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The distributional properties 
of exemplars affect category 
learning and generalization
Paulo F. Carvalho1*, Chi‑hsin Chen2* & Chen Yu3

What we learn about the world is affected by the input we receive. Many extant category learning 
studies use uniform distributions as input in which each exemplar in a category is presented the same 
number of times. Another common assumption on input used in previous studies is that exemplars 
from the same category form a roughly normal distribution. However, recent corpus studies suggest 
that real‑world category input tends to be organized around skewed distributions. We conducted 
three experiments to examine the distributional properties of the input on category learning and 
generalization. Across all studies, skewed input distributions resulted in broader generalization 
than normal input distributions. Uniform distributions also resulted in broader generalization than 
normal input distributions. Our results not only suggest that current category learning theories 
may underestimate category generalization but also challenge current theories to explain category 
learning in the real world with skewed, instead of the normal or uniform distributions often used in 
experimental studies.

Category learning is critical to our day-to-day lives. Categories allow us to be able to act in the world by knowing 
what to expect from novel similar  situations1. Many categories are learned by processing perceptual information 
perceived by our sensory systems. With sensory input, such as 2D object images projected on the retina or sound 
waves perceived by the ears, our cognitive system is able to sort and group a collection of visual object instances or 
sounds as belonging to the same category. There is a large literature on the perceptual and cognitive processes that 
support human category learning, e.g.2,3. Most studies focus on examining the ability to acquire novel categories 
through laboratory  studies1. Although there is wide agreement that the sensory input the learning system receives 
influences the output of  learning4,5, the role of the properties of the input distribution is less well-understood.

Corpus analyses suggest that the input from everyday environments is organized around distributions in 
which a few items have a much higher likelihood of being experienced, with a long tail of items that are expe-
rienced much less  frequently5,6,9–12. For example, a child learns about a category representation of dog based on 
many exposures to her own dog encountered in everyday contexts along with fewer exposures of many other 
dogs encountered on other occasions. Such distributions are also true when looking at repetitions of specific 
items across time in infants’ early daily experience, e.g.13.

Given that input distributions in everyday environments seem to have one item that is seen more frequently 
among many category items, do the properties of the most frequent item relative to the other items in the sample 
matter? For instance, do learners represent the category differently when the most frequent item is highly similar 
to all the other items compared to input distributions in which the most frequent item is an extreme example 
of the category? Although previous research has made considerable progress in identifying how the learning 
input is created by the learner’s active information selection actions and organized around a highly frequent 
 item6,10,13,14, it is still unknown if the properties of the distribution of exemplar items with different frequencies 
influence category representation and future generalization.

Category representation is intimately related to how learners generalize the category; according to most mod-
els of categorization, category decisions are made based on comparing the current item with the representation of 
previously categorized items. In exemplar models of categorization such as  GCM15,  ALCOVE16, or  SUSTAIN17, 
the categorization of novel items is done by comparing the similarities of the novel item to those of stored items. 
The properties of the most frequent item in the input could have an influence on which properties of the stored 
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items are used in the similarity comparisons. Thus, where the most frequent item is in the distributions could 
result in different category representations and, because of that, different generalizations.

We propose three hypotheses regarding how the properties of the most frequent item relative to the other 
items might influence later generalization. One possibility, which we will refer to as the Bias hypothesis, is that 
which item is most frequent has no impact on generalization. Because the cognitive system has a bias to represent 
input as normally  distributed18–20, the output of the system will be a normally distributed generalization centered 
in the input space. That is, generalization will always match the bias of the  system20.

Another possibility, which we will refer to as the Fidelity hypothesis, is that learners will represent the space 
differently with different input distributions in a way that accurately matches their input. That is, generalization 
will replicate the properties of the input and match it closely. Thus, the properties of the most frequent item in 
the input distribution completely determine the output distribution.

Finally, a third possibility, which we will refer to as the Mix hypothesis, is that the representation created by 
learners is the result of an interaction between the input provided and the cognitive system’s bias. In other words, 
the properties of the most frequent item of the input will have an effect on generalization by affecting how the 
systems’ bias is applied, e.g.12,18,21–23.

