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Simple and cost‑effective 
microfabrication of flexible 
and stretchable electronics 
for wearable multi‑functional 
electrophysiological monitoring
Chae Hyun Kim1, Dong Hyeon Lee2, Jiman Youn3, Hongje Lee4 & Joonsoo Jeong5*

The fabrication of flexible and stretchable electronics is a critical requirement for the successful 
application of wearable healthcare devices. Although such flexible electronics have been commonly 
fabricated by microelectromechanical system (MEMS) technologies, they require a specialised 
equipment for vacuum deposition, photolithography, and wet and dry etching. A photolithography-
free simple patterning method using a desktop plotter cutter has been proposed; however, the 
metal formation and electrode opening still rely on the MEMS technology. To address this issue, we 
demonstrate a simple, rapid, cost-effective, and a complete microfabrication process for flexible 
and stretchable sensor platforms encompassing conductor formation and patterning to encapsulate 
and open sensing windows, which only require an economic plotter cutter and readily available 
supplies. Despite its simplicity, the proposed process could stably create microscale features of 
200 μm wide conductor lines and 1 mm window openings, which are in the useful range for various 
wearable applications. The feasibility of the simple fabrication of multi-functional sensors for various 
physiological monitoring applications was successfully demonstrated in electrochemical (glucose), 
electrical (electrocardiogram), mechanical (strain), and thermal (body temperature) modalities.

The recent advancements in flexible and stretchable electronics have paved the way for biomedical diagnostic 
and therapeutic applications. Unlike the conventional rigid electronics, flexible and stretchable devices can con-
form to the soft and curved human skin and deform with the dynamic movement of the human body without 
detachment or fracture, thus enabling intimate and stable interfaces to the physiological signal sources. One of 
the most promising applications of such devices is in wearable electronics, in which biosensors integrated on 
thin flexible polymeric substrates are mounted on the skin for continuous monitoring of various physiological 
information1–7. Wearable electronics are synergistically incorporated with wireless communication capabilities, 
such as Bluetooth, ZigBee, WiFi, and near-field communication, to enable untethered and continuous health 
monitoring without interrupting the daily lives of users.

Epidermal electronics, one of the successful examples, involves mechanical skin-like substrates integrated 
with multiple physiological sensors and wireless functionalities8. Such epidermal electronics and typical state-of-
the-art wearable sensors are commonly fabricated based on standard microelectromechanical system (MEMS) 
technologies, including vacuum deposition, photolithography, and wet/dry etching. Although they are effective 
for a high patterning resolution and potential batch production, several challenges hinder further extension of 
the benefits of new technologies. Conventional microfabrication processes require special equipment and clean-
room facilities, including a mask aligner, plasma etcher, physical and chemical deposition systems, and multiple 
photomasks, which may not be affordable/accessible for some institutions and regions. The MEMS process is 
also time-consuming in that it requires vacuuming, film growth, and etching for a sequential layer-by-layer 
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construction. The necessity of carrier wafers for compatibility with the MEMS equipment, regardless of the 
substrate materials, not only limits the size of the devices and batches, but also hinders the potential use of new 
mass-production technologies such as roll-to-roll processes.

As the typical feature sizes required for wearable devices [tens to hundreds of micrometres (μm)] are gener-
ally larger than those of MEMS structures (a few to tens of μm), the cost and time inefficiencies of conventional 
microfabrication processes could be alleviated by introducing low-cost and rapid patterning technologies that 
only require an affordable desktop equipment, and yet provide sufficient precision for target applications. As an 
alternative, a photolithography-free process using plotter cutters for patterning metal sheets or plastic substrates 
has been demonstrated9. The cutting method has mostly been employed for a rapid prototyping of microfluidic 
channels by either creating negative channel moulds for casting or directly engraving channel structures on 
polymer sheets10–15. Wearable or in-vitro biosensors have also utilised the ‘cutting’ process as a simplistic metal 
patterning scheme by creating stencil masks for a silkscreen of conductive ink or shadow masks for selective 
metal deposition16–24. Kirigami patterning is another recent demonstration of such a technology for the rapid 
production of stretchable wearable electronics25. A comprehensive application of the cutting process for wearable 
flexible electronics has been proposed as a ‘cut-and-paste’ method26, in which a thin gold layer evaporated on a 
temporary substrate is outlined by a desktop cutting machine before being transferred to target substrates such 
as medical dressing or tattoo papers. This method has been successfully extended to other applications, including 
monitoring of electrocardiogram (ECG), electromyogram (EMG), electrooculogram, seismocardiography, bio-
impedance, skin hydration, skin deformation, and skin temperature4,26–31. Copper foils or copper-clad substrates 
have also been employed for similar processes, particularly for wireless functions32,33.

