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Abstract

Cancer is the second leading cause of mortality worldwide despite tremendous advances in 

treatment. The promise of precision oncology depends on accurate characterization of tumor 

mutations and subsequent therapy selection. The lack of tumor reference samples along with the 

associated next generation sequencing (NGS) technical assessments has hindered the development 

of NGS assays and the realization of benefits for precision oncology. The summarized results 

and recommendations of several seminal SEQC2 studies along with a vision of the changing 

landscape of precision oncology and anticipated next steps by the SEQC2 consortium are reported. 

Importantly, these studies utilized a new robust reference sample material which was developed 

and constructed to support multiple DNA and RNA-based NGS assay studies. These studies 

focused on a wide variety of precision oncology assay scenarios and provided guidelines for 

standardized analyses and best practice recommendations. The evolving landscape of precision 

oncology requires insights into critical factors supporting the sensitivity and reproducibility of 

clinical NGS assays for continued improvement in patient outcomes. Persistent development 

of robust reference materials, quantitative performance metrics, and actionable data analysis 
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recommendations are needed. This series of SEQC2 studies serve to advance NGS-based assays 

for precision oncology and support regulatory science endeavors.
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Introduction

As precision oncology evolves, understanding and anticipating challenges will be essential 

to ensure continued forward progress. Targeting cancer with much greater therapeutic 

accuracy is the aim of precision medicine (oncology) (1). Biomedical advances have 

converged in the rapidly evolving field of precision oncology with a proliferation of complex 

tests aimed at identifying biological indicators (biomarkers) on an individual basis from 

a patient’s tumor sample. Precision oncology requires getting the biomarker tests “right” 

in order to individually customize treatment, improve outcomes, and at the same time 

advance our understanding of the role of genetics in cancer (2). A bad biomarker test is as 

problematic as a bad drug, so getting the biomarker test right is critical (3).

The recent rate of advancements in precision oncology has been staggering. Approximately 

ten years ago the FDA and NIH announced a shared vision of personalized medicine along 

with the scientific and regulatory structure needed to support its growth (4). Three years 

later they jointly announced the policy approval to allow next generation sequencing (NGS) 

as a platform technology to be used for the development and running of innumerable new 

genome-based tests with clinical implications and indications (5). President Obama’s 2015 

precision medicine initiative expressed strong conviction that science offers great potential 

for improving health, and oncology was the clear choice for enhancing the near-term impact 

of this endeavor (6).

Today, there are a number of FDA approved NGS-based solid tumor tests serving as 

companion diagnostics. These tests provide essential information for the safe and effective 

use of a particular drug as part of an individualized therapeutic plan for a cancer patient 

(7,8). A few examples include multiple tumor profiling tests, for instance: FoundationOne 

CDx, MSK-IMPACT, Oncomine Dx Target Test, Omics Core, and PGDx elio tissue 

complete. NGS-based tests can also be used to detect DNA shed by the tumor into the 

blood, termed a liquid biopsy. Most recently, FDA has approved tests for the monitoring of 

advanced disease using liquid biopsies, e.g., Guardant360® CDx (9), and FoundationOne® 

Liquid CDx (10).

Unmet needs to advance precision medicine include the development of best practices, 

protocols, and quality metrics for NGS-based diagnostic assays. The Sequencing Quality 

Control Phase 2 (SEQC2) consortium was formed to address these needs. SEQC2 is 

an international group composed of members from academia, government, and industry, 

and led by the U.S. Food and Drug Administration (FDA) (11). SEQC2 builds on the 

foundation and frameworks put forth by the Human Genome Project and the many studies 

from The Cancer Genome Atlas (TCGA) (12,13). SEQC2 is funded by the United States 
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Congressional 21st Century Cures Act (14) and is intended to support cancer research, 

including the development of more sensitive diagnostic tests and research with the potential 

to transform the oncologic scientific field.

