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Abstract. The present study aimed to determine the clinical 
significance and potential molecular mechanisms of C‑C 
motif chemokine receptor (CCR) genes in patients with 
early‑stage pancreatic ductal adenocarcinoma (PDAC). The 
transcriptomic, survival and clinical data of 112 patients with 
early‑stage PDAC who underwent pancreaticoduodenectomy 
were obtained from The Cancer Genome Atlas. The prognostic 
values of the CCR genes involved in early‑stage PDAC were 
evaluated using Kaplan‑Meier analysis and the multivariate 
Cox proportional risk regression model, and the potential 
molecular mechanisms were determined using bioinformatics 
tools. The identified CCRs closely interacted with each other 
at both the gene and protein levels. High expression levels of 
CCR5 [adjusted P=0.012; adjusted hazard ration (HR)=0.478, 
95% confidence interval (CI)=0.269‑0.852], CCR6 (adjusted 
P=0.026; adjusted HR=0.527, 95% CI=0.299‑0.927) 
and CCR9 (adjusted P=0.001; adjusted HR=0.374, 95% 
CI=0.209‑0.670) were significantly associated with longer 
overall survival times in patients with early‑stage PDAC. The 
contribution of CCR5, CCR6 and CCR9 to the outcome of 
early‑stage PDAC was also demonstrated. Combined survival 
analysis of CCR5, CCR6 and CCR9 suggested that patients 
with high expression levels of these CCRs exhibited the most 

favorable outcomes. A prognostic signature was constructed 
in terms of the expression level of CC5, CCR6 and CCR9, 
and time‑dependent receiver operating characteristic curves 
indicated that this signature was able to effectively predict 
the outcome of patients with early‑stage PDAC. The potential 
molecular mechanisms of CCR5, CC6 and CCR9 in PDAC 
include its intersection of the P53, nuclear factor (NF)‑κB, 
generic transcription, mitogen‑activated protein kinase and 
STAT signaling pathways. Collectively, this highlights that 
CCR5, CCR6 and CCR9 are potential prognostic biomarkers 
for early‑stage PDAC.

Introduction

In 2018, ~458 million new cases of pancreatic cancer were 
diagnosed worldwide, resulting in 432 million mortalities, 
the seventh highest among all cancer‑associated deaths (1). 
Pancreatic cancer is a lethal malignancy with a <5% five‑year 
survival rate, indicating a mortality rate almost equal to its 
occurrence (1‑4). Pancreatic ductal adenocarcinoma (PDAC), 
which accounts for ~90% of all pancreatic cancer cases (5) is 
the third and sixth leading cause of cancer‑associated death 
in the United States and China, respectively (6‑8). As 80‑90% 
of patients with PDAC are diagnosed at an advanced stage, 
when the tumor has usually metastasized, radical resection 
is not possible  (6,9‑11). Conventional treatments such as 
chemotherapy and radiotherapy, as well as targeted therapies, 
have largely failed to prolong the overall survival (OS) time 
of patients with PDAC (12), and only a few novel anti‑PDAC 
strategies are currently in use (13,14). Therefore, the identifi-
cation of early diagnostic markers and therapeutic targets for 
PDAC is critical. Taking into account the encouraging results 
of immuno‑ and gene therapies against PDAC (15‑17), the 
present study aimed to identify novel immunological targets 
associated with its prognosis.

Chemokines and their receptors are critical mediators of 
the inflammatory and immune responses (18‑20), and have 
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recently been implicated in tumorigenesis (21,22). Chemokine 
receptors promote tumorigenesis via numerous mecha-
nisms (23), including inflammation, that is known to play a 
significant role in the pathogenesis and progression of pancre-
atic cancer (24‑26). In addition, the poor prognosis and frequent 
distant metastasis of pancreatic cancer are also associated with 
immune surveillance escape (12,27,28). The chemokine recep-
tors are classified into four subfamilies‑CCR, CXCR, XCR 
and CX3CR‑based on variations within the cysteine motif. 
Although several studies have elucidated the potential roles 
of these CCRs (C‑C motif chemokine receptors) in pancreatic 
cancer, using cell lines or murine models (29‑35), the associa-
tion of CCRs with OS remains ambiguous. Therefore, the aim 
of the present study was to investigate the association between 
CCRs and the prognosis of patients with PDAC.