Despite the successful demonstration of a simpler and faster prototyping compared to conventional micro-
fabrication processes, the abovementioned cutting methods still have several limitations, thus hindering their 
wider use in wearable biomedical applications; these limitations include (1) the lack of selective encapsulation 
methods for creating sensing windows, (2) use of vacuum deposition for the gold layer, and (3) limited types of 
target substrates to adhesive materials such as medical tapes or tattoo papers. First, encapsulation with selective 
opening of sensing electrodes is essential for electrical or electrochemical measurements. This issue becomes 
more critical in monolithically integrated multi-functional biosensors for electrical isolation and minimised 
interference among sensors. This is typically achieved by spraying liquid encapsulants with manual masking30,31. 
In this study, we demonstrate a complete ‘cut-and-paste’ plus ‘cut-and-insulate’ method by utilising the same 
low-cost cutting plotters. Second, although the plotter cutter has replaced photolithography, the metallisation 
step still relies on MEMS vacuum deposition26,28,30,34, which may partially weaken the motivation for the intro-
duction of the low-cost patterning technique. Copper foil or copper-clad substrates can be used32,33, but may not 
be suitable for direct contact with the skin owing to toxicity. We propose thin gold leaves as a cost-effective and 
rapidly prepared conducting layer with a good compatibility with the cut-and-paste method. A skin-transferred 
sensor has been fabricated from gold leaves35; however, it may not be mechanically robust without a polymeric 
substrate27. Gold leaves have been successfully utilised in the fabrication of implanted neural interfaces36. Finally, 
we demonstrate the transfer printing of cut patterns onto nonsticky substrates using a chemical treatment and 
half-curing of polydimethylsiloxane (PDMS). Considering the applicability of PDMS in various biomedical 
applications, this would facilitate the integration with other modalities such as microfluidics or optics, thus 
extending the usefulness of the proposed low-cost process.

Therefore, in this study, we propose a simple and rapid, and yet a complete fabrication process for wear-
able flexible and stretchable electronics, including conductor formation, conductor patterning, encapsulation, 
and window opening, which are based on a low-cost manufacturing using a plotter cutter. The feasibility and 
effectiveness of the proposed process are demonstrated through a multi-functional epidermal sensor patch 
integrated by mechanical (strain), electrochemical (sweat glucose), electrical (ECG), and thermal (skin tem-
perature) modalities.

Results
Simple and low‑cost microfabrication process.  Figure 1 presents the fabricated flexible and stretch-
able wearable patch-type sensor (40 mm × 25 mm) with a multi-functional physiological monitoring capability. 
As a proof-of-concept, the device is designed to integrate a sweat-based glucose sensor, ECG sensor, and tem-
perature sensor onto a 250 μm thick PDMS substrate (Fig. 1a). The overall patch size was determined by the ECG 
electrode size (23 × 5 mm2) and spacing (35 mm) optimized for both compactness and signal quality based on 
literature28,37,38. The entire device can be conformally attached to the curved skin around the wrist (Fig. 1b). The 
PDMS substrate and gold-leaf metal traces provide flexibility and stretchability with mechanical robustness such 
that they can be stretched, twisted (Fig. 1c), and conformably wrapped around a syringe (r = 17 mm) (Fig. 1c). 
The target substrate is not limited to PDMs, but can be readily transferred onto other soft materials widely used 
in biomedical applications such as polyethylene terephthalate (PET) and medical dressing as demonstrated in 
Supplementary Fig. S1.

