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SAXS-guided Enhanced 
Unbiased Sampling for Structure 
Determination of Proteins and 
Complexes
Chuankai Zhao   1 & Diwakar Shukla   1,2,3,4

Molecular simulations can be utilized to predict protein structure ensembles and dynamics, though 
sufficient sampling of molecular ensembles and identification of key biologically relevant conformations 
remains challenging. Low-resolution experimental techniques provide valuable structural information 
on biomolecule at near-native conditions, which are often combined with molecular simulations to 
determine and refine protein structural ensembles. In this study, we demonstrate how small angle 
x-ray scattering (SAXS) information can be incorporated in Markov state model-based adaptive 
sampling strategy to enhance time efficiency of unbiased MD simulations and identify functionally 
relevant conformations of proteins and complexes. Our results show that using SAXS data combined 
with additional information, such as thermodynamics and distance restraints, we are able to 
distinguish otherwise degenerate structures due to the inherent ambiguity of SAXS pattern. We 
further demonstrate that adaptive sampling guided by SAXS and hybrid information can significantly 
reduce the computation time required to discover target structures. Overall, our findings demonstrate 
the potential of this hybrid approach in predicting near-native structures of proteins and complexes. 
Other low-resolution experimental information can be incorporated in a similar manner to collectively 
enhance unbiased sampling and improve the accuracy of structure prediction from simulation.

Proteins fold into precise three-dimensional structures to carry out essential cellular functions such as enzyme 
catalysis1–5 and signaling6–12. To understand protein structure-function relationships, it is crucial to obtain knowl-
edge of not only key biologically relevant functional conformations but also kinetic pathways associated with the 
conformational change process. Although X-ray crystallography and nuclear magnetic resonance (NMR) tech-
niques can provide high-resolution protein structures, it is often difficult to capture all conformation states of pro-
teins in solution. Complementarily, low-resolution experimental techniques, such as small angle X-ray scattering 
(SAXS)13, single molecule fluorescence resonance energy transfer (smFRET)14 and double electron-electron res-
onance (DEER)15 can be utilized to gain insights into the protein conformational states or dynamics in solution. 
However, due to the low information content of experimental data, these techniques alone are not sufficient to 
obtain high-resolution protein structures. Instead, additional physical or structural information is required to 
interpret the information encoded by low-resolution experimental data and prevent overfitting during structure 
determination and refinement.

Molecular dynamics (MD) simulation is a powerful tool to complement low-resolution experimental data 
to predict protein structures and ensembles, as well as thermodynamics and kinetics associated with protein 
function16,17. One popular way is to utilize coarse grained MD simulation to generate structural ensemble and 
then refine the ensemble against experimental data18–21. However, coarse grained simulations might not be 
accurate enough to represent structural ensemble in atomic detail. To improve the predictive accuracy, a recent 
study utilizes extensive all atom MD simulations to generate a strong prior structural ensemble and incorporates 
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experimental information in a statistical approach to refine the ensemble against experimental data by perturbing 
the weight of each state in the kinetic model22. This method can likely generate the true ensemble under sufficient 
sampling of molecular ensembles. However, this approach involves post-hoc validation of the conformational 
ensembles based on the extensive simulation data obtained from unbiased MD simulations. It is computationally 
demanding to generate extensive simulation data for biological processes where conformational dynamics takes 
place over a millisecond or even longer timescales (i.e. protein folding) or where large biomolecule sizes can 
greatly hamper the computation speed (i.e. protein-protein association).

To address some of these limitations, low-resolution experimental data, which offers a direct observable to 
compare simulation with experiment, can be combined with MD sampling process to accelerate discovery of 
functionally relevant structures of proteins. To achieve this, experimental data is often incorporated as con-
straints in enhanced sampling algorithms, either through modifying potential functions23–27 or defining reac-
tion coordinates28–30, to bias simulations and drive molecules of interests towards conformational states that are 
consistent with experimental data. Although these methods have improved computational efficiency and suc-
ceeded in predicting functional conformations of proteins, they may sacrifice kinetic information for accurate 
thermodynamics.

In this study, we aim to explore how unbiased MD simulations and low-resolution experimental data could be 
integrated to obtain accurate conformational ensembles of proteins, while at the same time reducing computa-
tional costs. In particular, we explore to quantify the advantage of incorporating low-resolution experimental data 
in conformational sampling algorithm by evaluating the effectiveness of this approach in terms of both structure 
prediction accuracy and sampling efficiency. Here, SAXS is used as the source of low-resolution structural infor-
mation due to its wide spread use in structural characterization of both structured and intrinsically disordered 
biomolecules in solution, especially for complexes13,31,32. SAXS data is presented as a one dimensional scattering 
curve determined from the spherical averaging of random orientations that a biomolecule can adopt in solution. 
It remains elusive how the information is distributed over the range of scattering curve, however usually experi-
mental SAXS profiles do not contain more than 10–30 independent points17,33. Low-resolution shapes of biomole-
cules can be reconstructed using SAXS data, and structural features such as radius of gyration (Rg) and maximum 
diameter (Dmax) of biomolecules can be extracted by fitting SAXS profile. The low information content leads to 
the inherent ambiguity of SAXS data that biomolecules with different shape topologies and internal structures can 
display identical SAXS profiles31,33,34. Thanks to the recent advances in SAXS data collection with reduced noises 
and errors, as well as accurate prediction of SAXS profile from structural models, it becomes possible to harvest 
the structural information encoded in SAXS data17,35.

We present an approach that adopts the SAXS information as a seed selection criteria for Markov state model 
(MSM)-based adaptive sampling36 in unbiased MD simulations to enhance the sampling of protein dynamics 
and identify near-native conformational states of proteins. As compared to experimental-guided enhanced sam-
pling algorithms, this approach does not introduce changes to MD potential functions, thereby providing more 
accurate description of equilibrium protein dynamics. Furthermore, different types of structural information 
can be incorporated at the same time to collectively enhance the sampling of protein dynamics. In this work, we 
demonstrate this method in the study of protein folding and protein-protein association. Especially, considering 
the under-determined nature of SAXS data, we aim to explore what additional information might be needed 
to combine with SAXS to identify native states of proteins and complexes from MD simulations and to better 
enhance MD sampling efficiency.

