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Abstract: Microstructure is an important factor that affects the mechanical properties and service life
of forgings. Through the full study of the formability of the material, the internal microstructure of
the material can be effectively controlled. In order to accurately describe the formability of materials
during thermal processing, 3D hot processing maps containing strains were established in this
paper, and the 3D hot processing maps were coupled with the finite element method for simulation
calculation. The Cr5 alloy steel was subjected to unidirectional thermal compression at a strain rate of
0.005–5 s−1 and temperature range of 900–1200 ◦C on a Gleeble-1500D thermal simulation machine,
in order to obtain the date of true stress and strain. Based on the dynamic material model (DMM), the
3D processing maps of Cr5 alloy steel was established, and the 3D processing maps were associated
with the analysis of microstructure evolution during hot deformation. The results show that the
optimum thermal deformation conditions are as follows: temperature of 1000–1125 ◦C, strain rate
of 0.01–0.2 s−1, and peak power dissipation of 0.41. The 3D processing maps were coupled with
the finite element software FORGE® to simulate the hot working process, and the distribution and
change of power dissipation and flow instability domain on the metal deformation under different
thermal deformation conditions were obtained. The comparison between the simulation results and
metallographic images of typical regions of metal deformation shows that they are in good agreement.
This method can effectively predict and analyze the formability of materials during hot processing
and provide guidance for practical industrial production.

Keywords: Cr5 alloy steel; three-dimensional (3D) processing maps; finite element method (FEM);
microstructure evolution

1. Introduction

With the development of science and technology, automobiles, ships, bridges, aerospace,
and other fields have put forward higher requirements for the required plates and strips;
while meeting the mechanical properties, more accurate requirements are put forward for
the thickness and shape tolerances of the plates and strips produced by the rolling mill.
This requires that the work roll of the mill be able to maintain its contour shape during
rolling. As an important stress part of the rolling mill, the backup roller is used to support
the work or intermediate rollers, in order to prevent the working roller from deforming
during the rolling process, thus affecting the quality of the product [1–3]. Large backup
rollers are usually forged from large ingots in their entirety. However, due to the high
alloying element content and complex composition of steel used for the large backup roller,
the composition and microstructure segregation degree of the large ingot is relatively more
serious, which increases the difficulty of forging [4]. At the same time, due to the use
environment, working state, and other reasons, the backup roller is required to have high
fatigue strength, good crack propagation resistance, and excellent wear resistance [5,6].
This requires a full study of the formability of steel forgings for large backup rollers, and a
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reasonable forging process is aquatinted to homogenize the internal organization of the
forging and refine the grains, thereby improving the mechanical properties of the backup
roller and prolonging the service life.

The formability of materials depends on the response of the internal microstructure
to the temperature, strain rate, and strain during processing. The DMM model-based
hot processing map is a characterization of the material’s response to applied processing
parameters, in terms of microstructure [7], and it is considered an important means for
studying the formability of materials and optimizing the technological parameters of hot
processing [8]. The hot processing map can not only be used for making an analysis
and prediction on the deformation characteristics and mechanisms of the materials under
diverse deformation conditions, but the safe and non-safe areas for hot processing of
materials can also be obtained, so as to optimize the process parameters, thus effectively
controlling the internal structure of the material and avoiding the occurrence of defects [9].

Based on irreversible thermodynamic theory, in 1987, Prasad and Gegel constructed
the DMM model [10], and it is considered to be the link between structural mechanics of
plastic deformation continuums with the evolution of microscopic tissues of materials. The
power dissipation value, based on the DMM model, was used to describe the relative rate
of energy consumed by the microstructure evolution of material during plastic deformation.
The power dissipation value represented the strength of the microstructure evolution
inside the material. Therefore, the power dissipation graph actually represents the change
rate of the internal microstructure of the material during the deformation process of hot
working, which is also known as the “microstructure trajectory” [11,12]. However, it
does not mean that the higher the power dissipation value is, the better the intrinsic
formability of the material is, because the power dissipation value may be higher in
the unstable region. Therefore, it is necessary to determine the processing instability
zone of the alloy. Prasad et al. [7]. argued that, if the material system does not produce
entropy at a rate that at least matches the rate of entropy input through imposed process
parameters, the flow of material becomes localized and causes a flow instability. According
to the instability criterion, the instability coefficient of material under different processing
conditions can be determined. When the instability coefficient is less than 0, it indicates
that the material has instability risk under the processing conditions. According to the
instability coefficient of the material under different processing conditions, an instability
diagram can be constructed to describe the areas that should be avoided during the hot
processing of the material. Superposition of the power dissipation and instability maps can
build the hot processing map of the material. The optimum deformation zone of material
can be determined according to the processing map. In the non-unstable region of the hot
processing map, the higher the power dissipation coefficient, the better the formability of
the material [13]. Since the DMM model and instability criterion were suggested, the hot
processing maps were widely used to study the formability of materials [8,14,15].