We will test these hypotheses by presenting learners with different input distributions in which the most 
frequent item is either central to the category (Normal Input; see Fig. 1B), thus maximally similar to all studied 
items, or peripheral (Skewed Input; see Fig. 1B), thus an extreme exemplar of the category. After training with 
different distributions, we will test participants’ representations by asking them to categorize all items (both old 
and new) in a continuum and evaluate to what extent they generalize the category learned to novel items. Such a 
procedure allows us to evaluate—at the group level—the generalizations created by participants following each 
type of input.

Assuming that each studied item has some level of activation related to its evidentiary strength towards a 
given category in the system, and that this activation will influence how much categorization is generalized to 
novel items, e.g.16–18, the three hypotheses highlighted make clear distinct predictions.

Conversely, if the Fidelity hypothesis is correct, activation will match the input resulting in maximum activa-
tion for the most frequent item. Thus, generalization will be wider when the peak of the distribution is closest to 
the category boundary. Finally, if the Mix hypothesis is correct, activation will be normally distributed (the bias of 
the system) but shifted towards the most frequent item in the input (which might not be the center of the input) 
and encompass all studied items. This will result in an activation gradient that is wider and shifted towards the 
most frequent item (peak of the distribution) in the case of a skewed input distribution (see Fig. 1B). Therefore, 
the generalization will be wider for the Skewed input.

The current studies. In the first study, we taught participants two categories of novel objects, one using 
one of three unimodal input distributions: right-skewed, normal, or left-skewed distributions, and another using 
a uniform input distribution. We used a uniform distribution for the second category to keep constant the 
properties of the second category and guarantee that any difference found was due to the characteristics of the 
unimodal distribution only. Following category learning, we compared learners’ generalization after experienc-
ing different unimodal distributions. To this end, we determined the extent of categorization (broadness) by 
comparing the categorization performance for each type of distribution.

In two follow-up studies we investigated alternative explanations for the results found in Experiment 1. In 
Experiment 2, we tested whether other properties of the distributions (the steepness of the distributions) affected 
learners’ generalization patterns and the impact of the tail of the distribution by including a uniform target 
distribution. Finally, in Experiment 3 we directly compared generalization from training data generated from a 
single distribution, either skewed, normal, or uniform, that did not require the inclusion of a second category.

Experiment 1
Method. Participants. We used G*Power24 to calculate the required sample size to detect a small effect size 
(f = 0.15) for the within-subject effect of type of input distribution, considering 2 between-subject groups (given 
counterbalancing conditions, see details below) and 3 levels of within-subject measurement, with α = 0.05 . The 
sample size required to achieve 75% power was 66 participants (assuming a correlation among repeated meas-
ures of 0.5 and a nonsphericity correction of 1). Because of the limited previous research to provide a precise 
estimate of expected effect size, we decided to collect data from more than the minimum number of participants 
described above, approximately 80 participants to accommodate for potential dropout. We did not analyze the 
data before completing data collection with the target sample size.

84 volunteer undergraduate students at Indiana University (48 females, mean age: 19) participated in this 
study in return for course credit. However, due to technical problems, 3 participants did not finish the experi-
ment and were excluded from the analyses. 81 participants completed all conditions. Data from one participant 
was excluded from analyses due to not following instructions (responding with the same key to all test trials). 
Recruitment and experimental procedures were approved by Indiana University’s Institutional Review Board 
and all experiments were performed in accordance with relevant guidelines and regulations. All participants 
gave informed consent prior to participation.

Design and procedure. The stimuli were sets of novel-looking flowers, each containing 21 flowers; there were 
3 different sets, all with the same properties but different visual appearance. Objects in each set varied along a 
continuum in one perceptual feature (shape of the disk, the color of petals, the length of the stem). Take Fig. 1A 
as an example, the flower on the left extreme has a diamond-shaped disk whereas the flower on the right extreme 
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Figure 1.  Schematic representations of the stimulus space used in Experiments 1 and 2 (A) and in Experiment 
3 (D). Schematic representation of the input distributions in Experiment 1 (B), Experiment 2 (C), and 
Experiment 3 (E).
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has a circle-shaped disk. The training items were the 5 most extreme items on each side (e.g., items 1–5 with a 
more diamond-like shape and items 17–21 with a more circle-like shape).