A simple and low-cost microfabrication process using only an affordable desktop equipment without requir-
ing any cleanroom facilities such as vacuum deposition, photolithography, and plasma etcher is illustrated in 
Fig. 2. A commercially available 24-K gold film (referred to as ‘gold leaf ’, which is ~ 100 nm thick) is mounted 
on a PET film using a thermal release tape (Fig. 2a) and cut into the desired sensor pattern using a plotter cutter 
machine (Fig. 2b). After peeling off the cut-out area, the sample was treated in a (3-mercaptopropyl)trimeth-
oxysilane (MPTMS) solution39,40 (Fig. 2c) before being transferred onto a half-cured PDMS substrate (Fig. 2d). 
Both MPTMS treatment and half-curing of the bottom layer played a critical role in achieving a strong adhesion 
between the gold leaf layer and PDMS substrate, as discussed in the following section. A water-soluble (WS) tape 
mounted on a separate PET film carved by the same plotter cutter was transferred onto the metal pattern to serve 
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as a masking layer during the spinning of the cover PDMS layer (Fig. 2e). The soft wearable sensor patch with 
selective encapsulation for individual electrical access was completed after dissolving the WS structure (Fig. 2f). 
Optionally, selective electrochemical functionalisation can be performed using PET stencil masks, also prepared 
by the plotter cutter, for the squeezing of inks or drop casting of the enzyme (Fig. 2g). The completed step-by-
step description and more experimental details are presented in “Methods” section and Supplementary Fig. S2.

Characterisation of the fabrication process.  The patterning of the conductor and formation of open-
ing windows using the proposed fabrication process were characterised, as shown in Fig. 3. The surface treat-
ment of the gold and PDMS significantly affected the adhesion between them and the consequent integrity of 
the transferred metal tracks (Fig. 3a,b). The gold patterns treated by MPTMS and transferred to the half-cured 
PDMS substrate resulted in the best line quality with void-free and crack-free gold surfaces, as observed by top-
lighted and back-lighted microscopic images and scanning electron microscopy (SEM) images (Fig. 3a, upper 
row). Gold patterns that were either treated by MPTMS and transferred onto a fully cured PDMS substrate or 
those that were not treated by MPTMS and transferred onto a half-cured PDMS substrate produced similar 
results with a poorer adhesion than that of the ‘MPTMS + half-cured’ case, with a significant content of voids 
formed by delamination of gold patterns due to the lack of adhesion (Fig. 3a, bottom row). The line integrity was 
quantified by the ‘fill factor’ from subimages sampled from back-lighted images (i.e., dashed red box in Fig. 3a), 
which is defined as the ratio of the dark area (densely packed gold) to the entire area of the samples with different 
surface treatments (Fig. 3b and Supplementary Fig. S3). The ‘MPTMS + half-cured’ scheme consistently created 
void-free lines with a fill factor of approximately 100% for all line widths (0.2, 0.75, 1.2, and 2 mm), while the 
other two treatments led to fill factors of ~ 60% with a larger variance.

Using this ‘MPTMS + half-cured’ process, gold lines with a minimum width of 0.2 mm could be stably fabri-
cated, as shown in Fig. 3c. The plot of R−1 versus the line width showed a linear relationship (R2 > 0.98), indicating 

Figure 1.   Fabricated flexible and stretchable wearable patch-type sensor. (a) Multi-functional physiological 
monitoring capability for ECG, glucose, and temperature sensing on a 40 mm × 25 mm PDMS patch. (b) The 
sensor is conformally attached on the skin around the wrist. (c) The sensor can be twisted and stretched with 
mechanical robustness. (d) The sensor can be conformally wrapped around a syringe with a diameter of 17 mm.
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uniformity of the gold patterns (Fig. 3d). The WS tape pattern cut by the plotter cutter successfully served as a 
masking structure during the spinning of the cover layer and created opening windows after the dissolution. 
The smallest opening size that could be stably and reproducibly created was 1 mm, as shown in Fig. 3e (the 
perimeter of the opening is indicated by arrows). Cross-sectional microscopy images revealed that the surface 
tension between the liquid PDMS resin and sidewall of the WS masks created an upward meniscus curve (at 
most ~ 35 μm above the ~ 20 μm thick layer) around the edge of the opening windows (Fig. 3f). Although this 
curve may increase the distance between the sensor and target tissue, it is considered acceptable in most applica-
tions considering the aspect ratio of the openings (diameter > 1 mm, height of tens of μm).