To first demonstrate how SAXS and SAXS-based hybrid information can be used to both predict the native 
structure of single domain protein and reduce the computation time to discover the target structure, we study the 
foldings of three proteins, including HP35 double norleucine mutant domain (35 residues)37, protein G (56 resi-
dues)38 and α3D (73 residues)38. Markov state models (MSMs)39,40 are constructed using the previously published 
extensive MD simulation datasets. We show that the combination of SAXS and thermodynamic information 
estimated from the MSMs is sufficient to clearly differentiate structures and recognize the folded structure for 
the three small single domain proteins. By performing kinetic Monte Carlo sampling41 using different sampling 
protocols on the MSMs, we show that SAXS-guided adaptive sampling strategy greatly reduces the simulation 
cost of reaching the target structure as compared to other sampling methods. We also demonstrate that distance 
restraints inferred from intramolecular evolutionary couplings (ECs) can be combined with SAXS to further 
improve the prediction accuracy and sampling efficiency.

Next, we extend the utility of this approach in predicting the protein-protein association pathways based on 
available structures of individual subunits. We analyze the previously published MD simulations of the associa-
tion of E. coli molybdopterin synthase subunits MoaD and MoaE42. Our results suggest that SAXS data must be 
combined with distance restraints, which are inferred from intermolecular ECs to better distinguish degenerate 
MoaD-MoaE structures displaying similar SAXS profiles. Using kinetic Monte Carlo sampling on the MSM built 
using the simulation datasets, we demonstrate that the utility of SAXS data in adaptive sampling can still reduce 
the computation time to reach the target structure. Furthermore, the sampling efficiency is further enhanced by 
utilizing both SAXS and distance restraints. Finally, we demonstrate the application of this approach in actual 
MD simulations to study the association of homodimer of plant hormone receptor PYR143. As in MoaD-MoaE 
association, by combining SAXS information and distance restraints, we discover a structure that aligns well with 
the crystal structure (Cα RMSD: 3.18 Å) with a limited sampling time. Our study demonstrates that SAXS-guided 
adaptive sampling is an efficient approach to predict not only near-native structure ensemble but also transition 
pathways of conformational changes of proteins from simulation.
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Methods
SAXS-guided adaptive sampling.  The pipeline of adaptive sampling consists of iteratively running short 
parallel simulations, clustering the trajectories based on some structural features, and seeding new simulations 
from certain clusters according to some selection criterion36. The key of SAXS-guided adaptive sampling is to 
incorporate the SAXS information in the selections of seeding structures for iterative sampling. This is achieved 
by converting the SAXS profile into a SAXS discrepancy scoring function, which measures the degree of sim-
ilarity between the target experimental or theoretical SAXS profile and the SAXS profile calculated from the 
structural models of each cluster. By selecting the clusters which are closer to the target, we bias the sampling 
direction while leaving the energy function unchanged. By iteratively running short parallel simulations, we drive 
the system of interest towards the target structure while still maintaining accurate thermodynamics and kinetics 
in the sampling process. The SAXS discrepancy function used in this study is the commonly used reduced χ2 
function (equation 1):
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where qi is the momentum transfer (q = 4πsinθ/λ, 2θ is the scattering angle and λ is the x-ray wave length), 
Itarget(qi) and Istate(qi) are the scattering intensities of target SAXS profile and each cluster state at qi, σtarget(qi) is the 
error of target scattering intensity at qi, N is the total number of data points in the SAXS scattering curves, μ is a 
scaling factor.

Markov state model.  Markov state model is a kinetic network model built from MD simulation datasets 
to describe the protein conformation space with discrete states and their transition probabilities39,40. The discrete 
states are generated from the clustering of all protein conformations based on some relevant structural metrics. 
The transition probabilities between these states are estimated by a maximum likelihood analysis of the interstate 
transition counts from the raw trajectories44. For an N state model with a lag time τ, the behavior of any initial 
probability distribution p(t) over time can be given by (equation 2):

τ τ+ =p p Tt k t( ) ( ) ( ) (2)k

where p(t), p(t + kτ) are N dimensional vectors of the state probabilities, T(τ) is the transition probability matrix 
with each component Tij as the transition probability between state i, j at a period of τ. The eigenvectors of T(τ) 
in descending order by eigenvalues represent approximations of the underlying continuous-space propagator, 
where the first eigenvector is the equilibrium state probability vector w45. The free energy of each MSM state i 
(Gi) can be estimated by Gi = −RTln(wi), where R and T are the gas constant and temperature. Using MSMs, long 
timescale behavior of protein dynamics can be accurately predicted. All the MSMs in this study were constructed 
using MSMBuilder 3.4 package46.

Kinetic Monte Carlo (MC) sampling on MSM.  Kinetic MC simulation is a probabilistic method based on 
MSM transition probability matrix to generate arbitrary trajectory to reveal long term state-to-state protein 
dynamics41. If the initial state is chosen as state i, the probability of a transition from state i to state j over a period 
of τ is Tij. This is implemented by generating a pseudorandom number between 0 and 1, and taking a cumulative 
sum of Tij over j ( = ∑S Tn j ij). If the random number lies between Sn and Sn+1, then the state n + 1 will be added to 
the trajectory. All the kinetic MC simulations in this study were conducted using MSMBuilder 3.4 package46.

Computation of SAXS profiles.  For the HP35, the protein G, the α3D domain and the MoaD-MoaE sys-
tems, all the SAXS profiles were calculated from the protein structure coordinates using the Crysol software47 
provided in the ATSAS software package48, version 2.7.2. The SAXS scattering intensities were calculated between 
0–0.5 Å−1 with 51 points in total. The number of points were chosen larger than the number of Shannon channels, 
as given by Ns = qmaxDmax/π, where qmax is the maximum scattering vector and Dmax is the maximum diameter of 
protein49,50. The number of harmonics was set to 40 and the order of Fibonacci grid was set to 18, and the default 
values of all other parameters were used. In the Crysol, the solvation shell of biomolecule is approximated by a 
border layer of certain effective thickness with a density differed from the bulk47. The contrast of hydration shell 
was set to 0.03 e/Å3 (default) and the solvent density was set to 0.334 e/Å3 (default).