There were two training categories, one with a uniform distribution and the other with a unimodal distribu-
tion (Fig. 1B). There were 3 unimodal distribution conditions, a right-skewed distribution with a peak at the 
exterior of the continuum, a normal distribution with a peak in the middle, and a left-skewed distribution with 
a peak in the interior of the continuum. We included two skewed distributions because, although our prediction 
pertains only to the distinction between whether the most frequent item is maximally similar to all studied items 
(normal distribution) or an extreme exemplar (skewed distribution), it is possible that the similarity of that item 
to a different category has an impact as well. For example, it is possible that seeing more frequently an item that 
is maximally dissimilar to the other category (right skewed distribution), creates a strong anchoring effect thus 
increasing category broadness, e.g.25,26. Similarly, it is also possible that when the most frequent item is more 
similar to the other category it broadens the representation of the target category because it is more similar to 
items in the other category.

For each set, which side (items 1–5 or 17–21) was the uniform or unimodal distribution was counterbal-
anced across participants. The members in each category occurred 60 times in total. Members in the uniform 
distribution each occurred 12 times. One member in each of the skewed distributions occurred 40 times while 
the other members occurred 5 times each.

In each training trial, participants saw one of the training flowers on the computer screen and had to guess 
whether it belonged to category A or B. After they selected one of the categories, they saw a feedback sentence 
“The correct answer is ___.” After going through the training phase, participants were tested in 21 trials, each 
containing one of the flowers in the continuum. In each test trial, participants were asked to select which cat-
egory the flower belonged to. However, unlike the training phase, no feedback was provided in the test phase.

Results and discussion. The main question of interest is whether category representation is affected by 
the category distribution. Specifically, we asked whether a skewed input distribution, as opposed to a normal 
distribution of items, during study influenced how broadly participants extended the learned category to new 
items. To do so, we started by transforming the participants’ responses during the test phase so that the category 
learned with a uniform distribution was always on the right and the one with the unimodal distribution was 
on the left, and such that responses on the left side corresponded to category A and on the right to category B 
(Fig. 2). Therefore, the right-skewed distribution had the peak on the most extreme left side of the continuum 
whereas the left-skewed distribution had the peak closer to the center of the continuum (and thus closer to the 
other training category). This step was important so that participants and conditions could be directly compared.

The plot on the top panel of Fig. 2 shows the proportion of “A” responses in each condition during the test 
phase. As it can be seen in the figure, the type of distribution changes how the categories are represented. Specifi-
cally, participants who saw a skewed distribution of the category items during training had a wider representation 
of the category compared to those who trained with normally distributed sample of items.

To quantify the observed impact of different distributions on participants’ representations of the categories, 
we estimated the furthest item in the continuum participants were still likely to accept as a member of category 
A, i.e., the category change-point. This is a measure of how broad the category is. To estimate the change-point, 
we identified, for each participant, the highest value classified as A (e.g., flower 14) and the lowest value clas-
sified as B (e.g., flower 10). The mid-point between these two values (in the example, (14–10)/2 + 10, so flower 
12) approximates the boundary between the two categories for that participant. Note that it is possible that a 
participant did not consistently classify the objects between the two values as A or B, that is, some items might 
be classified as A and others as B, which is consistent with the idea that this is the transition area between the 
two categories, e.g.27. In the statistical analyses below, we used a one-way ANOVA with input distribution (left-
skewed, right-skewed, normal) as a within-subject factor predicting changing point. All analyses were followed-
up with two planned contrasts to (1) test the Bias hypothesis by comparing generalization following training 
with skewed distributions and generalization following normally distributed input. If the Bias hypothesis is 
correct, we should see no difference between these two types of input distributions. In addition, (2) we test the 
Fidelity hypothesis by comparing generalization following training with Right-Skewed distributions (Peak at 1) 
with Normal distributions (Peak at 3). If the Fidelity hypothesis is correct, then the Normal distribution should 
result in broader generalization than the Right-Skewed distribution.