In this paper, we profile the most recent accomplishments of the SEQC2 Oncopanel 

Sequencing Working Group. In brief, we have developed a translational scientific 

infrastructure and applied it to common precision oncology situations. This includes the 

design and construction of a comprehensive and robust set of nucleic acid (DNA, RNA) 

reference standards (15) that were used in related SEQC2 studies (Figure 1), which will 

become publicly available. These related studies include: (I) comprehensive solid tumor 

onco-panel testing (16); (II) liquid biopsy testing (17); (III) testing involving formalin fixed 

paraffin embedded (FFPE) materials (18) and; (IV) testing involving spike-in materials (19). 

All these studies detail the bioinformatics frameworks used and importantly provide best 

practice recommendations. We also provide a vision for current and future SEQC2 efforts. 

These efforts aim to assist with the on-going evolution of precision oncology.

Findings from SEQC2 Oncopanel Sequencing Working Group studies

Establishing a reference sample with known variants

To evaluate the analytical validity of a targeted sequencing panel, a new reference sample 

had to be created. All other available reference samples either had variants with too high 

of an allele frequency [population genetics reference samples (20)], too few variants total 

[based on a single cell line (21–23)], or a limited source (from a tumor). To overcome 

these three limitations, the SEQC2 working group pooled genomic DNA extracted from 

10 Universal Human Reference RNA (UHRR, Agilent Technologies, Inc., Santa Clara, 

California, USA) cell lines (Figure 2) to make a reference sample (15). This mixture of 

cancer samples increased the mutation density per gene, which is ideal for being able to 

assess oncopanel performance across conditions. Sample A was then diluted into a normal 

sample with known germline variants (Sample B) at various ratios to create a panel of lower 

allele frequency of variants, and thus more faithfully represent the reality of a tumor sample 

or liquid biopsy. These samples are publicly available through Agilent Technologies.

To confidently establish a large number of known positive variants and negative positions, 

four different whole exome sequencing (WES) enrichment kits and one whole genome 

sequencing (WGS) method were employed to sequence Sample A and gDNA samples 

from each cell line individually. These approaches included both short and linked read 

technologies. By leveraging this wealth of data, a consensus targeted region (CTR), 

spanning about 22 Mb, was established. The CTR was defined as the coding regions of 

the intersection of the four WES panels against the NIST high confidence regions, after 

removal of low complexity regions. Meeting the goal of establishing a sample with a rich 

collection of mutations, over 40,000 variants down to 1% variant allele frequency (VAF) 

were identified in the reference Sample A CTR. Meeting yet another goal, more than 

25,000 of the variants had VAF of less than 20%, including 1,653 variants in 723 cancer 

genes listed by the Catalogue Of Somatic Mutations In Cancer (COSMIC) cancer gene 

census project (24). Over 10 million negative positions (i.e., positions of reference alleles) 

were identified in Sample A. While known variants can be used to evaluate sensitivity of 
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oncopanels, this enormous collection of known negatives will enable accurate measurements 

of an oncopanel’s false positive rate. An orthogonal technology (digital droplet PCR) was 

used to validate a large number of known positive variants and negative positions, serving to 

confirm this reference sample.

The establishment of this reference sample was key to enabling assessment of oncopanels in 

a context truer to the clinical setting. The mixture of Sample A and Sample B with different 

ratios allowed for titration of the known variants with lower VAF (for example, around 

0.1% in Sample E), a range suitable for assessing liquid biopsy panels. The broad and deep 

collection of variants spanning key driver genes at various frequencies enabled assessments 

of tumor relevant oncopanels in the context of rare subclonal mutations. The group has made 

the set of known variants and negative positions openly available (15) to the community, 

enabling others to interrogate additional approaches to targeted oncopanel somatic mutation 

detection. Lastly, the study serves as a guide to others who may want to establish a reference 

sample to answer related but different questions.

Interrogating best practices for oncopanel somatic variant detection

To assess best practices of deep targeted sequencing using oncopanels for accurately 

detecting genetic variants, the group performed a cross-platform multi-lab evaluation of 

eight panels relying on the variants identified from Sample A. Samples A, B, C and a 

spike-in sample of synthetic hotspot mutations were tested with four technical replicates 

for each sample across three independent laboratories for each oncopanel. Using known 

positives across a range of VAFs and in selected important genomic regions, this study 

queried both intra-lab and cross-lab reproducibility, known positive detection sensitivity and 

false positive rate. Given the increasing prevalence of tumor mutational burden (TMB), 

being leveraged to immune checkpoint inhibitors success (25,26), the group specifically 

queried the ability of oncopanels to evaluate TMB. Impacts of panel size, reproducibility, 

and false positive rate on TMB measurements were studied to derive recommendations for 

using oncopanels to evaluate TMB.