For the PYR1 homodimer, all the SAXS profiles were calculated from the explicit solvent structural models 
using the WAXSiS algorithm51,52. In the WAXSiS, a spatial envelope that encloses all conformational states of the 
biomolecule with sufficient distance d, as well as the solvation layer, is defined to allow for the calculation of SAXS 
profiles from explicit solvent structural ensembles, while at the same time reducing statistical noise and com-
putational cost. The explicit solvent representation effectively considers the structured water pattern within the 
solute solvation shell, allowing for accurate calculation of the scattering intensities at wide angles51. In this study, 
we calculated the SAXS scattering intensities at q between 0 to 1 Å−1 with 101 points (larger than the number of 
Shannon channels49,50 Ns ≈ 22). The envolope distance d was 7 Å, which has been shown to be enough to ensure 
bulk-like solvent density at envelope surface51. The density of the solvent was corrected to match the experimental 
value 0.334 e/Å3 using the density correction scheme implemented in WAXSiS. For each absolute value of the 
scattering angle q, 1000 homogeneous scattering vectors qj (j = 1, …, 1000) were used for numerical computation 
of spherical average scattering intensity I(q). All calculations were performed using the WAXSiS implementation 
in modified version of the GROMACS simulation software, version 4.6253.

Rg and Dmax estimated from the calculated or experimental SAXS profiles were determined using Guinier 
analysis as implemented in the ATSAS software package48. In addition to using the reduced χ2 function to assess 
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the similarity between the target and predicted SAXS profiles, we also employed the correlation map method as 
implemented in the ATSAS software package48, which does not rely on the estimation of the errors of target SAXS 
profile. Gaussian random noises were added to the target scattering intensities Itarget(qi) to account for the errors 
while using the correlation map method. For example, Gaussian random noise at qi was generated by a random 
number from a normal distribution with mean of 0 and standard deviation of σtarget(qi). The randomly generated 
Gaussian noise was then added to Itarget(qi).

Model systems
Folding of single domain proteins.  The total MD simulation times for the folding of HP35 double norleu-
cine mutant, protein G, and α3D domain analyzed in this study were approximately 294, 1154, 707 μs respec-
tively37,38. The HP35 folding trajectories were clustered using k-centers algorithm based on the root mean square 
deviations (RMSDs) of all heavy atoms from the HP35 crystal structure (PDB ID: 2F4K54), same as in the previous 
literature37. An MSM with 500 states and a lag time τ of 30 ns was constructed. The protein G and α3D domain 
folding trajectories were clustered using k-means algorithm based on the 100 slowest-relaxing degrees of free-
dom from linear combinations of all φ, ψ and χ1 dihedral angles using the time-lagged independent component 
analysis (tICA)55. MSMs with 500 states and lag times of 50 ns were constructed. The lag times were chosen based 
on the convergence of implied timescales (Supplementary Fig. S1a–c). For each state of the MSMs, 100 structures 
were randomly extracted from the simulation datasets to calculate the SAXS profile of the state.

In order to calculate the SAXS profiles of native states of HP35, protein G and α3D, 50 ns explicit-solvent 
MD simulations on the experimentally determined structures of HP35, protein G and α3D (PDB IDs: 2F4K54, 
1MI056, 2A3D57) were performed in Amber14 using the Amber ff14SB force field58. The structures were sol-
vated with TIP3P water and Na+/Cl− were added to the system with the salt concentration of 0.15 M using 
AmberTools15. Subsequently, 10000 steps of energy minimization and 2 ns equilibration were performed for 
each system. Simulations were performed with a 2 fs time step and maintained at 300 K, 1 atm using Berendsen 
thermo-barostat59. The SHAKE algorithm60 was applied to constrain the length of covalent bonds involving 
hydrogen atoms. The Particle-mesh Ewald method61 was used to treat the electrostatic interactions with a 10 Å 
cutoff distance. 100 snapshots from the 50 ns MD simulations were extracted to calculate the SAXS profiles, and 
the non-weighted average of the 100 SAXS profiles was calculated to serve as the target SAXS profiles for adaptive 
sampling. More specifically, at each scattering vector qi, the average of scattering intensities (I(qi)) and the stand-
ard deviation of I(qi) were determined as Itarget(qi) and σtarget(qi), respectively. For all states, the SAXS discrepancy 
values were calculated using the reduced χ2 function.

Three different sampling strategies: (1) traditional long simulation, (2) random adaptive sampling and (3) 
SAXS-guided adaptive sampling were employed in kinetic MC sampling to compare their sampling efficiency 
for all three proteins. The initial state was the expanded unfolded state with the largest RMSD value from target 
structure. The total sampling times required to reach the predicted folded state from the initial state were calcu-
lated for these three sampling schemes. In traditional long simulations, varying number of parallel simulations 
(10 to 1000) starting from the initial state were run for varying amount of time (1τ to 15τ), and 1500 sets of syn-
thetic simulations were run in total. In random adaptive sampling, 10 parallel trajectories were launched from the 
initial state and run for varying amount of time (1τ to 15τ). Then 10 new states were randomly chosen from the 
resulting trajectories as the seeds for next round of sampling. This process iterated for varying number of adaptive 
rounds (1 to 100) and again, 1500 sets of synthetic simulations were run in total. Lastly, SAXS-guided adaptive 
sampling was following exactly the same procedures as in random adaptive sampling except 10 seeds in each 
round were chosen from the states that give the lowest SAXS discrepancy values. The sampling times required 
to reach the predicted folded state were calculated to quantify the sampling efficiency using different protocols.

