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Abstract: Creatine is a broadly used dietary supplement that has been extensively studied for its
benefit on the musculoskeletal system. Yet, there is limited knowledge regarding the metabolic regu-
lation of creatine in cells beyond the muscle. New insights concerning various regulatory functions
for creatine in other physiological systems are developing. Here, we highlight the latest advances in
understanding creatine regulation of T cell antitumor immunity, a topic that has previously gained
little attention in the creatine research field. Creatine has been identified as an important metabolic
regulator conserving bioenergy to power CD8 T cell antitumor reactivity in a tumor microenviron-
ment; creatine supplementation has been shown to enhance antitumor T cell immunity in multiple
preclinical mouse tumor models and, importantly, to synergize with other cancer immunotherapy
modalities, such as the PD-1/PD-L1 blockade therapy, to improve antitumor efficacy. The potential
application of creatine supplementation for cancer immunotherapy and the relevant considerations
are discussed.
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1. Introduction

Creatine (Cr) is a nitrogenous organic acid naturally occurring in vertebrates. En-
dogenous creatine is synthesized from arginine and glycine mainly in the kidney and liver
by two enzymes, L-arginine:glycine amidinotransferase (AGAT; also known as GATM)
and guanidinoacetate N-methyltransferase (GAMT). Synthesized creatine is released into
the circulation and specifically taken up by the creatine transporter (CrT or SLC6A8) ex-
pressing cells, where creatine is further phosphorylated by creatine kinase (CK) using
adenosine triphosphate (ATP) to form phosphocreatine (PCr) [1]. Four CK isoforms have
been identified: two cytosolic isoforms, the muscle-type (CKM) and the brain-type (CKB);
and two mitochondrial isoforms, the ubiquitous-type (CKMT1) and the sarcomeric-type
(CKMT2) [2]. The CK/PCr/Cr system is coupled with ATP-adenosine diphosphate (ADP)
transition to buffer intracellular ATP levels. PCr can be break down by CK to resynthesize
ATP that supplies cellular energy needs in an acute manner [1].

Besides de novo synthesis, diet is also a primary source of natural creatine for humans.
A person who eats red meat, poultry, and/or fish obtains approximately 50% of daily
creatine need (about 2 g per day) from food intake [3]. Compared to non-vegetarians, vege-
tarians have significantly lower levels of creatine and phosphocreatine in the muscle [4,5].
The average creatine stores for a 70 kg adult are between 120 and 140 g [6]. However,
approximately 2 g per day of creatine in the muscle are degraded into creatinine that is
excreted in the urine [6]. Degradation of creatine is even greater in individuals with higher
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physical activity and/or larger muscle mass. Wallimann et al. have reported that normal
omnivore diets generally provide 0.75–1.5 g/day of creatine and are not sufficient to fully
saturate creatine stores in the body [7]. Therefore, creatine supplementation is an effective
way to increase the creatine reservoir. Creatine is predominantly stored in skeletal muscle
as free creatine (~40%) or phosphocreatine (~60%); the latter is a major source of bioenergy
to the body [1].

Creatine was discovered as a constituent of meat by the French chemist Michel-Eugene
Chevreul more than 180 years ago. However, creatine did not gain wide attention until the
1990s when two gold medalists from the 1992 Barcelona Olympics credited it with helping
them enhance performance. The phosphagen energy metabolic system produces ATP
more rapidly than other metabolic systems, such as the glycolysis system and the aerobic
system [8]. Concentrations of cellular PCr in some tissues such as muscles or the brain can
reach up to 30–40 mM, resulting in rapidly replenishing ATP stores that can be immediately
used during high-energy demand states [9]. Over the past three decades, oral creatine
supplements have been broadly utilized by athletes to improve performance during high-
intensity exercise with repeated bouts and short rest periods, such as running, swimming,
sprinting, jumping, and strength training [9–13]. The improvement in performance can
reach up to 20% on various high-intensity exercise tasks [10]. A major mechanism is that
increasing the stores of PCr in skeletal muscle leads to the rephosphorylation of ADP
to ATP during bursts of high intensity exercise, thereby increasing the availability of
bioenergy [14,15]. Hydrogen ions resulting from increased lactic acid accumulation during
high-intensity exercise is a key contributor to muscle fatigue. Given that the breakdown of
PCr to creatine and phosphate consumes a hydrogen ion, creatine can also buffer the pH
changes caused by increased hydrogen ion concentration and maximize performance [16].