Conducting lines with widths of 0.2 mm and 1 mm opening windows are larger than general MEMS struc-
tures, but this range of micropatterns is still acceptable for various wearable electronics, in which the lead count 
and area restriction are not as harsh as in MEMS applications.

Electromechanical characterisation as a strain sensor.  The mechanical characterisation of the fab-
ricated metal tracks upon tensile elongation and their application as a strain sensor are shown in Fig. 4. For the 
strain characterisation, a strain sensor with lengths of 26 mm and width of 2 mm created by the same fabrication 
process were subjected to repeated stretching (strain ε = 10, 30, and 50%) and relaxation, while their line resist-
ances were monitored (Fig. 4a). The test was performed using a custom-built setup consisting of a linear rail, 
step motor, Arduino Uno board for motor control, and digital multimeter (Keithley 6510) The first five stretch-
ing–releasing cycles under strains of 10, 30, and 50% are shown in Fig. 4b. The sensors under the three different 
maximum strains exhibited good linearity, recoverability, and reproducibility. Notably, a ‘stabilising’ behaviour 
was observed, wherein the strain-dependent resistance change was stabilised after approximately three cycles 
for all strain values. Representative relative resistance changes (ΔR/R0) after stabilisation with respect to elonga-
tion cycles of varying maximum strain from 10 to 50% are shown in Fig. 4c. The ΔR/R0 curve showed an almost 
linear response (R2 > 0.96) to the strain with a negligible hysteresis. The slope of the curve, referred to as gauge 
factor [K = (ΔR/R0)/ε] for the determination of the sensitivity of the strain sensor, was calculated to be ~ 20. The 
high linearity of the sensor is beneficial for diverse applications with sensitive and precise strain measurements. 
Despite the small resistance fluctuation at strains of approximately 50%, the proposed sensors could monitor 
tensile strains up to 50%, which is suitable for sensing human motions compared to commercially available 
metallic gauges. Microscopic images were acquired during the course of stretching and relaxation (Fig. 4d) to 
facilitate the understanding of the electromechanical behaviour of the fabricated strain sensor. As tensile strain 
is applied to the sensor, the densely packed gold films experience the formation of cracks dominantly in the 
direction perpendicular to the stretching. More cracks were developed under a higher elongation, which implies 
that the increasing resistance with the strain is attributed to the loss of longitudinally conducting paths owing to 
the cracks in the perpendicular direction. However, when the sample was relaxed to zero strain, the cracks were 
closed, and the initial current pathways were reconnected, which is consistent with the resistance at the relaxed 
position returning to the original value.

Figure 2.   Simple and cost-effective microfabrication process for a flexible and stretchable sensing platform 
without MEMS equipment. (a) Gold leaves mounted on the PET carrier film via the TRT, (b) sensor pattern 
defined by the plotter cutter, (c) gold surface treated by MPTMS, (d) transfer to the half-cured PDMS substrate, 
(e) sacrificial WS mask pattern transferred on the gold pattern, (f) spin coating of the cover layer and dissolution 
of the WS mask, and (g) optional electrode functionalisation with stencil masks.
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To assess the number of repetitions during which the crack formation/closure occurs reversibly, the test 
samples were subjected to repeated stretching/relaxation up to 1000 cycles with varying strain (10, 30, and 50%). 
Figure 4e shows the baseline resistance at the relaxed position after the stretching/relaxation cycles with varying 
maximum strain. When the strain of 10% was repeatedly applied, the baseline resistance gradually increased 
with the repetition number, and then levelled off, reaching 54% above the initial resistance after 1000 cycles. 
Similar trends were observed for the repeated application of the strain of 30% and 50%, with increased baseline 
resistances up to 107% and 114%, respectively, after 1000 cycles. The baseline resistances increased but stabilised 
after ~ 1000 cycles, which suggests a predictable behaviour for strain sensor applications. Greater elongations 
induced higher baseline resistances, presumably due to the fact that more permanent cracks are produced by 
greater strains, which was confirmed by SEM observations. Figure 4f compares the gold surface before (left) 
and after the 1000 cycles of strains of 10% (centre) and 50% (right). As expected, more and longer cracks were 
observed at the gold surface that underwent a higher strain. The repeated stretching/relaxation cycles induced 
permanent cracks, which could not be ‘healed’ even after the relaxation. Although the cracks are ‘closed’ in the 
relaxed state connecting the separated areas without leaving any voids, they are considered responsible for the 
partial breakdown of conducting paths, which increased the baseline resistance.