Finally, for HP35 and protein G, we also tested the sampling efficiency using SAXS-based hybrid 
information-guided sampling approach combining both SAXS and distance restraints inferred from intramo-
lecular evolutionarily couplings (ECs). The ECs were extracted using a pseudolikelihood (PLM) method62 on 
EVCouplings web server63 (http://evfold.org) with the default settings. For each MSM state, the distances of top 
ranked evolutionarily coupled residue pairs (with EC score > 0.3, 10 ECs for HP35, and 7 ECs for protein G, 
Supplementary Fig. S2) were calculated. The average residue pair distances were used for adaptive sampling. 
Under SAXS-EC-guided adaptive sampling protocol, we iteratively chose 5 states with the minimal SAXS dis-
crepancy scores and 5 states with the minimal EC residue pair distance for adaptive sampling. For comparison, 
we also tested the efficiency of EC-guided adaptive sampling42,64, where in each round, 10 states with the minimal 
EC residue pair distances were picked for adaptive sampling.

MoaD-MoaE association.  55 μs of previously published implicit solvent MD simulations on MoaD and 
MoaE association were used in this study42. The trajectories were clustered into 500 states using k-means algo-
rithm (see Supplementary Information for details). An MSM was constructed with a lag time τ of 40 ns cho-
sen based on convergence of the implied timescales (Supplementary Fig. S1d). The SAXS profile of the native 
MoaD-MoaE complex was calculated from 100 snapshots of 50 ns implicit solvent MD simulation on the 
MoaD-MoaE complex crystal structure (PDB ID: 1FM065), which was also taken from the previous study42. At 
each scattering verctor qi, the average of scattering intensities (I(qi)) and the standard deviation of I(qi) were 
determined as Itarget(qi) and σtarget(qi), respectively. 100 structures from each state were randomly extracted to 
calculate the SAXS profiles of each state. The SAXS discrepancy values between the SAXS profiles of each state 
and the target were calculated using the reduced χ2 function. The average SAXS discrepancy value of each state 
was calculated from the lowest 50 discrepancy values, in order to reduce the statistical errors due to clustering.

The distances of five evolutionarily coupled MoaD-MoaE residue pairs (E12-R127, R11-E53, A54-M58, 
Q57-K61, T58-K61) with the highest EVcomplex scores determined in the previous study66 were also calculated 
from the 50 structures with the lowest SAXS discrepancy scores from each state. Different kinetic MC sampling 
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algorithms were carried out following the same protocol as in the folding systems. The initial state was the state 
with the largest average residue pair distance and the predicted dimeric state was chosen as the final state. The 
sampling times required to reach the predicted dimeric state were calculated to quantify the sampling efficiency 
using different protocols.

Homodimeric PYR1 association.  SAXS-guided MD simulations were performed to predict the dimeric 
PYR1 structure. We performed 10 ns explicit solvent MD simulations on the PYR1 crystal structure (PDB ID: 
3K3K43) with and without position restraints on protein heavy atoms. The resulting trajectories (each with 1000 
frames) were given as the input of the WAXSiS to calculate their theoretical SAXS profiles. The errors of the cal-
culated SAXS profiles were determined by the WAXSiS automatically. The experimental SAXS data adapted from 
Nishimura et al.43 (Bioisis ID: BID_1PYR1P, http://www.bioisis.net/experiments/44) were fitted to the calculated 
SAXS profiles by minimizing the following χ2 function (on logarithmic scale, equation 3) as implemented in 
WAXSiS51,52:

∑χ = 
 − + 
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logI q log fI q c1 ( ) ( ( ) )
(3)i
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cal i exp i
2
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where N is the total number of data points, qi is the momentum transfer, Ical(qi) and Iexp(qi) are the calculated and 
experimental scattering intensity at qi, f and c are the fitting parameters. We find that the experimental SAXS data 
fit better to the SAXS profile calculated from free MD simulations with a χ2 of 0.006 (as compared to 0.010 for the 
SAXS profile calculated from constraint MD simulations, Supplementary Fig. S3). The SAXS profile calculated 
from free MD simulations was used for the final structure identification.

Initially, two monomers of the crystal structure were separated with their center of mass distance approxi-
mately at 50 Å in VMD67. The structures were solvated with TIP3P water and Na+/Cl− were added to the system 
with the salt concentration of 0.15 M using AmberTools15. The simulations were performed in Amber14 using 
the Amber ff14SB force field58. The simulation protocol and parameters were the same as described in the MD 
simulations of experimentally determined structures of single domain proteins. A single simulation was started 
from the equilibrated structure and run for 100 ns and the resulting trajectory was clustered into 100 states using 
a similar clustering scheme as in the MoaD-MoaE system. The SAXS profiles of all states were calculated. 25 
clusters with the lowest SAXS discrepancies (calculated using χ2 function on logarithmic scale) from the target 
SAXS profile were chosen as the seeding structures for the second round of sampling. In the second round, each 
trajectory was run for 100 ns. The trajectories were clustered into 200 states, and again 25 clusters with the lowest 
SAXS discrepancy scores were chosen for the third round of sampling. In the third round, each trajectory was run 
for 60 ns, yielding total simulation time of around 4 μs. Trajectories in the last two rounds were clustered into 200 
states for final analysis. The SAXS profiles of these 200 states were calculated and the SAXS discrepancy scores 
were computed using the reduced χ2 function for consistency. In order to further improve the accuracy of the 
structural model obtained from the three rounds of adaptive sampling, 5 parallel simulations were run for 20 ns 
each starting from the closest near-dimeric state among the 200 states.

Results
SAXS along with thermodynamic information is sufficient to distinguish the native folds of 
small proteins.  As an illustration of utilizing SAXS information to predict the native state structure of pro-
teins, we first studied the folding of HP35 double norleucine mutant, protein G and α3D domain. The three 
systems with varying number of residues (35, 56, 73) were chosen to explore how the prediction accuracy changes 
as protein size increases due to the inherent ambiguity of SAXS data. MSMs were constructed for each system 
from the extensive amount of folding trajectories. The SAXS profiles calculated from short MD simulations on 
the experimentally determined structures or the structure of the closest homolog in the PDB (PDB IDs: 2F4K54, 
1MI056, 2A3D57) were used to obtain the target SAXS profiles for structure prediction. The SAXS discrepancy 
scores (reduced χ2) between the SAXS profile of each state and the target SAXS profile were computed. To com-
pare the SAXS discrepancy scores of all states, we can predict the near-folded state and further test whether 
SAXS is sufficient to make good predictions by aligning the predicted structure to the experimentally determined 
structure.