In addition to its use by athletes, creatine is the most popular nutrition supplement
used by body builders to gain muscle mass [14]. The popular form of creatine used by
athletes and body builders is creatine monohydrate [17]. The dosing strategy typically
consists of two phases: the first phase is a loading phase in which athletes ingest 20 g per
day of creatine over four doses for five to seven days, followed by a maintenance phase
where 1–10 g per day of creatine is administered for a month or much longer [1,10]. The
loading phase has been reported to increase muscle stores of PCr between 20% and 40% [9].
Importantly, the creatine-loading phase results in limited side effects, such as cramping,
nausea, and fluid retention [18]. Alternatively, a line of evidence has indicated that the
ingestion of 3 g per day of creatine for a minimum 28 days is as effective as the higher dose-
loading regimen at raising total skeletal muscle creatine stores [19]. Gradually increasing
the muscle stores of creatine may alleviate side effects that are commonly associated with
the higher dose-loading regimen.

Despite 95% of creatine stores in skeletal muscle, a significant amount of creatine
exists in the brain [20], where creatine plays key roles in maintaining normal neurological
functions. Human genetic deficiencies in creatine pathway components involved in creatine
synthesis or transport result in decreased levels of ATP in the brain, which is associated
with various clinical symptoms including developmental delays, speech impairment,
and mental retardation [21]. Several lines of evidence have revealed that oral creatine
supplements protect against neurological disorders such as traumatic brain injury [22],
amyotrophic lateral sclerosis [23], Huntington’s Disease [24], and Parkinson’s Disease [25].

Clinically, patients with deficiency in creatine synthesis can benefit from creatine sup-
plementation; however, no treatment is available to patients with deficiency in the creatine
transporter gene CrT [26,27]. The gene CrT is located on the X chromosome. This gene
encodes the solute carrier family 6 member 8 (SLC6A8) that is a plasma membrane protein
whose function is to transport creatine into and out of cells in a sodium- and chloride-
dependent manner. A high expression of CrT gene is required for normal physiological
functions of high-energy demanding cells and organs such as muscle and the brain [1].
Patients harboring human CrT mutations have been associated with a group of muscle and
brain disorders [1]. In line with the clinical data, mice with systemic CrT deficiency have
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smaller body weight and exhibit deficits in memory and spatial learning [28]. However,
the function and regulation of CrT/creatine system outside of the muscle and the brain
remain largely elusive. New concepts of creatine biology in other systems and cell types
have just begun to be developed in the past few years.

In this review, we aim to summarize recent advances in understanding creatine regula-
tion of antitumor immunity, a topic that has previously gained little attention in the creatine
research field. We also discuss the potential application of creatine supplementation for
cancer immunotherapy and relevant considerations.

2. Creatine Regulation of T Cell Antitumor Immunity

T cells play a central role in mediating immune responses against cancer. In a tumor,
CD8 cytotoxic T cells are activated through their T cell receptor (TCR) recognition of
tumor antigenic peptides presented by major histocompatibility complex (MHC) class I
molecules on tumor cells. Activated CD8 T cells can efficiently kill tumor cells by releasing
cytotoxic molecules (e.g., granzymes and perforin) or using death ligands (e.g., TNF-related
apoptosis-inducing ligand and CD95 ligand) [29,30]. Therefore, CD8 T cells have emerged
as attractive therapeutic targets for cancer treatment [31–34].

The activation and proliferation of T cells are energy-demanding activities, which
require large amounts of energy in the form of ATP [35]. Distinct metabolic programs
such as glycolysis and tricarboxylic acid (TCA) cycle are utilized to convert nutrients
(e.g., glucose, amino acids, and lipids) into ATP to support CD8 T cell homeostasis and
effector function [35–37]. However, in the tumor microenvironment, T cells face fierce
competition with fast-growing tumor cells for the limited availability of nutrients [38].
Therefore, an economical and efficient energy metabolism is required for tumor-infiltrating
T cells to sustain effective antitumor responses [39]. However, metabolic regulators of
T cell antitumor immunity remains poorly understood [40–43]. Studies of the metabolic
regulation of T cell antitumor immunity thus may identify new therapeutic targets for
treating cancer.