These findings of the electromechanical evaluation suggest that the proposed fabrication process can produce 
an efficient strain sensor with predictable and linear responses for strains < 50%.

Characterisation as an electrochemical sensor.  The feasibility of multi-functional wearable sensor 
applications including sweat-based glucose, ECG, and temperature sensors for physiological monitoring for 
electrochemical, electrical, and thermal modalities, respectively, was demonstrated. Glucose monitoring from 
sweat has attracted increasing attention for noninvasive and continuous glucose monitoring as an alternative to 
conventional glucose sensing from the blood41–45. Figure 5a illustrates the electrode functionalisation through 
immobilisation of the enzymatic glucose oxidase (GOx) layer on top of the working electrode (WE) and deposi-
tion of Ag/AgCl on top of the reference electrode (RE) (see “Methods” section for the detailed functionalisation 

Figure 3.   Characterisation of the proposed simple microfabrication process. (a) Top-lighted (left) and back-
lighted (centre) and SEM (right) images of the gold lines produced by the ‘MPTMS and half-cured PDMS’ 
scheme (upper row) and ‘MPTMS and fully cured PDMS’ or ‘no MPTMS and half-cured PDMS’ (bottom 
row) (scale bar: 1 mm for microscopy images and 50 µm for SEM images). (b) Fill factor chart comparing the 
integrity of the fabricated gold patterns with different surface treatments and line widths. (c) Stably producible 
line width by the proposed process; top-lighted and back-lighted images of 0.75 mm (left) and 0.2 mm (right) 
lines (scale bar: 0.5 mm). (d) Linear relationship of the resistance with the line width. (e) 1 mm sensing windows 
opened above the gold pattern (scale bar: 0.5 mm) and (f) its cross section at the edge (upward curve).
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process). GOx oxidises the glucose in sweat to produce hydrogen peroxide (H2O2), which is reduced by a redox 
mediator layer, typically Prussian blue (PB), so that the concentration can be quantified by measuring the cur-
rent by constant-potential chronoamperometry (CA). Figure 5b shows CA response curves at a potential of − 
0.4 V for increasing glucose concentration from 0.01 to 5 mM. Well-defined current signals corresponding to 
increasing glucose concentrations were observed with stable responses obtainable within 30 s. The calibration 
plot in Fig. 5c indicates a linear relationship between the output current and glucose concentration in the range 
of 0.01 to 0.1 mM, the typical glucose levels in human sweat42. The inset shows the calibration curve in the whole 
range, with an almost linear trend up to 0.1 mM, which levels off above a glucose concentration of 1 mM. The 
selectivity of the sensor was investigated in the presence of physiological molecules in sweat, including ascor-
bic acid (AA), uric acid (UA), and acetaminophen (AP). Compared to the response of glucose droplets (1 and 
0.1 mM), the CA curve in Fig. 5d presents negligible interference signals when 1 mM of UA, AP, and AA were 
sequentially dropped. Considering that the concentrations of these molecules in human sweat (AA, AP: 1 μM; 
UA: 5 μM) are considerably lower than 1 mM used in the test, this observation implies an excellent selectivity of 
the sensor towards glucose molecules.