Materials and methods

Data mining and processing. The transcriptome profiles 
of patients with PDAC were obtained from TCGA database 
(https://cancergenome.nih.gov/, accessed at April 20, 2017), 
and normalized using the DESeq Package in R (36,37). The 
corresponding clinical data were acquired from the University 
of California, Santa Cruz Xena (UCSC Xena; http://xena.
ucsc.edu/, accessed at April 20, 2017). In order to eliminate 
interference from unrelated factors, the patients were selected 
based on the following inclusion criteria: i)  Histological 
validation; ii) pathological stage I or II according to the 7th 
American Joint Committee on Cancer (AJCC); iii) availability 
of complete survival data; and iv) having undergone pancreati-
coduodenectomy.

Bioinformatics and correlation analysis of CCR genes. The 
CCR genes were functionally annotated using Gene Ontology 
(GO) terms, and the associated pathways were determined 
by Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis using the Database for Annotation, Visualization 
and Integrated Discovery (https://david.ncifcrf.gov/home.jsp 
version 6.8, accessed at January 19, 2018) (38). The correlation 
between CCR genes was analyzed by Pearson's correlation 
coefficient using the corrplot package in R (version 1.2.1335; 
www.r‑project.org). A protein‑protein interaction (PPI) map 
was constructed using the Search Tool for the Retrieval 
of Interacting Genes/Proteins (https://string‑db.org/, 
version 11, accessed at march 30, 2019) (39). All CCR gene 
symbols (CCR1‑CCR10) were entered into the platform for 
Homo sapiens and an interaction score >0.4 was considered 
to be significant. Finally, a gene‑gene interaction network 
was constructed using GeneMANIA (http://genemania.org/, 
accessed at March 30, 2019) (40).

Survival analysis. The association between different clinical 
factors and the prognosis of patients with early‑stage PDAC 
was determined using Kaplan‑Meier analysis with the log‑rank 
test; the relevant factors were then included in the multivariate 
Cox proportional risk regression model to identify the CCR 
genes significantly associated with OS. Based on the results 
of the survival analysis of individual genes, combined effect 
survival analysis was performed and a nomogram was 
constructed. The CCR genes associated with PDAC prog-

nosis were assessed using combined effect survival analysis 
(Kaplan‑Meier analysis with log‑rank test) and the multivariate 
Cox proportional risk regression model. The nomogram was 
constructed in R (version 3.5.2; www.r‑project.org) using the 
rms package, based on clinical variables and the expression 
levels of CCR genes. The scale marked on the line indicates 
the value range of each variable, and the length of the line 
segment reflects the contribution of this factor to the outcome 
event.

Prognostic signature construction. According to the results 
of the survival analysis, the CCR genes associated with PDAC 
prognosis were combined to construct a prognostic model 
based on gene expression level. The risk score formula was 
as follows: Risk score=expression of gene1 x β1 + expression 
of gene2 x β2+… expression of Genen x βn (41,42), where βn 
is the regression coefficient derived from the result of multi-
variate Cox proportional hazards regression analysis for the 
corresponding gene. Based on the median risk score value, the 
patients were divided into a high‑ and low risk group. To assess 
the predictive value of the prognostic signature, a time‑depen-
dent ROC curve was constructed using the survivalROC 
package in R (43). Survival analysis was performed to compare 
prognoses between the high‑ and low‑risk groups.

Gene set enrichment analysis (GSEA). In order to identify the 
pathways in which the CCR gene is enriched, and to determine 
whether the CCR genes in each gene set are enriched in the 
upper or lower part of the phenotype‑related sorted gene list, 
genome‑wide expression profile datasets and corresponding 
grouping files determined by the expression of CCR genes were 
uploaded to GSEA (44) for enrichment analysis with database 
c2 and c5 of the Molecular Signatures Database (MSigDB) (45). 
A set of genes with both false discovery rate (FDR) <0.25 and 
P<0.05 was considered to be statistically significant.

