U-Net. The detail of CAMEL can be found in Xu
et al. (32). The dataset was randomly allocated into the training
set (49 cases), the validation set (33 cases), and the testing
set (37 cases). This model was developed and trained on the
training set, and the hyper-parameters were fine-tuned using the
validation set. The performance of this model was evaluated on
the testing set.

(2) Molecular information recognition
Clinically, the molecular information of MIBC is analyzed

by quantifying the expression status of tumor and surrounding
cells. Therefore, 39,562 image tiles with 50% or above 50% tumor
area were selected from 119 WSIs for the further molecular
information recognition. Due to the different distribution in
three kinds of molecular information, three independent deep
learning models were trained for the recognition of molecular
subtypes, PD-L1, and p53 status, respectively. ResNet-50 was
employed to implement these models. According to the actual
proportion of cases in different molecular information, the
dataset was allocated into the training set, the validation set,
and the testing set. All models were developed and trained on
the training set, and their hyper-parameters were fine-tuned
using the validation set. The performance of all models was
evaluated on the testing set. The detail of the dataset for molecular
information recognition is described in Table 2. It is worth saying
that the double-negative type was eliminated for the molecular
subtype because this type was relatively rare in our dataset.

Model Training
All models in this study were implemented on Keras v2.2.5
and trained on two NVIDIA GTX 1080Ti GPUs. Keras
is a deep learning application programming interface (API)
written in Python, running on top of the machine learning
platform TensorFlow.

(1) The training of tumor area segmentation: We applied
random rotation, random mirroring, and random scaling to
augment the training data. Both ResNet-34 in cMIL and the
instance classifier were trained using an Adam optimizer with a
fixed learning rate of 0.001. In cMIL, ResNet-34 was fine-tuned
with the pre-trained model on ImageNet, and the batch size
was set to 2. In the instance classifier, the batch size was set to
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FIGURE 1 | Workflow of muscle-invasive bladder cancer (MIBC) histopathological molecular information recognition with convolutional neural networks (CNNs).

32. During the segmentation stage, the segmentation model was
training using Adam optimizer (36) with a fixed learning rate
of 0.001 and the batch size was set to 16. Due to the limitation
of the GPU memory, the 1,024 × 1,024 pixel tiles and their
corresponding masks were resized to 512× 512 images.

(2) The training of molecular information recognition: Data
augmentation, such as flipping, contrast adjustment, random
rotation (rotation angle range 0–180◦), random mirroring,
and random scaling, was manipulated to avoid overfitting.
Each ResNet-50 was fine-tuned with the pre-trained model on

TABLE 2 | The overview of the dataset for molecular information recognition.

Cohorts Training Validation Testing

Molecular
subtypes

No. cases Liminal 18 14 19

Basal 21 16 25

No. tiles Liminal 4890 4720 6962

Basal 5878 5690 8345

PD-L1 status No. cases Positive 18 10 12

Negative 31 23 25

No. tiles Positive 5421 3614 4252

Negative 10576 7159 8540

p53 Status No. cases Wild 40 29 34

Abnormal 7 4 5

No. tiles Wild 13269 9485 11599

Abnormal 2062 1357 1790

ImageNet using Adam optimizer with a warm-up strategy. The
learning rate was set to 0.01 and then linearly decreased to 0.001
in 100 epochs. The batch size was set to 32. For molecular
subtypes and PD-L1 status recognition, the optimization
objective function was computed by the Cross-Entropy Loss
Function. For p53 status recognition, in consideration of the
extremely imbalanced sample distribution in p53 status, focal loss
(37) was employed to deal with the extreme imbalance in the
sample distribution of p53 status. Focal loss can be formulated as:

FL(pt) = −α(1− pt)
γ log(pt) (1)

Where pt can be defined in formula (2). α is the weight of class
t, γ is a parameter to control the weight and generally set to 2. An
appropriate α could make imbalance problem solved more easily,
we set α to 0.25 in our experiment.

pt =
{
p if y = 1
1− p otherwise

(2)