High sensitivity was obtained for all panels across the CTR and all variant types. The overall 

sensitivity was high across VAF ranges in all panels. It ranged from 87.1% to 98.3% for the 

lowest VAF range (1–2.5%). A review of all results taken together revealed that a hard VAF 

threshold can successfully control the false positive rate. With the default VAF threshold of 

each panel, FP rates were lower than 10.5 per Mb. The majority of FP calls were in the low 

VAF ranges (<5%). But at the cost of reduced sensitivity due to the inherent variability in 

VAF measurements. Better overall performance in terms of reproducibility and false positive 

rate was achieved by restricting variant detection to only the CTR. Reproducibility varied 

across panels and usually was over 95%. False positives appeared much more commonly 

outside CTR; thus reproducibility was more challenging outside of this area. For TMB 

estimation with clinically relevant parameters, the authors recommended that the analysis 

be restricted to the CTR, the panel target at least 1 Mb within the CTR and a VAF cutoff 

of 5% be applied. Together with the adequate reference samples developed by this working 

group, this comprehensive study provided actionable guidelines for oncopanel sequencing 
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and documented clear evidence supporting a simplified and straightforward workflow to 

assess the analytical performance of oncopanels.

Fixation time- and within block position-dependent quality degradation in FFPE processed 
samples

The growing trend of minimally invasive surgery (27) means that surgically collected tissue 

specimens are more limited in size; thus are FFPE processed to meet the many current 

standard care needs (28). FFPE processing can have considerable consequences for the 

analytical utility of downstream NGS assays, as the FFPE process induces substantial and 

highly variable effects on nucleic acid quality and quantity (29). In this study, adopting an 

FFPE procedure highly analogous to cell block cytology sample processing, the SEQC2 

Oncopanel Sequencing Working Group made multiple FFPE blocks of Sample B cell 

culture at four different formalin fixation duration, 1, 2, 6, 24 hours. Thus, the findings 

from this study would be readily applicable to clinical FFPE samples. The set of known 

variants in Sample B were then leveraged to investigate the influence of FFPE processing 

on reproducibility and accuracy of mutation detection per different oncopanels, formalin 

fixation duration, and locations (18). As the comprehensive cross-lab oncopanel study 

confirmed high sensitivity in variant detection, the investigation here was centered on false 

positive rate, i.e., the frequency of false positive variant calls. Additionally, achieving a low 

false positive rate is essential for accurate TMB measurements.

Rigorous analysis revealed that cell count was an essential measurement for the quality of 

sequential FFPE sample sections. A low cell count always leads to a high false positive 

rate. Another key driver was DNA input amount. Slightly lower DNA input leads to a 

substantially increased false positive rate. A lower quantity of high-quality sample was 

observed in samples with longer formalin fixation times. Interestingly, physical position 

within the FFPE block also had an impact on quality. This study recommended avoiding 

performing NGS assays on surface FFPE samples, instead selecting samples taken from the 

core of the block. To get the most from an FFPE sample, the study recommended high cell 

count, high DNA input amount, minimal formalin fixation duration, and a sample taken 

from the middle of the block.