By using a B16-OVA mouse melanoma model, Di Biase and colleagues observed
an upregulation of CrT gene expression in tumor-infiltrating CD8 T cells compared to
CD8 T cells isolated from tumor-free mice. Further study of the tumor-infiltrating CD8
T cell subsets revealed an upregulation of CrT gene expression that was much more
significant in the PD-1hi cells compared to the PD-1lo cells; the highest levels of CrT gene
expression were detected in the PD-1hiTim-3hiLAG-3hi subset that is considered to be the
most “exhausted” [44]. These findings suggest a possible feedback loop in tumor-fighting
CD8 T cells that compensates for bioenergy-insufficiency by increasing creatine uptake; in
particular, the “exhausted” CD8 T cells are highly capable of uptaking creatine and may
benefit the most from creatine supplementation treatment [44].

To study if the CrT/creatine system regulates the energy metabolism of tumor-fighting
CD8 cytotoxic T cells, systemic CrT-knockout (KO) mice were used for the B16-OVA tumor
challenge. Notably, CrT-KO mice with creatine supplementation exhibited accelerated
tumor growth compared to their CrT-wild-type (WT) littermates with creatine supplementa-
tion [44]. In line with these results, CrT-KO tumor-infiltrating CD8 T cells expressed higher
levels of PD-1 compared to their wildtype counterparts [44], suggesting CrT deficiency
may lead to bioenergy insufficiency and exhaustion of antitumor T cells.

To study if creatine directly or indirectly regulates antitumor immunity, WT CD45.1
congenic mice were reconstituted with bone marrow cells from either CrT-WT or CrT-KO
donor mice and then challenged with B16-OVA melanoma cells. Indeed, CrT deficiency
impeded the capacity of the reconstituted immune system to control tumor growth. Fur-
thermore, OT1 transgenic (Tg)/CrT-KO mice were generated to produce OVA-specific
CD8 T cells deficient in CrT. After transferring these T cells into WT CD45.1 congenic
mice bearing pre-established B16-OVA tumors, they were less effective in suppressing
tumor growth compared to control WT T cells [44]. Similarly, the OT1 Tg/CrT-KO CD8 T
cells upregulated PD-1 levels and produced a smaller amount of effector T cell cytokines
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(e.g., IL-2 and IFN-γ) [44]. After in vitro antigen stimulation, CrT-KO CD8 T cells exhibited
a dramatic reduction in cell proliferation, surface activation marker production (e.g., CD25),
and effector cytokine (e.g., IL-2 and IFN-γ) and cytotoxic molecule (e.g., Granzyme B)
production, whereas overexpression of CrT gene rescued the proliferation and function of
CrT-KO CD8 T cells. Study of tumor antigen-specific CD8 T cells deficient in CrT exhibited
similar in vitro results [44].

Taken together, these studies strongly support a new role of the creatine/CrT pathway
in positively regulating an effector CD8 T cell response against tumor.

3. Molecular Mechanisms Mediating Creatine Regulation of CD8 T Cell Responses

Muscle cells and brain cells power cellular activities by using creatine to buffer intra-
cellular ATP levels via the CK/PCr/Cr system [1]. Recent evidence has indicated that the
expression levels of the CrT gene and Ckb gene are markedly upregulated in CD8 T cells
after TCR stimulation [44], suggesting activated CD8 T cells may use a similar mechanism
to power T cell activities, in particular antitumor reactivity. Compared to CrT-WT CD8
T cells, CrT-KO CD8 T cells contained significantly reduced levels of ATP after antigen
stimulation. Supplementing ATP to T cell culture not only rescued hypoactivation of
CrT-KO CD8 T cells, but also further activated CrT-WT CD8 T cells [44]. Another research
group also reported that overexpression of the Ckb gene enhanced the cytokine production
and proliferation of mature T cells, while blockade of CKB using specific CK inhibitor or
Ckb short hairpin RNA (shRNA) resulted in severe impairment of T cell function [45].
Collectively, these results indicate that the CK/PCr/Cr ATP-buffering system is essential
for a productive CD8 T cell response to antigen stimulation.

Besides the kidney and liver cells that are responsible for the classical pathway of
creatine synthesis, other cell types, such as the muscle cells [46], adipocytes [47], and
pancreatic acinar cells [48], have been indicated to synthesize creatine. Could de novo
synthesis be another source to feed the CK/PCr/Cr system in T cells? To address this,
expression of two genes encoding the key enzymes controlling creatine synthesis, Agat
and Gamt, was examined in T cells. Both genes were expressed at low levels in CD8 T
cells, and the expression of Gamt gene was further downregulated after TCR stimulation.
Intracellular creatine levels were undetectable in activated CrT-KO CD8 T cells [44]. Hence,
activated CD8 T cells may have a very limited capacity for de novo creatine synthesis and
mainly rely on uptaking extracellular creatine through CrT to sustain the CK/PCr/Cr
ATP-buffering system.