This is shown by plotting the free energies of all MSM states with respect to their SAXS discrepancy scores, 
as shown in Fig. 1a–c. Without any a priori knowledge, the free energy information estimated from the MSMs 
can serve as additional metric to identify the near-native or intermediate states of proteins from simulation. 
Combining both free energy and SAXS discrepancy information, we seek to make prediction of the native folds 
of proteins. For these three folding systems, generally, high free energy states tend to have much higher SAXS dis-
crepancy values, while low free energy states corresponding to more stable near-native or intermediate structures 
tend to have much lower SAXS discrepancy values (Fig. 1a–c). The RMSD plots in Supplementary Fig. S4 also 
suggest that the states with high SAXS discrepancy scores have large Cα RMSDs from their crystal structures, and 
vice versa. Though in HP35 a few states with minimal SAXS discrepancy scores have high free energy (Fig. 1a), 
these structures are actually close to the native structures (Supplementary Fig. S4). However, as protein size 
increases, there are more low free energy states (<1 kcal/mol) with comparably low discrepancy values in α3D as 
compared to the states in smaller HP35 and protein G, which will be hard to distinguish using SAXS information 
alone. This is consistent with the underdetermined nature of SAXS pattern. All together, this suggests that for the 
folding of small single domain proteins, thermodynamic information estimated from the MSMs is valuable for 
dealing with the ambiguity of SAXS data.

Based on both free energy and SAXS discrepancy information, the states with the lowest free energy were 
predicted as the near folded states from the simulation datasets. The SAXS profiles of the target and the predicted 
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folded states for the three proteins are shown in Fig. 1d–f. The predicted post-MD model SAXS profiles of HP35, 
protein G and α3D fit to their target SAXS profiles with reduce χ2 values of 0.045, 0.775 and 0.975. The resid-
uals plots suggest that the discrepancies between the predicted and the target SAXS profiles are comparable to 
the errors on the target SAXS profile (Supplementary Fig. S5). The fittings were also assessed using the cor-
relation map method68, which also suggest high similarities between the target and predicted SAXS profiles 
(Supplementary Fig. S6). Overlays of the native structures and the predicted folded structures of HP35, protein 
G and α3D give the Cα RMSDs of 0.7, 0.78 and 2.75 Å respectively. Radius of gyration (Rg) and maximum diam-
eter (Dmax) estimated from the target and predicted SAXS profiles using Guinier analysis are in good agreement 
(Table 1).

An accurate estimate of free energy values from the MSMs usually requires sufficient amount of sampling. To 
further improve the accuracy of identifying native structures from simulation datasets, other types of structural 
information can be incorporated together with SAXS data. For example, we demonstrate that in combination 
with the distance restraints inferred from a few top ranked evolutionarily coupled residue pairs, the near-native 

Figure 1.  Predicting native folds of single domain proteins. The plots of individual MSM state free energy with 
respect to their average SAXS discrepancy values (χ2) for the (a) HP35, (b) protein G, and (c) α3D. Each dot 
represents a MSM state. The dot size and its color darkness are scaled by the equilibrium probability of that state 
estimated from the MSM. The errorbars for the SAXS discrepancy values of all states are shown in grey line. 
SAXS profiles of the target (red) and the predicted (blue) states, and overlays of the crystal structure (red) and 
the simulation predicted structure (blue) for (d) HP35, (e) protein G, and (f) α3D. The errorbars for the target 
SAXS profiles are also shown in the figure.



www.nature.com/scientificreports/

7SCIEntIfIC REPortS |         (2018) 8:17748  | DOI:10.1038/s41598-018-36090-z

states of HP35 and protein G can be identified (Supplementary Fig. S2). This hybrid information could tackle with 
the challenge of SAXS inherent ambiguity and possible thermodynamic inaccuracy due to insufficient sampling.

Enhanced efficiency in sampling protein folding.  To test the efficiency of utilizing the SAXS discrep-
ancy information in sampling protein folding, we employed kinetic MC simulations of the folding of HP35, pro-
tein G and α3D on the MSMs using different sampling strategies. The total sampling times required for transition 
from an arbitrary expanded unfolded state to the predicted folded state were calculated to compare the overall 
sampling efficiency of different sampling strategies. Figure 2 shows the results for sampling the folding of HP35 
using traditional long simulation, random and SAXS-guided adaptive samplings. It is clearly shown in Fig. 2a that 
traditional way of running long simulations takes the longest time to discover the folded state. Few simulation 
sets with individual trajectory length shorter than 10 τ (300 ns MD simulation) can reach the folded state even 
with 1000 trajectories running in parallel. Adaptive sampling can effectively reduce the simulation time to reach 
the folded state. With random adaptive sampling (Fig. 2b), namely randomly picking seeds for iterative sampling, 
an order of magnitude decrease of computational time to reach the folded state over traditional long simulation 
is observed. In addition, in the short individual trajectory length regions where traditional long simulation sets 
can never reach the folded state, random adaptive sampling can reach the folded state in tens of microseconds. 
Figure 2c shows SAXS-guided adaptive sampling can even further decrease the sampling time than random adap-
tive sampling. The total simulation time required for obtaining the native state is ∼10 μs. Enhanced efficiency in 
SAXS-guided adaptive sampling is also observed in sampling protein G and α3D (Supplementary Figs. S7 and 
S8). Using another metric, the number of MSM states explored using random and SAXS-guided adaptive sam-
pling, to compare their sampling efficiency, it is clearly shown that SAXS-guided sampling enhances sampling 
efficiency by reducing the sampling of ‘insignificant’ states (Supplementary Fig. S9), which have large deviations 
from the target as measured by SAXS-discrepancy scores. Overall, these results suggest that utilizing the SAXS 
information in adaptive sampling can effectively reduce computational time required to discover the folded struc-
tures of small proteins and the folding pathways in unbiased simulations. We further tested the efficiency of uti-
lizing both SAXS and distance restraints inferred from ECs in adaptive sampling of protein folding of HP35 and 
protein G (Supplementary Figs. S7 and S10). As compared to SAXS-guided or EC-guided adaptive sampling, we 