The sensor could stably produce CA responses to 0.1 mM glucose concentration under uniaxial stretching 
of 10% and 30% when compared to the response at the rest state (ε = 0%) as shown in Fig. 5e. Elongation of the 
sensor up to 50% resulted in delamination of the relatively rigid functionalizing layers (drop-casted enzyme 
and silk-screened PB and Ag/AgCl layers) from the underlying stretchable gold layer, leading to unstable CA 
response. The inset in Fig. 5e shows sensing performance after repetitive stretching cycles, indicated by the 
relative sensitivity (S/S0), where S and S0 are the CA responses to 0.1 mM glucose before and after the repeated 
strain, respectively. The sensor demonstrated relatively stable responses without significant degradation of initial 

Figure 4.   Mechanical characterisation of the strain sensor. (a) Strain sensor elongated up to a strain of 50% 
using a custom-built strain testing setup. (b) Resistance changes during the first five stretching/relaxation cycles 
of the strain sensor with different strains, showing a stabilising behaviour. (c) ΔR/R curves versus the strain with 
maximum elongations of 10, 30, and 50%, showing the linear response to the strain. (d) Top-lighted and back-
lighted microscopic observation of the gold surfaces in the course of stretching from 0 to 50% (scale bar: 1 mm). 
(e) Baseline resistances at relaxed states after completing an increasing number of cycles for different maximum 
strains. (f) SEM images of gold surfaces before (left) and after 1000 repetitions of application of strains of 10% 
(centre) and 50% (right) (scale bar: 50 μm).
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sensitivity after repeated stretching up to 500 cycles, despite slightly increased deviation which is attributed to 
randomly generated microcracks on the gold film as shown in Fig. 4. The glucose sensor has been tested on 
human body and compared to the measurements from commercial glucose sensing strips (Accu-Chek, Roche). 
Figure 5f demonstrates the glucose concentration in human sweat accumulated during exercise before and 
after meals measured using our patch sensor (x-axis) and commercial sensors (y-axis). High linear correlation 
(R > 0.98) of the calibrated glucose concentrations from both sensors confirm the feasibility of the proposed 
patch sensor for glucose monitoring from human sweat.

Characterisation as an electrical sensor.  The electrical physiological monitoring capability was evalu-
ated using an ECG and temperature sensor. As shown in Fig. 6a, the ECG sensor was tested in a chest phantom 
consisting of a cylindrical block of agarose gel and pseudo ECG signal generated by an ECG simulator (MS400, 
Contec). The ECG measured from the surface of the phantom ~ 20 mm away from the signal source faithfully 
recorded the ECG signals, as shown in Fig. 6b. A magnified view of the recorded ECG signals clearly displays 
the captured PQRST waves. The ECG signals were also recorded from a human subject by attaching the fabri-
cated patch sensor on the chest near heart as shown in Fig. 6c. Conventional gel-type electrodes (Red Dot, 3 M) 
were placed on the identical location as a control, after trimmed to ensure the same inter-electrode distance as 
the patch sensor (3.5 mm). The patch sensor could stably capture the ECG waveforms with clearly discernible 
PRST peaks, showing similar signal quality to the conventional electrodes. While the amplitude of S-peak is 
smaller, which is attributed to the higher interface impedance of the patch sensor than gel electrodes as a result 
of smaller surface area, these results confirm the feasibility of the proposed patch sensor as a wearable ECG sen-
sor platform.

The resistance measurements in response to the temperature showed an almost linearly increasing resistance 
(R2 > 0.99) with a slope of 0.60%/°C, as illustrated in Fig. 6d, which indicates the applicability of the proposed 
fabrication process in various applications of electrical sensing of physiological conditions.

Discussion
Stretchable and flexible electronics have a great potential for successful clinical applications of various wearable 
healthcare devices. The microfabrication technology is crucial, particularly for such wearable devices, because 
a high degree of flexibility and stretchability is required to conform to the soft, curved, and dynamically active 
skin surfaces. Although MEMS-based microfabrication technologies have been commonly considered effective, 
they rely on expensive equipment and cleanroom facilities. We addressed this issue by a simple and cost-effective 