Statistical analysis. Statistical analysis was conducted using 
SPSS 22.0 (IBM Corporation) or R 3.52 (https://www.r‑project.
org/). Hazard ratios (HRs) and 95% confidence intervals (CI) 
were used to indicate the relative risk between the high‑C 
and low‑CCR expression groups. Pearson's correlation coef-
ficient was used to determine the correlation between CCR 
genes, where P<0.05 was considered to indicate a statistically 
significant result. The FDR control in GSEA was achieved 
using the Benjamini‑Hochberg procedure and adjusted for 
multiple testing (46‑48), where an FDR<0.25 was considered 
to indicate a statistically significant difference.

Results

Data collection and arrangement. The expression profiles 
of patients with PDAC were acquired from TCGA database. 
After screening based on the inclusion criteria, patients that 
fell outside of these parameters were eliminated, and the 
profiles of the remaining 112 patients were further analyzed.

Functional annotation and correlation analysis of CCR 
genes. As shown in Fig. 1A and Table SI, the results of GO 
and KEGG pathway analysis indicated that CCR genes are 
primarily involved in pathways related to immunity and 
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inflammation, and that the JAK/STAT, mitogen‑activated 
protein kinase (MAPK) and nuclear factor (NF)‑κB signaling 
pathways were associated with chemokine signaling (Fig. S1). 
PPI and gene‑gene interaction network analyses revealed that 
CCRs interact closely with each other (Fig. 1B and C). A 
matrix graph of Pearson's correlation analysis indicated that 
CCR1, CCR2, CCR4, CCR5 and CCR8 are closely related 
to each other with a correlation coefficient ≥0.5. In addition, 
a higher degree of correlation was observed among CCR4, 
CCR6 and CCR7 (correlation coefficient ≥0.7) (Fig. 2). The 
numbers in each grid represent the correlations between the 
corresponding genes.

Survival analysis of CCR genes. The clinical data of all 
patients are summarized in Table SII. Histological grade, 
targeted molecular therapy, radiation therapy and residual 
resection were all significantly associated with OS. Patients 
harboring tumors of a higher histological grade, and those 
who did not receive either targeted or radiation therapies or 
undergo residual resection were at a higher risk of poor prog-
nosis. In addition, high expression levels of CCR5 (adjusted 

P=0.012; adjusted HR=0.478, 95% CI=0.269‑0.852), CCR6 
(adjusted P=0.026; adjusted HR=0.527, 95% CI=0.299‑0.927) 
and CCR9 (adjusted P=0.001; adjusted HR=0.374, 95% 
CI=0.209‑0.670) were significantly associated with lower 
mortality rates (Table  I and Fig.  3). The nomogram also 
indicated that CCR5, CCR6 and CCR9 may contribute to the 
prognosis of PDAC, with low expression corresponding to a 
high point (Fig. 4E).

Combined effect survival analysis of CCR genes. The patients 
were stratified into groups based on the expression levels of 
different CCR genes. The expression levels of CCR genes in 
different groups are summarized in Table II. Favorable overall 
survival was observed in Group D (compared with Groups 
A, B and C; adjusted P=0.012; adjusted HR=0.434, 95% CI= 
0.226‑0.833), Group IV (compared with Group I, II and III; 
adjusted P<0.001; adjusted HR=0.236, 95% CI=0.107‑0.520), 
Group d (compared with Group a, b and c; adjusted P=0.001; 
adjusted HR=0.284, 95% CI=0.136‑0.595) and Group 4 
(compared with Group 1, 2 and 3; adjusted P=0.001; adjusted 
HR=0.253, 95% CI=0.112‑0.574) (Table II and Fig. 4A‑D).