TCR stimulation leads to a cascade of phosphorylation events in a sequential manner
in T cells [49]. Given that ATP supplies the phosphate group for the phosphorylation
reactions catalyzed by the protein kinases [40], the intracellular ATP levels may have
a strong impact on T cell activation signaling pathways. Creatine uptake deficiency in
CD8 T cells dampened activation of the TCR proximal signaling molecule zeta chain of
TCR-associated protein kinase 70 (Zap-70) and the downstream transcription factors, NFAT
and AP-1. Supplementing ATP to T cell culture rescued the impaired TCR signaling in
CrT-KO CD8 T cells [44]. Creatine supplementation further enhanced the phosphorylation
of Zap-70 in CrT-WT CD8 T cells. Interestingly, the activation of another key downstream
transcription factor, NF-κB, was not effected by creatine uptake deficiency [44], suggesting
that the NF-κB signaling pathway may better resist ATP fluctuation during T cell response.
Together, these data suggest that a CD8 T cell requires the CK/PCr/Cr ATP buffering
system to properly activate TCR signaling pathways in response to antigen stimulation.

5′ Adenosine monophosphate-activated protein kinase (AMPK) can function as a
nutrient and energy sensor to maintain cell energy homeostasis by detecting shifts in the
AMP:ATP ratio. AMPK is activated in cells with low energy status. In order to restore cell
energy homeostasis, activated AMPK stimulates ATP-producing catabolic pathways and
inhibits ATP-consuming anabolic pathways. While AMPK as a key metabolic regulator
plays critical role in T cell metabolism and function [50–53], excessive AMPK activation
impairs the function of antigen-specific CD8 T cells [54]. In CrT-KO CD8 T cells, the
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decreased ATP levels were associated with increased activation of AMPK. In addition,
AICAR, an AMPK activator, significantly suppressed activation of AP-1 transcription factor
as well as production of effector T cell cytokines and surface activation markers in CrT-WT
CD8 T cells [44]. Therefore, creatine-mediated ATP buffering system may enhance effector
CD8 T cell activities in part through AMPK regulation of TCR signaling pathways. Further
studies are necessary to understand whether creatine-mediated ATP/energy buffering
system cross-regulates other signaling pathways and transcriptional events to augment
antitumor T cell function.

4. Creatine Supplementation for Cancer Therapy—Potential Application for
Cancer Immunotherapy

Many cancer immunotherapies have been designed to target immune cell metabolism
in the tumor microenvironment [38,40–42,55]. For example, immune checkpoint block-
ade (ICB) therapies, such as PD-1/PD-L1 therapies, reduce tumor glycolysis and switch
the energy metabolism to favor T cells [32,43,56–58]. By linking creatine to antitumor
T cell activities, recent findings update the picture of the metabolic regulatory network
that controls T cell antitumor immunity. A “hybrid-engine” model has been proposed
(Figure 1A,B), in which a tumor antigen-specific CD8 T cell uses glucose, amino acids,
and lipids as fuels for glycolysis and tricarboxylic acid cycle to generate ATP, while using
creatine-mediated ATP buffering system, a “molecular battery”, to store energy. This effi-
cient “hybrid-engine” system enables tumor antigen-specific CD8 T cells to make maximal
use of limited nutrients and mount their effector function in a metabolically challenging
environment [35,39,59]. CD8 T cells rely heavily on the uptake of creatine from extracel-
lular resources (Figure 1B). Therefore, manipulating creatine-mediated energy buffering
system to reinvigorate tumor-fighting CD8 T cells could open up a new avenue in cancer
immunotherapy. Although creatine can be taken from a creatine-rich diet as well as from
dietary supplements (Figure 1C), creatine administration as a therapeutic intervention
would generate the best antitumor benefits (Figure 1D).
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In a mouse B16-OVA melanoma model, creatine supplementation either through i.p.
injection or through oral administration effectively suppressed tumor growth, which was
associated with a dramatic reduction in the number of PD-1hiCD62Llo cells (an “exhaustion-
prone” T cell phenotype) among the tumor-infiltrating CD8 T cells [44]. In another mouse
syngeneic MC38 colon cancer model, animals receiving the creatine supplementation also
had significantly reduced tumor growth compared to control animals [44], suggesting
the creatine-induced tumor suppression effect is not tumor model specific and may be
applicable to many different types of cancer. As the expression of CrT in the MC38 colon
cancer cells is undetectable, the action of creatine supplementation is not on the tumor.
In addition, creatine supplementation was not able to suppress B16-OVA tumor growth
in immunodeficient NOD/SCID/IL-2Rγ−/− (NSG) mice or in C57BL/6J WT mice with
T cell depletion [44], suggesting that immune cells, especially T cells, may mediate the
tumor suppression effect of creatine supplementation. Therefore, creatine supplementation
has the translational potential as a new means of improving T cell antitumor activities for
cancer immunotherapy.