Figure 5.   Characterisation as an electrochemical sensor for glucose monitoring. (a) Schematic of the electrode 
functionalisation of three electrodes using GOx and PB on the WE and Ag/AgCl on the RE. (b) CA curves of 
the glucose sensor in response to varying glucose concentration from 0.01 to 5 mM. (c) Calibrated curve of 
the response current versus the glucose concentration showing a linear relationship within the range of human 
sweat (inset shows the current response to the glucose concentration up to 5 mM). (d) CA curve of the sensor 
in the presence of physiological molecules such as AA, AP, and LA, showing a good selectivity towards glucose 
molecules. (e) CA responses to 0.1 mM glucose concentration from the patch sensors in rest states and stretched 
by 10 and 30%. Inset shows the relative sensor responses (S/S0) after repetitive stretching cycles of 10% and 30%. 
(f) Correlation of glucose concentration from human sweat measured and calibrated by the fabricated sensor 
(x-axis) with those by commercial glucose sensing strips (y-axis) before and after meal.
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microfabrication process for flexible and stretchable electronics fabricated using only affordable desktop tools. 
The proposed process does not require any special cleanroom resources, such as vacuum deposition, photolithog-
raphy, photomasks, plasma etching (nor plasma treatment), and wet etching. A hobbyist-level desktop plotter 
cutter (< $300) is the only required equipment and the economic gold leaves (< $0.1 per 1 cm2 sheet) are the 
most expensive supplies in this study. A spin coater (> $1000) may be useful for spinning the liquid prepolymer 
resin, but it is not essential if commercially available films of various materials with various thicknesses can be 
used. Despite its simplicity and low cost, the proposed process could stably create gold patterns with a width 
of 200 μm and was successfully demonstrated as a multi-parametric sensing platform for various physiological 
monitoring capabilities. The process could create an integrated sensor patch embedded by mechanical (strain), 
electrochemical (glucose), electrical (ECG), and thermal (temperature) sensors, the feasibility of which was 
successfully demonstrated. Although the conducting lines with widths of 0.2 mm are larger than general MEMS 
structures, this range of micropatterns is useful for various wearable electronics, in which the spatial restriction is 
not as severe as in general MEMS fields. Furthermore, unlike the restricted batch size in MEMS, which is limited 
by the carrier wafer size for compatibility of the equipment, the process proposed in this study is further scalable 
to large-area manufacturing such as roll-to-roll process, which suggests the potential advantage of a consider-
ably lower production cost. The bottleneck against a larger-size production is the maximum film width of the 
plotter cutter, which is 30 cm in this study; however, larger plotter cutters are available in the market. Therefore, 
this simple and cost-effective microfabrication process is expected to be beneficial to developing regions of the 
world that have limited accessibility and/or affordability for cleanroom facilities.

The proposed fabrication process can offer extra advantages over the existing "cut-and-paste" methods. First, 
this method can provide a cutter-based simple and cost-effective fabrication process not only for metal pattern-
ing, but also for metal formation and selective encapsulation. This is an extra advantage over previous meth-
ods which typically have relied on MEMS metallization for vacuum deposition, and dry etching for selective 
encapsulation. Also, this method is applicable to a wider range of target substrates including PDMS layers via 
relevant surface treatment, other than the adhesive films used in the existing methods such as medical dressing 
and tattoo papers.

The feasibility of the proposed method was demonstrated for strain, ECG, glucose, and temperature sensing 
applications. The applications can be further extended to monitor other physiological signals including EMG, 
EEG, respiratory rate, skin hydration, oxygen saturation (SpO2), lactate, cortisol, and uric acid. As the funda-
mental sensing capability in electrical, electrochemical, mechanical, and thermal modalities was validated in 
this study, transition to other functionalities could be realised by a decent adaptation of the electrode design 
and electrode functionalisation.

One drawback of the sensor fabricated in this study is the increasing baseline resistance with the repeated 
strain cycles as a result of the irrecoverable crack formation. The increasing trend levelled off and saturated after 
1000 cycles, such that the resistance changed in a predictable manner. Nevertheless, this implies the necessity 
for a major study to achieve a higher mechanical robustness of metal patterns. One possible solution would 

Figure 6.   Electrical and thermal characterisations for ECG and temperature monitoring. (a) Schematic of the 
measurement of ECG signals using a chest phantom and ECG simulator. (b) Recorded ECG signals using the 
proposed ECG sensor and magnified view clearly showing PQRST waveforms. (c) ECG signal measured from 
the patch sensor attached on the chest of human subject, compared to the signal from conventional gel-type 
electrodes. (d) Linearly increasing resistance of the temperature sensor.
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be the transfer of gold patterns onto a pre-strained PDMS substrate so that the out-of-plane buckling of gold 
layers in a relaxed position can provide a higher mechanical stability upon stretching46,47. Further reduction in 
the feature size below 200 μm is also plausible because an additional optimisation of the cutting process can be 
carried out by tuning several parameters of the cutting plotter, including the blade type, applied force, cutting 
speed, and repetition number. The transfer step can also be enhanced for finer pattern sizes by optimising the 
surface treatment of the gold sides and/or substrate side.