RESULTS

Evaluation of Tumor Area Segmentation
The testing set was annotated by three experienced pathologists
(all with over 10 years of experience in the pathological diagnosis
of bladder cancer) and checked by two senior pathologists (both
with more than 15 years of experience in the pathological
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FIGURE 2 | Receiver operator characteristic (ROC) curve of tumor classification pre-trained model.

diagnosis of bladder cancer) as the ground truth for evaluation.
The instance classifier was evaluated on the testing set, the
accuracy and AUC of the model are 0.9958 and 0.98 (Figure 2).
Then the instance-level labels of the training set are assigned
to the corresponding pixels to generate the pixel-level labels.
Therefore, a fully supervised segmentation model can be trained.
We have compared the performance of U-Net and U-SE-Net. The
performance was quantified by using the Dice score (Dice), pixel
accuracy (Pacc), and Jaccard score (Jac) as follows:

Dice =
2× Ntp

2× Ntp + Nfp + Nfn
, (3)

Pacc =
Ntp + Ntn

Ntp + Ntn + Nfp + Nfn
, (4)

Jac =
Ntp

Ntp + Nfp + Nfn
, (5)

where Ntp , Ntn , Nfp , and Nfn are the number of pixels for true
positive, true negative, false positive, and false negative.

As shown in Table 3, the segmentation performance of the
instance classifier, U-Net, and U-SE-Net is listed. From the results
in Table 3, we can draw the following conclusions: (1) with the
supervision of the instance-level labels, U-Net and U-SE-Net can
obtain better segmentation performance; (2) SE blocks in U-SE-
Net can exploit adaptive channel-wise feature recalibration to
boost the generalization performance, so U-SE-Net outperforms
the instance classifier and U-Net. The segmentation results of the
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instance classifier and U-SE-Net are visualized in Figure 3, which
can also prove that the above conclusion is reliable.

Evaluation of Molecular Information
Recognition
To evaluate the performance of molecular information
recognition, the result of the testing set is reported in Table 4.
The prediction of each case was generated by the average
score of the corresponding tumor area tiles. For molecular
subtype recognition, the accuracy, sensitivity, and specificity
were 0.946, 1.000, and 0.909, respectively. For PD-L1 status
recognition, the accuracy, sensitivity, and specificity were 0.897,
0.875, and 0.913, respectively. For p53 status recognition, the
accuracy, sensitivity, and specificity were 0.846, 0.857, and 0.750,
respectively. The ROC curves of each subtask are shown in
Figure 4. To further compare with the machine learning method,

TABLE 3 | The tumor segmentation performance of the instance classifier, U-Net,
and U-SE-Net.

Methods Dice Paac Jac

Instance classifier 0.784 0.832 0.796

U-Net 0.894 0.915 0.903

U-SE-Net 0.947 0.952 0.958

FIGURE 3 | Tumor segmentation results with the instance classifier and
U-SE-Net. (A) pathological images; (B) segmentation results with the instance
classifier (red masks); (C) segmentation results with U-SE-Net (red masks).

the random forest algorithm1 was used to select useful features
from pathomics features and build the prediction models for
molecular information recognition. In total, 154 pathomics
features, such as pixel intensity, morphology, and nuclear texture
for each ROI, were extracted with the CellProfiler platform
(version 2.2.1).2 The results in Table 4 indicate that CNNs were
superior to the machine learning method.

DISCUSSION

Bladder cancer is one of the most common malignant tumors
of the urinary system, with approximately 400,000 new cases
diagnosed each year. The traditional chemotherapy regimen
has limited efficacy and is prone to relapse and metastasis
with a poor overall prognosis (38). Unfortunately, there are
few advances in its clinical management due to the poor
understanding of the correlation between its molecular and
clinical features. The molecular biomarkers and pathways
involved in bladder cancer are key to understanding its
biological heterogeneity and identifying specific subtypes that
can be used to predict clinical outcomes and treatment
responsiveness to personalized therapies (39). In general,
IHC and NGS are often used to identify biomarkers for
molecular profiling. However, they are not adequately used
in the diagnosis and treatment of bladder cancer because
these works are expensive, time-consuming, and laborious
with subjective variations. In this study, a computer-aided
diagnosis system based on deep learning is established for
automatic analysis of the tumor molecular information directly
from the pathological image. This computer-aided diagnosis
system can be an effective tool to reduce the workload
of pathologists.