How far participants generalized the categories varied across conditions (see Table 1, see also Supplementary 
Information for plots), F(2, 158) = 6.88, p = .001, η2G = 0.001 . Planned contrasts comparing the effect of skewed 
vs. normal distributions showed that participants extended their category further when a skewed distribution was 
used during study,t(158) = 3.43, p = .002 . Participants also created slightly broader categories after experiencing 
a Right-Skewed distribution of items during study compared to a Normal distribution, although this effect was 
only marginally statistically significant, t(158) = −1.88, p = .062 . This pattern suggests that generalization fol-
lowing Normal input is the same or slightly narrower than following Right-Skewed input. Overall, the results of 
this study suggest that the distribution of items during category learning influences the category representation 
that learners exhibit. In other words, the representation distribution that participants created does not match 
the input distribution they received. Overall, the output distribution evident from the generalization analyses 
seems to match the predictions of the Mix Hypothesis—it is not consistent with either the Fidelity or the Bias 
hypotheses.
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Experiment 2
The main goal of Experiment 2 was to replicate and extend the results of Experiment 1 to skewed distributions 
with different properties. Specifically, we manipulated the steepness of the skewed distributions by changing the 
ratio between the most frequent item and the “tail” items. In Experiment 1, we used distributions with a 40:5 
steepness ratio, that is, the most frequent item was presented 40 times whereas the remaining four items were 
presented 5 times each. Thus, the more frequent item is 8 times more frequent than the remaining items. It is 
possible that such a mild steepness ratio influenced the results, and a different pattern would be found if we used 
more extreme steepness ratios. For example, it is possible that with larger steepness ratios the difference between 
skewed and normally distributed input would not be present, which would lead to the conclusion that the effect 
observed in Experiment 1 is tied to mild steepness, i.e., flatter distributions. Conversely, if the effect is due to 
skewness itself, then even if we increase the ratio, we should see the same effects. Therefore, in Experiment 2, we 
compared two different steepness ratios: 28:3 and 32:2, an almost 100% increase in steepness (from 9.3 to 16).

Although the two steepness ratios are equated for the total number of exposures to the category (40 pres-
entations of each category), this number differs from that of Experiment 1 (60 presentations of each category). 
There were two reasons for this change: (1) it made the task shorter, which allowed us to expand the population 

Figure 2.  Proportion of “A” responses during the test for each experiment (each row from top to bottom: 
Experiment 1, Experiment 2, and Experiment 3) and study distribution conditions. Vertical lines indicate the 
peak item for the study distribution in each condition, the horizontal line indicates 50% A responses, and the 
stars indicate studied items.

Table 1.  Mean change-point (95% confidence intervals) for each condition in Experiment 1.

Measure Right-skewed Normal Left-skewed F p-value

Exp. 1 Change-point 11.26 (10.61–11.91) 10.58 (9.98–11.19) 11.96 (11.51–12.41) 6.88 .001
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from the undergraduate sample used in Experiment 1 to a broader online population, and (2) it allowed us to 
guarantee that the effect found in Experiment 1 is not tied to the total number of exposures.

Experiment 2 maintains the main manipulation of Experiment 1: using each of the steepness conditions we 
created three distribution conditions: right-skewed, normal, and left-skewed distributions, by manipulating 
whether the peak was on the left, center, or right of the sample (as in Experiment 1). Additionally, this manipu-
lation was introduced as a between-subject design to reduce the possibility of the mutual influence of each 
condition on the others.

Finally, to further test the impact that the “tail” of the input distribution has on generalization, we also added 
a condition where both categories were presented using a uniform distribution. This new condition allows us 
to directly compare the generalization of each type of unimodal distribution with the uniform distribution. 
Because uniform distributions have more items at the extremes than a normal distribution, the Mix hypothesis 
would predict that the generalization would be broader following training with uniform input than normal 
input. The higher frequency of the extreme items in the uniform distribution combined with the systems’ central 
distribution bias should result in a wider output distribution that encompasses all strong pieces of evidence in 
the uniform input distribution.

In sum, the changes introduced in Experiment 2 relative to Experiment 1 allow us to test the generalizability 
of the findings in Experiment 1 to different steepness ratios, the total number of category exposures, different 
populations, and different experimental setups (from within-subject design to a between-subject design), as well 
as to directly compare generalization between unimodal and uniform distributions.