Maximizing the analytical validity of circulating tumor DNA sequencing assays

Although clinical adoption of liquid biopsies is currently increasing, results from orthogonal 

approaches or technologies do not always agree (30–32). Moreover, shared effort 

between ASCO (American Society of Clinical Oncology) and CAP (College of American 

Pathologists) detailed the urgency of employing reference samples to compare the analytical 

validity of circulating tumor DNA (ctDNA) assays across technologies and laboratories 

and enabling unbiased comparisons across technologies and laboratories (33). The SEQC2 

Oncopanel Sequencing Working Group tested five ctDNA assays across 12 laboratories, 

leveraging a simulated sequencing dataset, a synthetic DNA spike-in dataset and the 

carefully studied reference sample (17). For this specific study, Sample A (cancer sample) 

and Sample B (normal sample) were mixed with 20% A/80% B and 4% A/96% B to create a 

deep collection of variants at many different VAF ranges.
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Taking all results together, the authors described the importance of a VAF threshold 

of 0.5%. Above this limit, mutations were detected with high sensitivity, precision, and 

reproducibility by all tested assays. Input material amount became a key driver of success 

or failure below 0.5% VAF. Strikingly, below 0.5% VAF there was a bias toward false 

negatives rather than false positives. This suggests that rare ctDNA fragments may fall 

victim to stochastic sampling and simply not be present if the input material is too 

small and the frequency is too low. In addition, a review of results showed that fragment 

depth was a driving force for successful detection of low-frequency mutations. For those 

conducting ctDNA assays, the authors suggest focusing on efficiency and stability of capture 

enrichment, NGS library conversion and amplification to ensure sufficient and more uniform 

fragment depth. When studying the impact of unique molecular identifiers (UMIs), results 

showed that UMIs were indeed helpful for consensus error correction. The use of UMIs is 

suggested in cases where it is desired to reduce false positive detection.

Spike-in materials to advance quality-control for circulating tumor DNA NGS mutation 
detection

For clinical liquid biopsies, a limit of detection (LOD) is established in advance for each 

mutation type or specific mutation, and then that limit is applied equally to every sample. 

However, previous studies have clearly demonstrated the existence of both variant-specific 

and sample specific LOD (34). Thus, certain variants with lower VAFs could potentially be 

measured in certain samples. A second problem with a pre-established LOD is sample or 

lab-based technical artifacts (35,36) and/or stochastic issues connected to small quantity or 

poor quality samples (37,38). Taken together, these challenges presented the need to develop 

methods able to pinpoint sample- and variant-specific LOD. The SEQC2 group designed 

a synthetic internal standard spike-in for each actionable mutation target suitable for use 

in NGS following hybrid-capture enrichment and UMI or non-UMI library preparation. To 

appropriately study the results, the authors developed computational methods to distinguish 

the spike-in internal standard (IS) controls from the sample native template (NT) sequence 

reads in FASTQ files prior to pipeline analysis and variant calling. By measuring the error 

rate at each actionable mutation target through sequencing reads of the spike-in controls, the 

authors developed a complete set of bioinformatics methods to improve quality control for 

ctDNA mutation detection.

The authors first assessed whether the spike-in would impact vendor variant calling 

performance and did not observe any impact. Strikingly, the variant calling in the SEQC2 

contrived reference ctDNA was improved using the synthetic spike-in. Digging into the 

results, the authors noted improved sensitivity without loss of specificity. Importantly, the 

inclusion of the spike-in enabled calculation of a per variant, per nucleotide, per sample 

LOD. Other key molecular diagnostic testing methods already leverage synthetic spike-ins 

as controls (39–41). The work presented by the authors enables extension of this level of 

quality control to NGS diagnosis of actionable mutations.
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Summary and ongoing studies

Sequencing of tumor tissue or blood from a patient can detect driver mutations, but only 

down to a certain mutation frequency. Low frequency mutations can represent subclones 

within the tumor, or the presence or absence of DNA shed by a tumor in serum. To boost 

detection power of these low frequency variants, sequencing reads are focused in areas 

likely to harbor important driver mutations to boost resolution. These targeted sequencing 

approaches were subjected to various challenges, including low mutation frequency, FFPE 

processing, and a liquid biopsy context. To perform the above rigorous testing, the SEQC2 

Oncopanel Sequencing Working Group created a set of reference samples and robustly 

established a list of known variants and negative loci. Various technical factors, lab factors, 

bioinformatics approaches, genomic context, and the use of spike-in controls were assessed 

to establish recommendations for best practices. These studies also established false positive 

rate, calculated as the number of false positive variant calls per million bases of a targeted 

genomic region, as a key performance metric to evaluate the impacts of underpinning 

factors including those listed above. Thus, the reference samples and our performance 

assessment frameworks will enable proficiency testing and routine performance monitoring 

of oncopanels beyond establishing analytical validity.