Figure 1. KEGG pathway and GO term analysis of CCR genes and gene interactions. (A) KEGG pathway and GO term analysis of CCR genes. (B) STRING 
and (C) GeneMANIA protein‑protein association networks of CCR genes. KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology; CCR, 
C‑C motif chemokine receptor; STRING, Search Tool for the Retrieval of Interacting Genes/Proteins; MF, Molecular Function; BP, Biological Process; 
CC, Cellular Component.
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Prognostic signature construction. Using both single gene 
survival analysis and combined effect survival analysis, 
CCR5, CCR6 and CCR9 were demonstrated to be associated 
the prognosis of patients with early‑stage PDAC; therefore, 
these three genes were selected for the construction of the 
prognostic signature. The regression coefficient of CCR5, 
CCR6 and CCR9 from the multivariate Cox proportional 
hazards regression model was ‑0.836, ‑0.618 and ‑0.476 
respectively. Because all β‑values in this investigation were 
<0, and to make the result easier to interpret, a constant was 
added to the end of the following risk score formula: Risk 
score=expression of CCR5 x ‑0.836 + expression of CCR x 
‑0.618 + expression of CCR x ‑0.476 + 4[constant]. The effect 
of the constant is to ensure that the risk score output is >0. 
Survival analysis between the high and low risk score groups 
indicated that a high risk score was significantly associated 
with the poor outcome of patients with early‑stage PDAC 
(adjusted P=0.018; adjusted HR=1.988, 95% CI=1.125‑3.513) 
(Fig. 4F and G). Time‑dependent ROC analysis demonstrated 
that the prognostic signature effectively predicted the outcome 

of patients with early‑stage PDAC (1‑year AUC=0.674; 2‑year 
AUC=0.649; 3‑year AUC=0.673; Fig. 4H).

GSEA. Since CCR5, CCR6 and CCR9 were favorably associ-
ated with OS, the patients were stratified according to their 
respective median expression values. GSEA results are 
displayed in Figs. 5‑7. Analysis of the C2 (curated) gene sets 
revealed that CCR5 was enriched in TP53 target, TP63 target, 
MAPK signaling pathway, generic transcription pathway, 
DNA damage and STAT5A target (Table SIII, Fig. 5A‑F); in 
the C5 (GO) gene sets, CCR5 was enriched in inflammatory 
response, STAT cascade, MAPK cascade, regulation of NF‑κB 
and endothelial proliferation (Table SIII, Fig. 5G‑P); CCR6 
was enriched in TGF‑β1 signaling pathway, TP53 and TP63 
targets, KEGG MAPK signaling pathway, MAPK14 targets 
and NF‑κB signaling in the C2 set (Table SIV and Fig. 6A‑G), 
and in STAT cascade, MAPK cascade, NF‑κB import into 
nucleus, NF‑κB signaling and transcription factor importing 
into nucleus in the C5 set (Table SV, Fig. 6H‑M); CCR9 was 
enriched in the IL‑2/STAT5 pathway, proliferation, NF‑κB 

Figure 2. Matrix graphs of Pearson's correlation analysis of CCR genes.
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atypical pathway, STAT 5 targets and PTEN pathway in the 
C2 set (Table SVI and Fig. 7A‑G).

Discussion

Chemokines and chemokine receptors serve critical roles in 
oncogenesis and cancer progression via a number of complex 
mechanisms. It was reported that the chemokines secreted by 
the tumor, immune and stromal cells were able to initiate the 
uncontrolled proliferation and metastasis of tumor cells in an 
autocrine and paracrine manner, by binding to their cognate 
receptors (49). To date, CXCR4 is the most widely studied and 
clearly understood chemokine receptor associated with cancer, 
and was revealed to be involved in the development, growth, 
invasion, angiogenesis and metastasis of pancreatic cancer 
in a number of previous studies (50‑57). However, a limited 

number of studies have investigated the role of the CCR gene 
in PDAC; therefore, the present study primarily focused on the 
CCR gene family in PDAC.

Chemokine receptors have been reported to impact tumor 
progression by regulating the MAPK/ERK, JAK/STAT 
and NF‑κB signaling pathways  (49,58‑60); CCR5 upregu-
lated c‑Fos in tumor cells by stimulating the JAK/STAT 
pathway  (60), and CCR5 stimulation by CCL5 restricted 
the proliferation of breast cancer cells by increasing p53 
transcription via the JAK2 and p38‑MAPK pathways (61). 
Further studies have also illustrated the anti‑invasive and 
anti‑metastatic roles of CCR5 in mouse models of breast 
cancer (62,63). However, a contradictory study revealed that 
the CCR5‑Δ53 polymorphism was associated with a greater 
risk of developing gallbladder cancer (64), highlighting that 
the role of CCR5 may be cancer type‑dependent. In the present 