If creatine provides a potent energy benefit for antitumor CD8 T cells, which is non-
redundant to major immune checkpoint regulatory pathways, creatine supplementation
may be a valuable component of combination immunotherapy to further enhance efficacy
of current ICB treatments. Previous study has shown that the MC38 colon cancer model
is responsive to PD-1/PD-L1 blockade therapy [60]. In this model, creatine supplementa-
tion in combination with anti-PD-1 therapy generated a more powerful antitumor effect
compared to that of each monotherapy [44]. Of note, all the surviving mice from their
primary tumors were protected against a second tumor challenge for another 6 months.
This attractive antitumor effect was associated with significantly increased number of
memory CD8+CD44+ T cells in the surviving mice [44]. Collectively, these encouraging
findings point to a translational potential of creatine supplementation for combination
cancer immunotherapy.

5. Creatine Supplementation for Cancer Therapy—Other Potential Benefits

In addition to its potential application for cancer immunotherapy, creatine supple-
mentation has been indicated to augment the efficacy of the anticancer drug methylglyoxal
(MG) [61]. Pal et al. reported that administration of creatine enhanced the antitumor
effects of MG and ascorbic acid in sarcoma animal model in vivo and tumor burden was
completely eradicated [62]. These results suggest that creatine supplementation can func-
tion as an adjunctive therapeutic intervention with other anticancer agents. Moreover,
given the beneficial effects of creatine on muscle mass and physical function, emerging
evidence has suggested that creatine supplementation may also have therapeutic potential
for attenuating cancer-related weight loss and maintaining muscle function for cancer
patients [63,64]. However, application in various cancer contexts has just began and further
studies are needed to fully understand the impact of creatine supplementation on clinical
outcomes in the cancer patient population at a risk of muscle wasting.

6. Creatine Supplementation for Cancer Therapy—Possible Influences on
Cancer Cells

One of the hallmarks of cancer is the reprogramming of cellular metabolism [65]. In
contrast to normal cells, cancer cells utilize cellular metabolites to support the high prolifer-
ation through distinct mechanisms in their local microenvironment [66]. Creatine-mediated
ATP buffering system efficiently provides energy when cells demand high levels of ATP.
Prior studies have shown that PCr can be used to transiently increase energy metabolism
to promote cancer cell growth by buffering the ATP stores [67–69]. However, a number of
studies suggest that creatine and its analogues can suppress tumor growth [1,61,62,70,71].
It has been initially demonstrated that creatine analogue cyclocreatine has antitumor prop-
erties in vitro [72]. A possible mechanism of antitumor effect is that phosphocyclocreatine
generated from cyclocreatine by CK has a poor substrate activity in the CK reverse reaction
and results in energy depletion in cancer cells [73]. However, cyclocreatine also suppressed
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tumor growth in colon adenocarcinoma without indications of energy depletion in cancer
cells [70]. In line with this study, creatine has been shown to inhibit the growth and pro-
gression of mammary tumors, sarcoma and neuroblastoma tumors in both rats and mice
models [71]. Creatine combined with MG, an anticancer drug, induced higher cytotoxicity
and apoptosis in the human breast cancer MCF-7 cell line and chemically transformed the
mouse C2C12 muscle cell line, compared to MG alone [62]. In contrast, no detrimental
effects were observed in normal C2C12 muscle cells treated with MG plus creatine [62],
suggesting that enhanced cytotoxic effects of MG plus creatine are specifically limited
within cancer cells. Several lines of evidence have indicated that tumor creatine content is
low in multiple types of cancer tissue [61,62,74,75]. Creatine content was restored to almost
normal levels with the concomitant regression of tumor cells after creatine treatment [61,75].
Both creatine and cyclocreatine exhibit antitumor effects under certain tumor conditions,
suggesting that creatine may employ additional mechanisms, which are independent of
sustaining cellular energy charge, to mediate its antitumor effects.