Rather than creating a “hit and run” resource, the SEQC2 Oncopanel Sequencing Working 

Group continues to expand these community resources and more deeply interrogate best 

practices so that recommendations remain up to date. The current set of known positives is 

being expanded into more kinds of variants (more indels and multiple nucleotide variants) as 

well as more areas of the genome (coding regions beyond the CTR). As new bioinformatics 

methods arise, SEQC2 is working with the community to evaluate them and promote the 

development of the most accurate analytical approach. For analytical validity, tight and 

rigorous control of the false positive rate is critical. Thus, SEQC2 continues to dive even 

deeper into factors impacting the false positive rate, as well as methods to best control the 

false positive rate. While all data and code from SEQC2 is publicly available, the consortium 

is working to create a data portal to enable easy access to datasets that can be used to 

advance the validation and proficiency testing of oncopanels.

Perspectives

Accurate and robust biomarkers are essential for precision oncology. Embodying the 

convergence of molecular biology, advanced computation (bioinformatics, machine learning 

and artificial intelligence), data science, and biotechnology, deep targeted sequencing is 

capable of accurately detecting cancer mutations of low allele frequency; thus enabling 

unprecedented basic science insights and accelerating the evolution of precision oncology. 

However, transparent regulation and performance assessment of deep targeted sequencing 

panels, i.e., oncopanels, was completely unheard of as there was an obvious void of adequate 

reference samples to support such assessments of analytical performance. Recognizing the 

urgent need in the field, the SEQC2 Oncopanel Sequencing Working Group undertook 

a strenuous effort to develop a reference sample harboring a high-density array of small 

variants at low VAF. Of over 42,000 known variants, over 10 million negative positions 

were determined within about 22 Mb high confidence coding regions in the human 
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genome. Sample A can then be diluted by Sample B, derived from a normal cell line, to 

create a set of samples that adjust the allele frequency of those variants to any interested 

ranges. These high-confidence known variants and known negatives enable the performance 

assessments such as sensitivity, reproducibility, and false positive rate for individual 

oncopanels and cross-panel comparison. Adopting the performance analysis workflow for 

the comprehensive solid tumor oncopanel study, the publicly available reference samples 

with ample supply can be used to fine tune the experiment protocols, variant reporting 

regions, bioinformatics pipelines, and VAF reporting thresholds to maximize sensitivity 

for detecting clinically actionable mutations and control the false positive rate for high 

accuracy over the entire reporting regions. The false positive rate has a direct impact on the 

measurement of TMB. After establishing analytical validity, the reference samples can then 

be used for training and proficiency monitoring of operators, reagents, and instruments.

Liquid biopsy of ctDNA is a key accelerator for the advancement of precision oncology. 

Five years ago, the application of ctDNA testing in metastatic lung cancer had many 

concerns. For instance, are liquid biopsy tests sensitive enough for use in a defined clinical 

setting (cancer metastasis)? How should a negative ctDNA test be confirmed? Is the 

analytical validity of ctDNA testing in metastatic settings sufficient for clinical deployment? 

How do critical pre-analytical variables (blood collection tubes and associated processing, 

molecular extraction of nucleic acids, etc.) affect the performance of ctDNA tests? What 

are the best-practice workflows (sample collection, sample prep, NGS instrumentation, 

bioinformatics) for optimal clinical performance and ultimately physician decision making 

(33)?

In June 2016, FDA approved the first liquid biopsy test, which is PCR-based (42). In 

2020 there were two FDA approvals for NGS-based liquid biopsy tests (9,10). Now the 

strengths of ctDNA testing are gathering attention related to: (I) a more rapid turnaround 

time vs solid tumor biopsy; (II) ability to assess the primary tumor and metastatic foci 

(tumor heterogeneity) using a single routine blood draw; (III) safety profile due to the 

non-invasive nature; (IV) opportunities for longitudinal testing and temporal analyses; and 

(V) the accessibility of bio-liquids enables new treatment monitoring strategies and patient 

compliance, as learned from the COVID pandemic. For instance, a phlebotomist can travel 

to a patient’s home and collect a blood sample for ctDNA analysis. The physician can then 

adjust the therapeutic regimen. This whole process can occur entirely outside of a hospital.