Figure 3. Kaplan‑Meier survival curve analysis of the association between the high and low expression levels of CCR genes and overall survival in patients with 
early‑stage PDAC, generated using The Cancer Genome Atlas. Overall survival curves for (A) CCR1, (B) CCR2, (C) CCR3, (D) CCR4, (E) CCR5, (F) CCR6, 
(G) CCR7, (H) CCR8, (I) CCR9 and (J) CCR10. CCR, C‑C motif chemokine receptor; PDAC, pancreatic ductal adenocarcinoma.
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Figure 4. Combined effect of CCR5, CCR6 and CCR9 on the overall survival of patients with early‑stage PDAC. Nomogram for predicting 1‑, 2‑ and 3‑year 
events and a prognostic model with risk score, in terms of CCR5, CCR6 and CCR9 expression in early‑stage PDAC. (A) Overall survival curves for the 
combined effect of CCR5 and CCR6. Group A, Low CCR5 + Low CCR6; Group B, Low CCR5 + High CCR6; Group C, High CCR5 + Low CCR6; Group D, 
High CCR5 + High CCR6. (B) Overall survival curves for the combined effect of CCR5 and CCR9. Group I, Low CCR5 + Low CCR9; Group II, Low CCR5 
+ High CCR9; Group III, High CCR5 + Low CCR9; Group IV, High CCR5 + High CCR9. (C) Overall survival curves for the combined effect of CCR6 and 
CCR9. Group a, Low CCR5 + Low CCR9; Group b, Low CCR5 + High CCR9; Group c, High CCR5 + Low CCR9; Group d, High CCR5 + High CCR9. 
(D) Overall survival curves for the combined effect of CCR5, CCR6 and CCR9. Group 1, Low CCR5 + Low CCR6 + Low CCR9; Group 2, Low CCR5 + Low 
CCR6 + High CCR9, High CCR5 + Low CCR6 + Low CCR9, and Low CCR5 + High CCR6 + Low CCR9; Group 3, Low CCR5 + High CCR6 + High CCR9, 
High CCR5 + High CCR6 + Low CCR9, and High CCR5 + Low CCR6 + High CCR9; Group 4, High CCR5 + High CCR6 + High CCR9. (E) Nomogram for 
predicting 1‑, 2‑ and 3‑year events (mortalities) that combine clinical data with CCR5, CCR6 and CCR7 expression. (F) From top to bottom; risk score plot, 
survival status scatter plot and heat map of the expression levels of CCR5, CCR6 and CCR9 in low‑ and high‑risk groups. (G) Kaplan‑Meier curves for low‑ and 
high‑risk groups. (H) Receiver operating characteristic curve for predicting 1‑, 2‑ and 3‑year survival in patients with early‑stage PDAC by risk score. CCR, 
C‑C motif chemokine receptor; PDAC, pancreatic ductal adenocarcinoma.
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study, bioinformatics analysis suggested that CCR genes were 
primarily involved in immune and inflammatory responses, 
and also revealed that the JAK/STAT, MAPK and NF‑κB 
signaling pathways are involved in chemokine signaling. 
These pathways are consistent with the downstream pathways 
regulated by p53, therefore, it was hypothesized that CCR5 
may also serve a role in PDAC by activating p53. Furthermore, 
CCR3, CCR4, CCR5 and CCR8 were also found to be associ-
ated with viral carcinogenesis, a greater number of CCR genes 
than those identified to be concerned with carcinogenesis in 
previous studies (23,65‑68). Since various studies have shown 
its close association with inflammation and immunity (69‑75), 
this is highly relevant to PDAC. Also, considering the func-
tion of CCR genes in mediating inflammation, and that CCR5, 
CCR6 and CCR9 were significantly associated with the overall 
survival of patients with early‑stage PDAC (as indicated by 
the results of survival analysis), it was concluded that CCR5, 
CCR6 and CCR9 serve important roles in the development 
and progression of PDAC. Furthermore, the results of the 
bioinformatics and survival analysis of CCR genes in PDAC 

also verified previous findings of the role of CCR genes in 
cancer (23,35,61,76,77).