Method. Participants. Using G*Power we determined that the sample size required to detect an effect size 
of η2G = 0.05(f = 0.31) with three distributions as in Experiment 1 in a between-subject design with 75% power 
was approximately 75 participants. We exceeded this goal to account for potential dropout, initially recruiting 
82 participants randomly assigned to either 28:3 or 32:2 steepness ratio and either right-skewed, left-skewed, or 
normal distribution conditions. Recruitment for the fourth distribution condition (uniform distribution) was 
conducted after data collection for the other conditions had concluded (at the suggestion of a reviewer). Fol-
lowing the initial power calculation, we recruited an additional 26 participants for that condition. In total, we 
recruited 108 adults via Amazon Mechanical Turk (50 females, mean age: 33.32) to participate in this study. The 
entire study took approximately 5 min and participants were paid $0.60 for their participation. Participants were 
randomly assigned to one of 7 conditions, crossing the distribution steepness ratio (28:3 and 32:2) and the shape 
of the input distribution (right-skewed, normal, left-skewed) with an additional condition in which the input 
distribution was uniform (and therefore, had no steepness ratio). Recruitment and experimental procedures 
were approved by Indiana University’s Institutional Review Board and all participants gave informed consent 
prior to participation.

Procedure. Two steepness ratio conditions were used, 28:3 and 32:2. In both conditions, the training procedure 
was the same as that of Experiment 1, except that each category was trained 40 times.

In the 28:3 condition, each item in the uniform condition occurred 8 times. The peak item in the unimodal 
condition occurred 28 times whereas the rest of the training items occurred 3 times each. There were 3 distribu-
tion conditions: right-skewed, normal, and left-skewed distribution.

Similarly, in the 32:2 condition, each item in the uniform condition occurred 8 times. The peak item in the 
unimodal condition occurred 32 times whereas the rest of the training items occurred 2 times each. Again, there 
were 3 distribution conditions: right-skewed, normal, and left-skewed distribution (see Fig. 1C).

For the uniform distribution condition, every item in both categories was studied 8 times (see Fig. 1C). Half 
of the participants in this condition were randomly assigned to have the target category on the left and the other 
half on the right. Note that there were no differences between the two categories and this distinction is for the 
purposes of comparing with the other conditions only.

Results and discussion. We used the same general analytic approach as in Experiment 1. Our planned 
contrasts directly test the three hypotheses. To test whether the Bias hypothesis is correct, we compare the effect 
of skewness on category generalization by contrasting the change-point following training with skewed distri-
butions (Left-skewed and Right-Skewed) and non-skewed distributions (Normal and Uniform Distributions). 
If the Bias hypothesis is correct, then there should be no difference between these two types of distributions 
(skewed vs. non-skewed) because every input distribution will result in the same output. To test whether the 
Fidelity hypothesis is correct, we compare the Right-Skewed distribution and the Normal distribution (see 
Fig. 1C). If the Fidelity hypothesis is correct, then the Normal distribution input should result in broader gener-
alization than the Right-skewed distribution. Finally, to test whether the Mix hypothesis is correct, we compare 
generalization following training with Normal and Uniform distributions. If the Mix hypothesis is correct, then 
we should see broader generalization with the Uniform distribution because the frequency of the edges of the 
input distribution is higher. In other words, a mix of the cognitive system’s bias towards normal representation 
and input that includes more evidence on the edges would result in a wider distribution with Uniform input 
than Normal input.

First, we looked at the effect of the steepness of the distribution on how broadly participants generalized the 
categories using the change-point measure, using a two-way ANOVA with ratio (28:3 vs 32:2) and type of distri-
bution (Right-skewed vs. Normal vs. Left-Skewed) as between-subject factors. Because the Uniform condition 
does not have a more frequent item it does not have a ratio and therefore was not included in these analyses. The 
effect of steepness was not statistically significant, F(1, 76) = 2.32, p = .132, η2G = 0.03 , or interacted with the 
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other variables, F < 1. Because there was no effect of steepness, we analyzed both steepness conditions together 
in the remainder of the analyses.

The plot in the middle panel of Fig. 2 shows the proportion of “A” responses during the test phase (combining 
both steepness conditions), showing a pattern similar to Experiment 1 (top panel of Fig. 2). Analyses using one-
way ANOVA with type of input distribution as a between-subject factor to predict the extent of generalization (see 
Table 2 and Supplementary Information for plots) also show a similar pattern to Experiment 1. Overall, the distri-
bution of the category during study influenced the category representation, F(3, 103) = 4.45, p = .006, η2G = 0.11 . 
To explore this effect, we conducted a series of planned contrasts. Participants extended their categorization 
further with skewed when compared to non-skewed distributions, t(103) = 2.21, p = .029 , further with the 
right-skewed when compared to the normal distribution, t(103) = 2.19, p = .031 , and further with the uniform 
distribution than the normal distribution, t(103) = 3.54, p < .0001.