Figure 3 displays how ctDNA assays can be utilized to guide medical decision making. The 

x-axis represents time and is segmented by states or phases a patient may have during their 

treatment course. The y-axis shows the concentration of ctDNA in the blood. Illustrated 

is the pattern of tumor growth over time measured by ctDNA found in the blood. This is 

shown following diagnosis (Dx), initial treatment, response to treatment and, relapse with 

the acquisition of resistance mutations. Currently, the state/phase of ctDNA-based clinical 

applications are located on the right most portion of the diagram (shaded green), principally 

under “Metastasis & Relapse”, since there are FDA approvals for these indications. Given 

the results of the SEQC2 liquid biopsy proficiency study (17) and further maturation of 

ctDNA assay development, there are opportunities to shift applications of ctDNA targeted 

to earlier cancer diagnosis (orange shaded). Using ctDNA as part of the consideration for 
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adjuvant therapy, surveillance for cancer recurrence, and more effective Minimal Molecular 

Residual Disease (MMRD) strategies, will allow for deeper and more durable remissions. 

Guidance to avoid “over treatment” of patients and reductions of severe toxicities and 

treatment related malignancies are critical needs that liquid biopsies may help to address.

However, there are new challenges in the field of precision oncology. Clonal hematopoiesis 

of an indeterminate potential (CHIP) is a newly discovered biological process, and affects 

any type of assay utilizing nucleic acids derived from blood (43). Accurate identification 

of tumor-derived somatic variants in circulating free DNA (cfDNA) or white blood cells 

(germline constituent analysis) requires an understanding of the biological sources and 

processes contributing to the greater source of blood-based mutations (44). CHIP is 

defined by the presence of acquired mutations in hematopoietic progenitor cells and is age 

dependent. It occurs in up to 30% of individuals 60–70 years old and in less than 1% of 

those age 40 or younger (45). The clinical significance of CHIP warrants further study and 

must be accounted for when interpreting liquid biopsy assays (46,47) or an onco-panel with 

a matched germline (48).

There are also limitations due to a lack of signal from somatic variant-based assay 

approaches for early detection, MMRD and screening applications. A major finding from 

the SEQC2 liquid biopsy proficiency testing study (17) is that the degree of DNA input 

material impacts test sensitivity, and more input improves sensitivity and reproducibility 

for variants with VAF below 0.5%. Plasma from healthy donors typically yields ~5–10 

ng cfDNA per mL (49). The amount of ctDNA obtained from cancer patient depends on 

the organ of origin, burden of disease and shedding characteristics of the tumor (50,51). 

There are concerning limitations for somatic variant-based early cancer detection testing 

approaches due to sensitivity (lack of signal) and specificity due to non-tumor sources of 

biological noise (CHIP) causing false positive findings and lowering specificity. Alternative 

approaches are needed.

Using methylation signatures in cfDNA characterized by machine learning classifiers, 

sensitive and specific multi-cancer detection (MCD) and tissue of origin localization are 

now being developed as a next generation liquid biopsy assay (52). The advantages of 

methylation detection for more sensitive cancer assays are: (I) improved sensitivity since 

alterations in methylation in the genome provide high sensitivity for cancer detection; (II) 

improved specificity since methylation pattern identification is not affected by CHIP so 

this eliminates addressing CHIP-based filtering; (III) tissue of origin can be determined 

by methylation patterns; and (IV) improved cost effectiveness since the sequencing depth 

requirements for methylation analysis is much lower compared to cancer-based somatic 

variant analysis (44). The MCD would work in conjunction with other tests and established 

screening modalities, for example, if the MCD were positive for colorectal cancer then 

additional screening (i.e., colonoscopy) would be indicated.