Systems

Rg (Å) Dmax (Å)

native predicted native predicted

HP35 10.96 10.90 35.61 33.29

Protein G 12.25 ± 0.01 12.27 ± 0.01 37.04 39.76

α3D 14.34 ± 0.01 14.61 ± 0.02 45.58 45.32

MoaD-MoaE 21.38 21.55 ± 0.03 72.67 76.07

PYR1 23.89 ± 0.08 (calc.) 
23.72 ± 0.6 (expr.) 23.92 ± 0.07 67.4 (calc.) 

68.46 (expr.) 67.57

Table 1.  Comparisons of the radius of gyration (Rg) and the maximum diameter (Dmax) of the native and the 
predicted states estimated from the SAXS data.

Figure 2.  Enhanced efficiency in sampling the folding of HP35. Total simulation time required to reach the 
folded state from an arbitrary unfolded state for sets of samplings using (a) traditional long simulation, (b) 
random adaptive sampling, and (c) SAXS-guided adaptive sampling. Scaled trajectory length is the length 
of each individual trajectory in each specific sampling scheme by the lag time τ of the MSM. Number of 
trajectories is the total number of trajectories run for each sampling scheme, given by the product of the number 
of parallel trajectories and the number of sampling rounds. The average total required sampling times using 
the 3 different protocols over 1500 sets of samplings (excluding the sets of sampling that do not reach the target 
native state) are 235.03 μs, 27.61 μs, 9.76 μs.
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further observe a slight enhancement of sampling efficiency using this hybrid approach (Supplementary Figs. S7 
and S10).

SAXS along with distance restraints predict the near-crystal structure of MoaD-MoaE com-
plex.  The association of E. coli molybdopterin synthase subunits, MoaD and MoaE, was used to explore the 
application of SAXS-guided adaptive sampling approach in predicting dimeric protein structures and association 
pathways. As in the folding systems, the SAXS profiles of all MSM states were calculated, and the SAXS profile 
calculated from short MD simulations of the crystal structure (PDB ID: 1FM0)65 was used as the target SAXS 
profile. We first tested whether SAXS in combination with thermodynamic information is sufficient to make 
good predictions of dimeric structure from MD simulation datasets by comparing the SAXS profiles of each 
state and the target. Supplementary Fig. S11 gives the plots of free energies of all states with respect to their SAXS 
discrepancy scores. Unlike the free energy plots in folding systems, there is not a clear correlation between the 
free energy of each state and its SAXS discrepancy value. Although several most populated states estimated by the 
MSM have relatively low SAXS discrepancy values, there are many less populated states that can give even lower 
SAXS discrepancy values, which might imply their higher structure similarity to the target structure. From this, 
we speculate that the most populated state might not be the actual near-dimer structure but a thermodynami-
cally metastable state, which is possible considering the insufficient sampling of the protein-protein association 
ensembles.

This prompts us to look for additional information to further distinguish the states displaying similar SAXS 
profiles. We explored to combine the distance restraints inferred from intermolecular ECs with SAXS data to 
improve structure prediction accuracy. Intermolecular ECs can provide valuable insights into residue contacts 
at protein-protein interface66. Top 5 five ranked EC residue pairs were chosen, and the distances between these 
residue pairs for all states were calculated. We plotted the average residue pair distances of all states with respect 
to their SAXS discrepancy scores to characterize their structure differences (Fig. 3a). We observe that there is still 
an overall correlation between the average residue pair distance and the SAXS discrepancy scores, though states 
with approximately equal SAXS discrepancy scores can have large varying average residue pair distances. For 
example, the 10 states with the minimal SAXS discrepancy scores (cyan, Fig. 3a) have significant differences in 
interfacial residue pair distances (range between 15–40 Å). As shown in Supplementary Fig. S12, these states all 
display similar SAXS profiles as compared to the target SAXS data, however, the MoaD-MoaE complexes adopt 
completely different orientations. The inherent ambiguity of SAXS data is much more obvious for MoaD-MoaE 
complex as compared to smaller single domain proteins. Nevertheless, incorporating distance restraints infor-
mation at the complex interface effectively distinguish the states that display equally consistent SAXS profiles as 
the target SAXS profile.

Integrating both SAXS discrepancy scores and distance restraints information, we predict the state with the 
lowest interfacial residue pair distance, which also has relatively low SAXS discrepancy score, as the near-dimer 
structure (blue, Fig. 3a). Figure 3b shows the predicted structure aligns well with the crystal structure (Cα RMSD: 
5.32 Å) and the SAXS profile of the predicted structure also matches well with the target SAXS profile (reduced 
χ2 = 0.922, residuals plots shown in Supplementary Fig. S13). Fitting assessed using the correlation map method 
also suggests that the predicted SAXS profile adequately describes the target SAXS data (Supplementary Fig. S14). 
The relatively large RMSD could be due to the loop of MoaD that is inserted into MoaE to form the active site in 

Figure 3.  Predicting the structure of MoaD-MoaE complex. (a) The plots of the average Cα distance of five 
evolutionarily coupled residue pairs of each MSM state with respect to their average SAXS discrepancy scores 
(χ2). Each dot represents an MSM state. The dot size is scaled by the equilibrium probability of that state 
estimated from the MSM. The 10 states with minimal average residue pair distances and the 10 states with 
minimal χ2 are colored in green and cyan, respectively (with 3 overlapped states colored in green and the 
overlapped predicted state colored in blue). (b) SAXS profiles of the target (red) and the predicted (blue) states. 
The errorbars for the target SAXS profile are also shown in the figure. Overlay of the crystal structure (red) and 
the simulation predicted structure (blue) gives a Cα RMSD of 5.32 Å from the crystal structure.
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the crystal structure65. This process has not been captured from the dataset42. The Rg and Dmax values estimated 
from the target and predicted SAXS profile are also in good agreement (Table 1).