In sum, the results of Experiment 2 replicate the results of Experiment 1. Furthermore, the results of Experi-
ment 2 suggest that the effect of skewed input distributions on output created from learning is not critically 
connected to the ratio between most and least frequent items used in the skewed distributions.

Experiment 3
The results of the previous two studies suggest that the distribution of items during category learning influences 
the category representation that learners acquire. However, it is possible that the existence of a contrasting second 
category with a uniform distribution influenced the results. Because the uniform distribution was used in one 
extreme of the space, it was not possible to determine whether the distribution of items during study influences 
generalization independently from the distribution of the other categories in the space. To extend the results of 
Experiments 1 and 2, in this third experiment we used a single category learning task and compared the category 
representations participants created from skewed vs. non-skewed distributions.

Method. Participants. Using G*Power we determined that the sample size required to detect an effect size 
of η2G = 0.05(d = 0.62) as in Experiments 1 and 2 with 75% power was approximately 84 participants. Initial re-
cruitment for the three conditions (left-skewed, normal, and right-skewed input distributions) included 92 par-
ticipants. The fourth condition (uniform input distribution) was added after recruitment and data analyses was 
completed for the other conditions (at the suggestion of a reviewer). We recruited an additional 29 participants 
for that additional condition. 121 adults recruited via Amazon Mechanical Turk participated in this study (45 
females, mean age: 36.30). The entire study took approximately 5 min and participants were paid $0.60 for their 
participation. Recruitment and experimental procedures were approved by Indiana University’s Institutional 
Review Board and all participants gave informed consent prior to participation.

Design and procedure. Like in Experiments 1 and 2, the stimuli used in Experiment 3 were 21 flowers. How-
ever, instead of having the most extreme items as the training objects, the training items in Experiment 3 were 
items in the middle of the continuum. In addition, in order to increase the perceptual differences among items, 
instead of using the 5 items in the middle, we spread out the distance between training items and used items 7, 
9, 11, 13, and 15 (see Fig. 1D,E). Thus, unlike the two previous experiments, in Experiment 3 in addition to the 
training items (items 7, 9, 11, 13, and 15) some novel items were covered by the training category boundary (e.g., 
items 8, 10, 12, and 14) while other novel items were outside of the training boundary (i.e., items more extreme 
than items 7 or 15).

The members in the training category occurred 40 times in total with a 32:2 steepness ratio (as in Experiment 
2). One member in the distribution occurred 32 times while the other members occurred 2 times each. There 
were 4 distribution conditions, right-skewed distribution (i.e., peak at item 7), normal distribution (i.e., peak at 
item 11), left-skewed distribution (i.e., peak at item 15), and uniform distribution (i.e., no peak item).

In each training trial, participants saw one of the training flowers and a label “A” under it. Participants could 
take as long as they wanted before they clicked a button “next,” which started the presentation of the next trial. 
Similar to Experiments 1 and 2, after going through the training phase, participants were tested in 21 trials. 
Participants saw one flower in each test trial and were asked to click whether the flower was an “A” or “Not A” 
flower. No feedback was provided in the test phase.

Results and discussion. We followed the same analytical approach as in Experiment 2 with the follow-
ing exceptions. Because participants could generalize the category towards both the left and the right side, we 
calculated two category change-points, one on the left side of the stimuli continuum and one on the right side. 
When participants classified all items on one side as “A,” we estimated the change-point as the maximum pos-
sible in the continuum (1 or 21, depending on the side). To determine how broad the categories that learners 
acquired were, we calculated the difference between the two change-points (change-point right—change-point 
left). The bottom panel of Fig. 2 shows the probability of “A” responses during test for Experiment 3. As can 
be seen from the figure, the type of distribution, had an impact on how broad the category representation is 

Table 2.  Mean change-point (95% confidence intervals) for each condition in Experiment 2.

Measure Right-Skewed Normal Left-skewed Uniform F p-value

Change-point 10.03 (9.28–10.79) 9.51 (8.70–10.34) 11.25 (10.34–12.16) 11.12 (7.31–14.93) 4.45 .006
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F(3, 117) = 6.81, p = .0003, η2G = 0.15 (see Table  3  and Supplementary Information). To explore this effect, 
we conducted a series of planned contrasts. There is a trend suggesting that participants extended their cat-
egorization further with skewed when compared to non-skewed distributions, t(117) = 0.93, p = .084 . More-
over, participants’ generalization was broader after training with right-skewed compared to normal distribu-
tions,t(117) = 2.10, p = .017 . Participants also created broader generalizations following training with uniform 
distributions compared to normal distributions, t(117) = 2.77, p < .0001.