Other representative examples of alternative approaches to improve sensitivity with low 

amounts of input cfDNA follow. The premise of MRDetect (53) is to use machine learning 

to predict tumor fractions present in ctDNA as a function of the information obtained 

from solid tumor samples, specifically mutational load, sequencing depth, copy number 
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alterations and the number of somatic mutations. Using this information, an in-silico plasma 

mixture model is constructed and used to search WGS from the ctDNA sample in a 

quantitative and dynamic manner as samples are obtained over time. This approach serves to 

evaluate changes in disease burden based on sequencing breadth vs. depth.

DELFI (DNA EvaLuation of Fragments of early Interception) (54) uses fragmentation 

patterns present in cfDNA to distinguish normal vs. cancer, and for cancer indicates the 

likely tissue of origin. A machine learning model was developed that incorporated genome-

wide fragmentation features distinguishing normal fragmentation patterns from cancerous 

patterns and associated tissue(s) of origin. Two additional ctDNA assays are focused on 

early-stage colorectal cancer and utilize advanced NGS and analytics (55,56).

A summary of completed and planned projects is provided in Table 1. Due to a 

lack of DNA and RNA reference materials for NGS-based testing scenarios, SEQC2 

investigators put forth the development and construction of robust reference materials used 

in numerous studies (as reported). Due to the evolving precision oncology efforts utilizing 

methylation approaches for cancer screening and MMRD, enhanced reference materials 

supporting methylation assays are needed. Regarding oncopanel testing (as reported), the 

DNA-based approach is complete and the RNA-based approaches involving expressed 

mutations and fusions are in progress. FFPE processing is an important and prevalent 

aspect of clinical samples. The SEQC2 DNA-based FFPE study is complete. However, the 

growing importance of fixed tissue compounded by increasing relevance of transcriptomics 

precipitates the need for FFPE RNA-based analysis. The liquid biopsy study is complete 

and focused on DNA somatic variant analysis for the purpose of analytical validation 

and proficiency testing. More advanced liquid biopsy applications focused on MMRD and 

cancer screening involving MCD and tissue of origin are rapidly progressing. These are 

based on new scientific approaches such as methylation analysis and the use of innovative 

algorithms employing machine learning. Both enhanced reference samples with methylation 

capabilities, guidance, and best practice recommendations for establishing machine learning 

classifiers for clinical assays, analytical validation and proficiency testing for cancer 

screening and MMRD are needed.

In conclusion, these SEQC2 studies have developed and made publicly available 

robust reference sample materials, detailed the bioinformatics frameworks for analytical 

performance assessments, and provided best practice recommendations. We have also 

provided a vision for current and future SEQC2 efforts based on the perceived needs in 

this dynamic space. SEQC2 consortium efforts aim to assist with the on-going evolution 

of precision oncology best practices, regulatory science, and delivering improved cancer 

outcomes for patients.
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Figure 1. 
Overview of the SEQC2 Oncopanel Sequencing Working Group studies. A set of reference 

samples were first created, comprehensively analyzed, and used to support the analytical 

performance assessments on small variants detection by deep targeted sequencing. Utilizing 

the reference samples with known variants and negative positions, four cross-platform 

studies were conducted to evaluate the performance of oncopanels and the impacts of FFPE 

sample processing and internal spike-in controls. Key elements were listed for each study. 

FFPE, formalin fixed paraffin embedded.
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Figure 2. 
Design of the reference samples and overview of small variants. Genomic DNA samples 

from ten human cancer cell lines were pooled with equal mass to generate the reference 

sample A with dense small variants of low VAF. The normal Sample B was then used to 

dilute the variants to lower VAF to mimic subclone mutations in tissue and ctDNA samples. 

For instance, the majority of known variants in Sample F were in VAF range 0.02–0.12% 

and can be used to mimic ctDNA samples with rare mutations. VAF, variant allele frequency.
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Figure 3. 
Using ctDNA assays to guide medical decision making. Illustrated is the pattern of tumor 

growth over time measured by the quantity of ctDNA found in blood. This longitudinal 

temporal view is shown following diagnosis, initial treatment, response to treatment and 

relapse along with the acquisition of resistance mutations. Dx, diagnosis; MMRD, Minimal 

Molecular Residual Disease; Px, prognosis; Tx, treatment.
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