The present study is believed to be the first to show 
that high expression levels of CCR5, CCR6 and CCR9 are 
associated with prolonged overall survival in patients with 
early‑stage PDAC. The role of CCR5 as a protective factor in 
PDAC is in agreement with previous studies; it was reported 
that knocking out CCR5 in pancreatic tumor‑bearing mice 
reduced the infiltration and subsequent cytotoxicity of NK cell 
in tumors (78). Furthermore, smokers carrying a CCR5 mutant 
allele have a significantly higher risk of developing pancreatic 
cancer (76). Moreover, the protective role of CCR5 has also 
been reported in other malignancies. The CCR5 superago-
nist 1P7 was found to act as an adjuvant to anti‑tumor DNA 
vaccination by inducing specific CD8+ T‑cell responses (77), 
and the CCR5‑Δ53 polymorphism was discovered to be 
associated with susceptibility to breast cancer in the Indian 
population (35). It has also been noted that in breast cancer, 
the absence of CCR5 on the tumor cell surface may promote 
the proliferation of tumor cells which carry wild‑type p53, 

Figure 5. GSEA results for CCR5 in patients with pancreatic ductal adenocarcinoma. GSEA results of (A‑F) c2‑reference and (G‑P) c5‑reference gene sets for 
groups with increased CCR5 expression levels. GSEA, gene set enrichment analysis; CCR, C‑C motif chemokine receptor; ES, enrichment score; FDR, false 
discovery rate.
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Figure 7. GSEA results of CCR6 and CCR9 in patients with pancreatic ductal adenocarcinoma. (A‑G) GSEA results of c2‑reference gene sets for groups with 
increased CCR9 expression. GSEA, gene set enrichment analysis; CCR, C‑C motif chemokine receptor; ES, enrichment score; FDR, false discovery rate.

Figure 6. GSEA results for CCR5 and CCR6 in patients with pancreatic ductal adenocarcinoma. GSEA results of (A‑G) c2‑reference and (H‑M) c5‑reference 
gene sets for groups with increased CCR6 expression. GSEA, gene set enrichment analysis; CCR, C‑C motif chemokine receptor; ES, enrichment score; 
FDR, false discovery rate.
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but not those with mutated p53 (61). CCR5 may also serve 
a role in PDAC via its indirect impact on tumor cells, such 
as regulating the anti‑tumor immune response. CCR5 is also 
involved in the chemotaxis of activated naive T cells and 
T‑cells homing (79,80).

Existing studies of CCR6 expression in pancreatic cancer 
are ambiguous; while one study reported higher levels of 
CCR6 expression in the pancreatic tumor relative to the 
adjacent healthy tissues (81), another showed lower expression 
levels in pancreatic cancer cell lines than normal pancreatic 
cells (82). Due to the limited number of studies surrounding 
CCR6 and CCR9 in pancreatic cancer, it was not possible to 
support the present findings of these CCRs. Therefore, it was 
surmised that CCR6 and CCR9 may modulate other tumor 
suppressor genes to inhibit tumor progression, in the same 
manner as the CCR5‑mediated activation of TP53 (61,83,84). 
This was supported by the GSEA results of the present study, 
which suggested that CCR6 was enriched in the p53 and STAT 
cascade, and that CCR9 was enriched in the STAT cascade 
and NF‑κB signaling pathway. However, further studies are 
required to elucidate the exact mechanisms involved.

The present study possessed various limitations. Firstly, 
the sample size was relatively small, which may have led to 
false negative results. Secondly, since the clinical information 
of a number of patients was incomplete, the clinical variables 
used for adjustment were not comprehensive. Thirdly, the 
relationship between CCR and prognosis was only explored 
at the transcriptional level. Nevertheless, not only was a novel 
association between the CCR genes and the prognosis of 
early‑stage PDAC discovered, but also the potential molecular 
mechanisms. Further studies are required to validate these 
findings and to establish CCRs as therapeutic targets for 
PDAC.

Though there were several limitations to this investigation, 
the present study was the first to reveal the association between 
the CCR genes and the prognosis of early‑stage PDAC. In 
addition, GSEA was used to identify the potential molecular 
mechanisms of CCR genes that may impact the prognosis of 
patients with early‑stage PDAC. With subsequent studies to 
verify these findings, CCR genes may become novel targets 
for the treatment of PDAC.

In conclusion, CCR5, CCR6 and CCR9 represent potential 
prognostic biomarkers for patients with early‑stage PDAC, 
and are involved in signaling pathways such as those of p53, 
NF‑κB, generic transcription, MAPK and the STAT cascade.
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