Overall, the results of this experiment replicate the results of Experiments 1 and 2 and suggest that the 
influence of skewed input distributions on output distributions is not critically tied to the existence of a second 
distribution.

General discussion
Corpus analyses of everyday experiences suggest that most experience with categories is unimodally distributed, 
with some exemplars experienced more frequently than others. However, the learning consequences of the prop-
erties of this more frequently experienced exemplar relative to the other exemplars of the category is not well-
understood. Across three studies, we showed that learning with input distributions in which the most frequent 
item is an extreme exemplar of the category (Skewed Distribution) results in broader category representation 
compared to input distributions where the most frequent item is maximally similar to all studied exemplars 
(Normal Distribution). Moreover, we showed in Experiments 2 and 3, that uniform input distributions (where 
items at the edges of the input are equally frequent) result in broader generalization than normal input distribu-
tions (where items at the edges of the distributions are less frequent).

We proposed three hypotheses whereby the similarity properties of the most frequent item relative to the 
rest of the category members could affect later generalization: the Bias hypothesis, the Fidelity hypothesis, and 
the Mix hypothesis. According to the Bias hypothesis, the output distribution will match the bias of the cogni-
tive system—previously described as a normally distributed representation centered around the middle of the 
input  distribution18–20. Thus, according to this hypothesis, whether the input distribution is skewed or normally 
distributed should have no discernible effect on how learners represent the categories and, by hypothesis, no 
effect on generalization.

According to the Fidelity hypothesis, the output distribution will match the input distribution. Thus, accord-
ing to this hypothesis, the characteristics of the input distribution will influence how learners represent the 
categories, resulting in broader categories for normally distributed than Right-skewed distributions.

Finally, according to the Mix hypothesis, the output distribution will be a combination of the system’s bias 
and the properties of the input distribution. Thus, according to this hypothesis, the input distribution will influ-
ence how learners represent the categories, resulting in broader categories for skewed and uniform distributions 
compared to normal distributions.

Overall, the empirical results across the three experiments presented here are consistent with the Mix hypoth-
esis. We found that the input distribution did have an impact on learners’ generalization (falsifying the Bias 
Hypothesis), that right-skewed distributions resulted in broader generalization than normal distributions (fal-
sifying the Fidelity Hypothesis), and that uniform distributions resulted in broader generalization than normal 
distributions (consistent with the Mix Hypothesis).

Overall, these results are consistent with previous proposals that learners’ mental representation of categories 
is biased towards the mean of the input they  received19 but  see20,23. However, our empirical results also suggest 
that learners’ generalization is not solely the result of an existing bias towards the mean of the studied category 
space. We find that right-skewed distributions—for which the mean is further away from the center of the stimuli 
space—resulted in broader categories as well.

Why would a mix of a preexisting bias and the characteristics of the input result in broader generalizations 
for skewed distributions? One possible explanation is that learners represent the category as a skewed distribu-
tion (matching the input) but centered around the mean of the input (matching the bias). This would result in a 
representation that encompasses all studied items, but with higher activation closer to the peak of the input and 
slower decay towards the opposite side of the peak. Accordingly, we found broader generalization for skewed 
distributions where the peak of the distribution is at one side of the space, particularly, when the peak was closest 
to the category boundary. This is because, by hypothesis, the tail distance from the peak of the distribution led to 
broadening of the normal representation bias. Moreover, we found that uniform input distributions also resulted 
in broader generalization than a normal distribution. This is because, by hypothesis, the evidence at the extremes 
of the distribution was stronger than in the normal distribution, broadening the normal representation bias.

Another possibility is related to how skewness might influence perceived variance of the input. It has 
been demonstrated that participants create broader categories when the studied items are perceptually more 
 variable18,22,28. In the present work, we maintained the properties of the items constant in such a way that all 
conditions had the same training stimuli and thus did not directly manipulate input variance. However, it is 
plausible to assume that the distribution affects the perceived variance of the study exemplars, that is, how vari-
able the stimulus space is perceived to be. When the distance between the most frequent item and the last item 
from the tail is larger (as is the case with skewed distributions), or there are more items at the extremes of the 

Table 3.  Mean broadness (95% confidence intervals) of distribution for each condition in Experiment 3.