A number of studies have linked cancer to creatine by investigating CK expression
and their association with prognosis of cancer patients [76–81]. The expression of CKB
was found to be upregulated in different types of cancer [76,78–81]. In addition, elevated
expression of CKMT1 was correlated with poor prognosis in patients with breast cancer [76]
or liver cancer [78]. Of note, the proliferation of cancer cells expressing high levels of CKB
can be greatly impaired by cyclocreatine; however, the cancer cells with low levels of CK
were resistant to the antitumor effect of cyclocreatine [72]. Overexpression of CKB in the
cancer cells that expressed low levels of CK increased their sensitivity to cyclocreatine
inhibition [72]. In the liver microenvironment, CKB released by metastatic colorectal
cancer cells could use extracellular ATP to phosphorylate hepatocyte-secreted creatine to
produce PCr. Metastatic cells then use PCr to regenerate ATP to support their survival in
the liver [82]. Although the source for extracellular ATP is not clear, these data suggest that
a crosstalk between normal cells and cancer cells is necessary to support PCr-mediated
cancer cell survival under certain conditions. Supplementing PCr to colorectal cancer
cells with ATP depletion rescued their ATP levels [82]. The mechanism of PCr atypically
imported by CrT on cancer cells remains to be determined.

Abnormal gene expression of ecotropic virus integration site-1 (EVI1), an oncogenic
transcription factor, was observed in some patients with acute myeloid leukemia (AML)
and was correlated with poor survival of patients [83]. The EVI1-positive AML subtype has
a poor response to current treatment regimens [84]. By using a screen of pooled shRNAs,
Fenouille and colleagues have demonstrated that CKMT1 contributes to survival of EVI1-
expressing cells in EVI1-positive AML patients [68]. EVI1 has been suggested to promote
CKMT1 expression by suppressing the myeloid differentiation regulator RUNX1. Inhibition
of creatine metabolism by either CKMT1 depletion or using creatine analogue cyclocreatine
specifically enhanced the cell cycle arrest and apoptotic cell death of EVI1-positive cancer
cells, and increased animal survival in AML mouse syngeneic and xenograft models [68].
The blockade of CKMT1 impaired proliferative capacity, mitochondrial function, and
ATP production in cancer cells, which could be rescued by exogenous PCr in vitro and
in vivo [68]. Thus, these findings point to the therapeutic potential of targeting CKMT1
pathway for treating EVI1-positive AML.

Kurmi and colleagues have reported that oncogenic HER2 signaling induces CKMT1
phosphorylation via ABL tyrosine kinase in HER2 positive breast cancer cells [67]. CKMT1
phosphorylation enhanced the stabilization of CKMT1, promoting the PCr energy shuttle
and breast cancer cell proliferation [67]. Blockade of the PCr-mediated metabolism by
using either CKMT1 shRNA or the creatine analogue cyclocreatine decreased prolifera-
tion of HER2 positive cell lines in vitro and in vivo. The impaired proliferation could be
rescued by PCr supplementation [67]. Although the HER2-directed monoclonal antibody
trastuzumab offers significant clinical benefit selectively in HER2 positive breast cancer
patients, intrinsic and acquired resistance to this therapy leads to no response for many
patients [85–89]. Cyclocreatine combined with the HER2 kinase inhibitor lapatinib effi-
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ciently suppressed tumor growth in a HER2 positive trastuzumab-resistant patient-derived
xenograft model [67]. Collectively, cyclocreatine can inhibit trastuzumab-resistant HER2
positive breast cancer cells via disrupting the PCr energy shuttle and improve the efficacy
of existing breast cancer treatments.