Methods
Fabrication.  The simple and rapid fabrication process without photolithography and cleanroom facility is 
illustrated in Supplementary Fig. S2. A thermal release tape (TRT, Graphene Square, Korea) and gold thin film 
(Au, Hanil Gold Leaf Co., Korea) were sequentially laminated on top of a 100 μm thick PET film (Supplemen-
tary Fig. S2a). The sensor pattern was formed on the PET + TRT + Au film using a desktop plotter cutter (Cameo 
3, Silhouette), followed by peeling off the cut-out area of TRT + Au from the PET substrate (Supplementary 
Fig. S2b). For a stable adhesion of the gold pattern onto the PDMS substrate, the gold pattern on the PET sub-
strate was immersed in an MPTMS (175617, Sigma-Aldrich) solution (1 μL of MPTMS per 1 mL of ethanol) 
for 60 min (Supplementary Fig. S2c). After drying with nitrogen gas and leaving it at room temperature for 
24 h (Supplementary Fig. S2d), the god pattern was transferred onto a separately prepared 200 μm thick PDMS 
substrate (Supplementary Fig. S2e). This PDMS substrate layer was prepared by spinning (1000 rpm) a PDMS 
mixture of prepolymer and curing agent (10:1 wt/wt, Sylgard 184, Dow Corning) on a glass wafer, followed by 
baking in an oven at 70 °C for 7 min to prepare a half-cured PDMS substrate. The half-cured PDMS layer facili-
tated the bonding with the MPTMS-treated gold pattern, which was fully cured by baking at 70 °C for 60 min. 
The sample was then placed on a 150 °C hotplate to weaken the TRT adhesiveness before detaching the PET 
carrier substrate, leaving the designed gold pattern on the PDMS substrate (Supplementary Fig. S2f).

For electrical encapsulation and selective opening of the sensor windows, a WS tape (No. 5414, 3M) was 
mounted on a PET film. The WS tape was also carved by the plotter cutter, leaving only ‘mask’ patterns for the 
exposed area (Supplementary Fig. S2g). After the transfer printing of the WS pattern onto the gold pattern 
(Supplementary Fig. S2h), the PDMS cover layer was coated by spinning at 3,000 rpm and baking at 70 °C for 
30 min (Supplementary Fig. S2i). The sensor encapsulation was completed by dissolving the WS mask pattern 
in deionised water at 70 °C (Supplementary Fig. S2j).

Fabrication and characterisation of the glucose sensor.  A simple and rapid electrode functionalisa-
tion process was also developed using a plotter cutter. The mask patterns for the selective activation of PB and 
GOx on the WE and Ag/AgCl on the RE were created on PET films using the same plotter cutter. The masks were 
sequentially mounted on the fabricated sensor to selectively expose the regions to be opened (Supplementary 
Fig. S2k). Sequential deposition of PB/carbon paste (C2070424P2, SunChemical) on the WE and Ag/AgCl paste 
(011464, ALS, Japan) on the RE was performed by squeezing the paste over screen masks and curing at 100 °C, 
each for 5 min. The GOx layer was deposited on the PB layer using the drop-casting method. The GOx solution 
was prepared by mixing 1% acetic acid (695092, Sigma-Aldrich) and 2% chitosan (C3646, Sigma-Aldrich). GOx 
(G7141, Sigma-Aldrich; 40 mg per 1 mL of phosphate buffered saline (PBS)) and bovine serum albumin (A2153, 
Sigma-Aldrich; 10 mg per 1 mL of PBS) were added to the acetic acid–chitosan solution. The GOx solution (20 
μL) was dropped on the WE and dried in a vacuum chamber for 20 min for a rapid even evaporation (Supple-
mentary Fig. S2l).

Data availability
The datasets generated and/or analysed in this study are available from the corresponding author upon reason-
able request.
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