Measure Right-skewed Normal Left-skewed Uniform F p-value

Broadness 10.44 (4.24–16.63) 10.00 (3.50–16.49) 12.53 (5.32–19.75) 13.44 (5.84–21.05) 6.81 .0003
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distribution (as is the case with uniform distributions), participants might perceive the category as more vari-
able (despite that being controlled for). This perceived variance could contribute to broader generalization with 
skewed distributions without any manipulation of stimuli variance, see e.g.18.

We should also note that previous work in category learning has investigated the related effects of item 
frequency and item perceptual variability on category learning. For example,  Nosofsky29 demonstrated that 
generalization and typicality judgments are biased towards more frequently seen items in the input, see  also30. 
However, in this paper, we investigate not only the effect of frequency (the peak of the distribution), but also its 
position relative to the other studied items. If generalization were pulled towards the most frequent item and its 
relative position had no effect, then we should see narrower generalizations for the right-skewed distribution 
than all the other distributions. Instead, we found that both skewed distributions resulted in wider generalization 
than the normal distribution (for which the peak is equally frequent but located in the middle relative to other 
studied items). These results suggest that more than only the item frequency matters for category learning and 
generalization—the skewness of the distribution also plays a role.

One way to integrate the current results and the Mix hypothesis into current theories of learning is to inves-
tigate how existing models of category learning could be adapted to fit the current results. Although our focus 
is not to compare current category learning models and their predictions, we believe that exemplar models of 
category learning could account for these effects by incorporating the frequency and order of studied items into 
similarity calculations. For example, the Sequential Attention Theory Model (SAT-M)32, an exemplar model of 
categorization, weighs feature relevance for categorization based on the sequence of events and more frequent 
features are weighted more heavily because they are present in more comparisons.

Although everybody would agree that children’s initial visual and auditory input creates the basis for what 
they can  learn4, the relevant data for learning are not the statistics of the physical and social world but only the 
samples that emerge from the learners’ exploration and experiences. That is, the sampling process is implemented 
through the learner’s actions, creating their own data with unique properties and  distributions6. For example, 
decades of laboratory studies have focused on questions regarding whether more varied or more frequent but 
less varied instances are optimal for  learning7. Yet, recent computational evidence suggests that a combination 
of both—created by children’s natural interactions with the world—is, in fact, optimal for  learning5,8. Impor-
tantly, corpus analyses suggesting that everyday input is not normally distributed but instead follows a skewed 
distribution are based on self-generated distributions created by the  learner8,10 . Importantly, it has been shown 
before that active exploration of the space changes the learning outcomes and the properties of the  input31. In 
our experiments learners did not control the input or its distribution. Thus, although our work suggests a clear 
effect of the properties of the most frequent item, it remains an open question whether this effect would interact 
with active and self-generated input exploration.

Our findings confirm previous suggestions that the output of learning does not match the input provided 
with potential consequences for theory and practice. Our findings go one step further by showing that the rela-
tive perceptual properties of the most frequent and least frequent items have an impact on future generalization. 
In everyday experience, this is likely to have a large effect in how categories are formed and represented. For 
example, when children see a skewed input distribution of objects, where there is a clearly most frequent item 
(their favorite sippy cup) but a long tail of substantially less frequent items of the same category (wine glasses) 
they are creating broad, more inclusive categories. This early process might potentiate early category learning 
by establishing fewer categories that need to be learned. The same process might also be a potential cause for the 
well-established overgeneralization errors in young children, e.g.33. By creating broader categories from skewed 
distributions, children might include as part of the category more perceptually distant objects. Consequently, 
children will not only have fewer categories but also include more distant objects as part of existing categories—
thus resulting in overgeneralization.

Finally, the work presented here highlights the importance of studying how information is distributed in 
the real world. Instead of working on theoretical assumptions about the input, we need to develop experiments, 
theories, and models that empirically reflect real-world distributions. Because different distributions in the input 
may engage different learning mechanisms or the same mechanism in different ways, and as a result, create dif-
ferent learning outcomes as demonstrated in the present study, the conclusions we arrive at based on real-world 
input might differ substantially from the current theories of category learning.
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