Recently, Maguire et al. investigated the crosstalk between adipocytes and neoplastic
cells in the tumor microenvironment and identified the upregulation of Gatm and the
fatty acyl-CoA synthetase gene Acsbg1 in adipocytes and in breast cancer cells, respec-
tively [90]. Genetic inhibition of either Gatm in adipocytes or CrT in breast cancer cells
attenuated tumor growth in obesity [90], suggesting that adipocyte-derived creatine is
required for obesity-driven tumor progression. High Acsbg1 expression in cancer cells
enhanced ATP production through oxidative phosphorylation and uptake of adipocyte-
derived creatine through CrT, which supported the production of PCr and drove tumor
cell proliferation [90]. Although these findings revealed a protumoral role of creatine in
regulating obesity-accelerated breast cancer cell proliferation, creatine supplementation
did not promote tumor growth in lean or obese animals [90]. Thus, only adipocyte-derived
creatine, not systemic creatine, is essential for tumor cell growth in this specific breast
cancer model. Meanwhile, another group reported that creatine supplementation or GATM-
mediated de novo synthesis of creatine promoted colorectal and breast cancer metastasis
in orthotopic mouse models by increasing Snail and Slug expression through monopolar
spindle 1 (MPS1)-activated Smad2 and Smad3 phosphorylation [91]. Moreover, GATM
knockdown or MPS1 inhibition attenuated cancer metastasis and lower survival in mice.
Notably, creatine supplementation suppressed primary tumor growth in mouse colon
cancer (CT26) and mouse breast cancer (4T1) models [91]. Several notes of caution should
be made in interpreting these results of cancer metastasis: (1) some studies were performed
using severely immunocompromised mice (i.e., the NSG mice) and therefore failed to take
into account the creatine regulation of antitumor immunity effect [44]; (2) creatine supple-
mentation doses used in some studies were exceedingly high, way above the recommended
safe dose range for humans [10,92]; and (3) long-term creatine supplementation has been
indicated to induce species-specific liver inflammation in mice, which could contribute to
promoting cancer metastasis in liver observed in these studies [93–95].

7. Conclusions

Recent studies identified creatine as an important metabolic regulator conserving
bioenergy to power CD8 T cell antitumor immunity and suggested a potential application
of creatine supplementation for cancer immunotherapy. The safety of long-term creatine
supplementation in both healthy individuals and patients has been well documented,
which provides a clear and expedient path forward for utilizing creatine supplementation
to treat cancer [13,64,96–99]. Additionally, creatine supplementation can augment muscle
and enhance strength, which may also benefit cancer patients suffering from cachexia at
their late stages [63,64,100,101]. Both oral and intravenous administration routes can be
effective in animal tumor models [44]. However, bioavailability of creatine through oral
administration in humans is low because creatine is rapidly converted into creatinine in the
high acidic environment of the stomach [102,103]. Thus, for the best cancer therapy benefits,
optimal administration routes and dosing strategies for creatine clinical intervention still
need to be further investigated.

Creatine supplementation synergizes with the anti-PD-1 therapy to yield superior
antitumor efficacy [44], because creatine may activate tumor infiltrating CD8 T cells via
an energy-buffering mechanism that is non-redundant to the mechanisms utilized by ICB
therapies. Therefore, creatine supplementation has a potential to become an economical and
effective treatment for enhancing ICB therapies. In addition, many other cancer therapies,
including new T cell immunotherapies, traditional chemotherapy, targeted therapy, and
radiation therapy, may also have improved therapeutic efficacy when combined with
creatine supplementation treatment [31–34,67,104–106]. For the full translation to clinical
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applications, a speedy clinical development of creatine supplementation for combination
therapies treating different types of cancer is urgently needed in the future.

Creatine-mediated energy buffering system is efficient and supports CD8 T cell antitu-
mor activities in a metabolically challenging microenvironment via ATP/AMPK-mediated
regulation of TCR signaling pathways [35,39,44,59]. The hyporesponsiveness of other
immune cells in CrT-KO mice bearing tumors has been observed, indicating that the im-
mune regulatory function of this energy system may go beyond modulating CD8 T cells
in a tumor microenvironment. Creatine has been indicated to have anti-inflammatory
properties in acute and chronic animal models of inflammation [107]. Creatine uptake
can reprogram macrophage M1/M2 polarization by regulating IFN-γ and IL-4 cytokine
responses partly in an ATP-dependent manner under infection conditions [108]. Whether
and how other immune cells, such as regulatory T cells and tumor-associated macrophages,
in the tumor microenvironment mediate antitumor effects of creatine will be interesting
topics and certainly merit investigation. Additionally, creatine and creatine analogues can
inhibit tumor cell survival likely through additional mechanisms that are independent
of energy metabolism disruption. The regulatory mechanisms of creatine and creatine
analogues in cancer cells warrant further investigation, especially in light of the recent
studies on creatine promotion of cancer metastasis.
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