Supplementary Fig. S15 shows the comparison of the SAXS profiles and the snapshots of the 10 states with 
the minimal average residue pair distances (green, Fig. 3a). As compared to the predicted state, the states with 
relatively higher SAXS discrepancy scores show larger RMSDs from the crystal structure. A combination of SAXS 
and interfacial residue contact information gives the best structure prediction. All together, these results demon-
strate that a hybrid approach that combines SAXS with distance restraints information provides a good structure 
prediction of protein-protein complex.

Enhanced efficiency in sampling protein-protein association.  In order to test the feasibility of utiliz-
ing SAXS to accelerate unbiased sampling of protein association pathways, we performed kinetic MC samplings 
on the MoaD-MoaE MSM using different protocols, including traditional long simulation, random adaptive 
sampling, SAXS-guided as well as SAXS-EC guided adaptive samplings. We calculated the total sampling time 
required to observe the transition from an arbitrarily chosen unassociated state to the predicted near-dimeric 
state, as shown in Fig. 4. As in the folding systems, adaptive sampling strategy effectively reduces the total sam-
pling times as compared to long serial simulations. As compared to random adaptive sampling, SAXS-guided 
adaptive sampling also improves the sampling efficiency. In the 1500 sets of samplings, the average total sam-
pling time to reach the target state is ∼60 μs using random adaptive sampling, and the required sampling time 

Figure 4.  Enhanced efficiency in sampling the association of MoaD-MoaE. Total simulation time required to 
reach the predicted dimeric state from an arbitrary unassociated state for sets of samplings using (a) traditional 
long simulation, (b) random adaptive sampling, (c) SAXS-guided adaptive sampling and (d) SAXS-EC-guided 
adaptive sampling. Scaled trajectory length is the length of each individual trajectory in each specific sampling 
scheme by the lag time τ of the MSM. Number of trajectories is the total number of trajectories run for each 
sampling scheme, given by the product of the number of parallel trajectories and the number of sampling 
rounds. The average total required sampling times using the 4 different protocols over 1500 sets of samplings 
(excluding the sets of samplings that do not reach the target state) are 113.28 μs, 61.16 μs, 41.57 μs, and 30.64 μs.
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decreases to ∼40 μs using SAXS-guided sampling. In the case of hybrid approach using SAXS-EC-guided adap-
tive sampling, we observe a further improvement of the sampling efficiency, and the average required sampling 
time is ∼30 μs. When compared with the performances of SAXS-guided or EC-guided adaptive sampling, 
SAXS-EC-guided adaptive sampling performs better as compared to both sampling strategies (Supplementary 
Fig. S16). All together, these results suggest that SAXS-guided sampling approach enhances time efficiency in 
sampling protein-protein association, and by combining both SAXS and distance restraints, the sampling effi-
ciency is further enhanced.

SAXS-guided adaptive sampling provides a near-crystal structure PYR1 complex.  The last exam-
ple is to test the efficiency of using the SAXS-guided adaptive sampling in actual MD simulations to predict the 
complex structure of PYR1. The target SAXS data was computed from short explicit-solvent MD simulations on the 
PYR1 crystal structure (PDB ID: 3K3K)43. After each round of sampling, all protein conformations were clustered 
and the SAXS discrepancy scores of all states were calculated and used in the adaptive sampling. By the third round 
of sampling, the structure with Cα RMSD from the crystal structure of 5.14 Å was achieved, with total sampling 
time of 4 μs. The trajectories in last two rounds were clustered into 200 states, and the SAXS profiles of these 200 
states were computed and the SAXS discrepancy scores between the target and each state were calculated using the 
reduced χ2 function. Two pairs of residues from each monomer (K63-D155, L166-L166) at the interface of the crys-
tal structure were chosen to calculate the distances to characterize the structural similarity to the crystal structure.

Figure 5a gives the plots of average residue pair distances of all states with respect to their SAXS discrepancy 
values. Similar to the association of MoaD and MoaE, even at low SAXS discrepancy region, there are multi-
ple states that have approximately equal SAXS discrepancy values but varying residue pair distance; while the 
structures with approximately equal average residue pair distances can have varying SAXS discrepancy values. 
Supplementary Fig. S17 shows the SAXS profiles and the snapshots of the 10 states with the minimal SAXS 
discrepancy scores. Despite high similarities between the SAXS profiles of these states as compared to the target 
SAXS profile, the two monomers adopt various types of orientations and have varying degrees of deviations 
from the crystal structure. These results again highlight the inherent ambiguity of SAXS patterns. Supplementary 
Fig. S18 shows the SAXS profiles and the snapshots of the 10 states with the minimal interfacial residue pair dis-
tances. From the three rounds of adaptive samplings, the state with the lowest interfacial residue pair distance and 
a relatively small SAXS discrepancy score (reduced χ2 = 25.561) gives the closest structural model to the PYR1 
crystal structure (Cα RMSD: 5.14 Å, Supplementary Fig. S18b).