There is some software available for molecular analysis.
However, the available software, such as HALO,3 is complex
and expensive to use. Our computer-aided diagnosis system is
implemented in an end-to-end manner. Postoperative specimens
from 119 patients with MIBC were used for the training and
tests. A weakly supervised method was adopted to segment
tumor area from WSI using only image-level labels. With
only image-level labels, our method can segment tumor area
with high Dice score, pixel accuracy, and Jaccard score

1https://scikit-learn.org/stable/modules/ensemble.html#forest
2https://cellprofiler.org/
3https://www.indicalab.com/halo

TABLE 4 | The performance of molecular information recognition with
convolutional neural networks (CNNs) or machine learning.

Methods Molecular information Accuracy Sensitivity Specificity

CNNs Molecular subtype 0.946 1.000 0.909

PD-L1 status 0.897 0.875 0.913

p53 status 0.846 0.857 0.750

Machine learning Molecular subtype 0.856 0.871 0.861

PD-L1 status 0.812 0.820 0.823

p53 status 0.785 0.778 0.686
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FIGURE 4 | ROC curves of molecular subtype, PD-L1 status, and p53 status with CNN recognition. Left: molecular subtype; Middle: PD-L1 status; Right: p53
status.

FIGURE 5 | Heatmaps of the same pathological image predicted by our proposed method for molecular subtype, PD-L1 status, and p53 status.

(Dice score: 0.947, pixel accuracy: 0.952, and Jaccard score:
0.958). Then three independent ResNet-50 were trained for
the recognition of molecular subtype, PD-L1 status, and p53
status. All ResNet-50 were fine-tuned with the pre-trained
model on ImageNet. Focal loss was further introduced to
alleviate the extreme imbalance between positive and negative
samples in p53 status. For molecular subtype recognition,
the accuracy is 0.94, the sensitivity is 1.00, the specificity is
0.909. For PD-L1 status recognition, the accuracy is 0.897,
the sensitivity is 0.875, and the specificity is 0.913. For p53
status recognition, the accuracy is 0.846, the sensitivity is
0.857, and the specificity is 0.750. These results verify the
effectiveness of our system.

To further demonstrate the effectiveness of our proposed
method, we visualize the probability heatmaps in Figure 5.
These heatmaps can be used as an IHC result for pathologists
to conduct further MIBC research and prove what our
proposed method has learned. More comparisons of molecular
information interpretation results between IHC and our
proposed method can be found in the “Supplementary
Material.” The above results confirm that our computer-aided
diagnosis system can provide a novel and simple assistant
tool to obtain the molecular subtype, PD-L1 status, and
p53 status. It can reduce the workload of pathologists and
the medical cost.

Although the proposed method achieved excellent
performance, this study still had several limitations. First,
our proposed method was trained and tested on a relatively
small dataset from a single large hospital, lacking multi-center
or external data validation. Future research is needed to
incorporate more data from multi-hospital. Second, this study
was retrospective, and more prospective data are expected
to be included in this study in the future. Third, without the
pixel-level labels in training data, the performance of tumor
segmentation is not ideal and needs to be improved. In addition,
finally, the double-negative type was eliminated for the molecular
subtype in this study. We hope we can collect more datasets to
implement the recognition of the double-negative. Therefore,
these limitations will be overcome in our future work.

CONCLUSION

This study developed a computer-aided diagnosis system that
achieved high performance in the recognition of molecular
subtypes, PD-L1 status, and p53 status directly from pathological
images based on deep learning. Our computer-aided diagnosis
system can provide a novel and simple assistant tool to obtain the
molecular subtype, PD-L1 status, and p53 status. It can reduce
the workload of pathologists and the medical cost.
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