To further improve the quality of the PYR1 structural model, we performed additional MD simulations to 
refine the structural model obtained from the three rounds of adaptive sampling. Briefly, 5 parallel simulations 
were launched from the state with the minimal residue pair distance (among the 200 states) and run for 20 ns 
each. The last 10 ns simulation data from each trajectory were used to calculate the SAXS profiles. The confor-
mation from the trajectory with the lowest reduced χ2 was determined as the predicted PYR1 structural model 
(Fig. 5a, blue star). The reduced χ2 between the predicted and the target SAXS profiles decreases to 9.111 and 
the Cα RMSD of the predicted structural model from the crystal structure decreases to 3.18 Å (Fig. 5b). The 
target SAXS profile, and the SAXS profile of the predicted structure are shown in Fig. 5b. The target SAXS profile 
matches well with the previously published SAXS experimental data43 within q < 0.3 Å−1 region. The Rg and Dmax 
values estimated from the experimental SAXS data and the target and predicted SAXS profiles are compared in 

Figure 5.  Predicting the PYR1 structure. (a) The plot of the average Cα distance of two residue pairs of 
individual state with respect to the SAXS discrepancy value χ2. Each circle represents a single state from the 
clustering. The 10 states with the minimal average residue pair distances are colored in green, and the 10 
states with the minimal χ2 are colored in cyan, respectively. The blue star denotes the refined predicted PYR1 
structure obtained after 20 ns MD simulation starting from the state with the minimal residue pair distance. 
(b) SAXS profiles of the target (red) and the predicted (blue) states are shown with the errorbars. Overlay of the 
crystal structure (red) and the best simulation predicted structure (blue) gives a Cα RMSD of 3.18 Å. The fitted 
SAXS experimental data are marked in grey circles.



www.nature.com/scientificreports/

1 1SCIEntIfIC REPortS |         (2018) 8:17748  | DOI:10.1038/s41598-018-36090-z

Table 1. The residuals plots suggest that the major discrepancies between the predicted and the target SAXS pro-
files are from the errors of the predicted SAXS profiles (Supplementary Fig. S19). We believe more sampling from 
the predicted structural model will further improve the structural prediction accuracy and the corresponding 
SAXS profile will have even better match with the target SAXS profile. Overall, these results demonstrate that 
SAXS-guided adaptive sampling is an efficient sampling approach to predict protein complex structures from 
unbiased all atom MD simulations.

Discussion
Long timescale unbiased MD simulations can be a complementary method to fully interpret the limited struc-
tural information contained in SAXS data, and predict accurate protein structures, ensembles and dynamics. In 
this study, we have demonstrated the utility of SAXS and hybrid information in adaptive sampling process to 
enhance time efficiency in unbiased sampling of protein folding and protein-protein association pathways. By 
analyzing the extensive protein folding and protein-protein association simulation datasets, we demonstrate the 
use of SAXS data along with thermodynamics or distance restraints information in improving the accuracy of 
structure prediction from MD simulations. For the folding of small proteins, we show that SAXS data in combina-
tion with free energy information estimated from the MSMs is sufficient to distinguish the native states from sim-
ulation datasets (Fig. 1). Distance restraints which can be inferred from intramolecular EC can be combined with 
SAXS data to further distinguish the internal structure differences of conformational states that display similar 
SAXS profiles. For the association of MoaD-MoaE (Fig. 3) and homodimer PYR1 (Fig. 5), integrating SAXS data 
and interfacial distance restraints, good predictions of near-native complex structures can be obtained using this 
approach. For practical applications, which additional external information may be required for further structure 
differentiations can also be obtained from these structural models predicted from the simulation. Based on this 
prior knowledge, relevant computations or experiments could be performed to provide the information69–71.

From kinetic MC sampling, we have shown that the computational times in sampling either protein folding 
(Fig. 2, Supplementary Figs. S7, S8) or protein-protein association (Fig. 4) are significantly reduced by incorpo-
rating SAXS and SAXS-based hybrid information as reaction coordinates in adaptive sampling. Furthermore, 
by combining both SAXS and distance restraints in adaptive sampling, the sampling efficiency is better than the 
sampling guided by either type of structural information alone. We expect that these hybrid approaches will be 
useful for the study of larger proteins, as the inherent ambiguity of SAXS data would be more significant. It should 
be noted that these approaches provide not only the final predictions of native states of proteins and complexes, 
but also structure ensembles and dynamics. During the sampling process, our protocol bias sampling directions 
towards the target to prevent exploring ‘irrelevant’ states as defined according to the adaptive seed selection cri-
teria. After the target structure is discovered, one can do more sampling along the initial sampled pathways to 
collect accurate structural ensembles and dynamics. For heterogeneous ensembles, the obtained ensembles could 
be reweighted against experimental data to be further refined.

Our approach has some similarities to a previously proposed experiment-guided sampling technique, 
PaCS-Fit72. PaCS-Fit also involves iteratively running short parallel simulations and picking conformations 
that are ‘closer’ to experimental data for further sampling except the clustering step as implemented in our 
MSM-based adaptive sampling strategy. The clustering step is essential for two reasons. First, due to SAXS under-
determined nature, sturctures with similar molecular envelopes may display similar SAXS profiles but can have 
essential structure differences at atomic resolution. This is already demonstrated in our MoaD-MoaE and PYR1 
systems. Without clustering, in each cycle PaCS-Fit will likely only select redundant conformations that are struc-
turally similar to continue sampling, and therefore bias simulations to an ensemble consistent with target exper-
imental data but structurally distant from target structure. Instead, by iteratively running simulations in parallel 
from multiple cluster states, we can likely achieve the structure ensemble reasonably ‘close’ to the true ensemble. 
Second, the clustering can effectively reduce the amount of SAXS calculations required for long timescale simu-
lations. Peng et al.72 has demonstrated the success of application of PaCS-Fit in predicting small conformational 
changes of proteins. Our study has addressed some challenges as we extend the application of this approach in 
studying the protein folding and protein-protein association process.

Finally, using MSMs, the large amount of unbiased simulation data collected using adaptive sampling 
approaches could be merged to construct discrete protein dynamic models. Using transition path theory73,74, pro-
tein dynamics such as protein folding and protein-protein pathways can be fully mapped out from the MSMs. All 
together, SAXS-based adaptive sampling along with MSMs potentially allows us to predict not only the protein 
functional conformations but also the pathways of conformational changes with a reasonable computational cost. 
This method can be useful in determining the unknown structures of proteins and complexes. At the same time, 
the constructed models from simulation can be updated when more accurate or orthogonal experimental infor-
mation is available69,70. Other experimental information can be incorporated in a similar manner to collectively 
enhance the sampling and improve the accuracy of prediction from the simulation. These methods provide a way 
to build a dynamic model of protein function consistent with the available experimental and computational data.
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