However, for many alloys, strain has a greatly affect on microstructure evolution.
The traditional 2D hot processing map only represents the power dissipation value, and
the instability area distribution in the 2D space, composed of strain rate and temperature
under a certain strain, loses sight of the influence of strain on formability; therefore, the
formability of materials cannot be comprehensively characterized [16]. Therefore, many
scholars began to explore the establishment of a 3D hot processing map, considering the
effect of strain on the basis of 2D hot processing map.

Liu J et al., considering strain’s effect on formability, firstly established the 3D hot
processing map of AZ31B magnesium alloy-containing strain, obtaining the optimal ther-
mal deformation area of the material. By the combination of the 3D hot processing maps
with numerical emulation technology, the changes in the dissipation efficiency and flow
instability coefficients of the materials were obtained with the changes of strain, strain
rate, and temperature [17]. Yanhui Liu et al., based on the DMM model, established the
hot processing map of 1.15C–4.00Cr–3.00V–6.00W–5.00Mo powder high-speed steel and
determined the optimal processing range of the material. They found that the strain had a
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severe impact on the hot processing map; as strain increased, the power dissipation value
increased, as well. Additionally, the safety zone had increased [18]. Guo-zheng Quan
et al. introduced the activation energy into the hot processing maps, which is based on
establishing 3D hot processing maps of Ni80A superalloy, thus determining the processing
parameters of DRX mechanism of the metal, under the condition of a lower energy bar-
rier [19]. Based on 3D hot processing maps and the technology for simulation of a finite
element, Jian Zeng et al. conducted the process optimization of a flanged cylindrical part
of MG-8GD-3Y alloy and carried out thermal reverse extrusion under optimal forming
conditions. The results showed that the flanged cylindrical part forming effect was good,
surface quality was good, and microstructure and mechanical properties were relatively
uniform [20]. Liyan Ye et al. established 3D hot processing maps of 25Cr2Ni4MoV steel,
based on the DMM model, and found that strain had a great impact on the hot processing
maps. Combined with the microstructure analysis, it was found that the dissipated power
coefficient had a good response to the microstructure evolution [21]. Although the 3D hot
processing map can effectively consider the strain on the material formability of the study,
it also has limitations in application. Whether it is the traditional 2D hot processing map
or a 3D hot processing map, it belongs to the static category and can only represent the
power dissipation value and instability area at a specific strain, strain rate, and temperature.
In the actual hot deformation process, it is necessary to analyze the formability of parts
in the whole hot deformation process, in order to ensure that each area of the final part
has a good internal organization. Due to the fact that the forging parts are affected by
friction, heat exchange, and other factors, as well as the fact that the strain, strain rate,
and temperature of different positions inside the forging parts are not the same, static hot
processing maps cannot simply and quickly obtain the distribution and change of power
dissipation values and instability coefficients of each area of the parts. This undoubtedly
increases the difficulty of analyzing the formability of complex parts.

With the rapid development of computer technology and constitutive models, finite
element software has been widely used in the field of plastic forming. In recent years, many
scholars have established constitutive models to describe the thermal deformation behavior
of metals. Sellars [22–25] established a hyperbolic sinusoidal (Arrhenius flow stress model)
material constitutive model that considered the relationship between strain rate and steady-
state stress. The model is suitable for materials under various stress states. However, strain
softening was not considered in this model. The Johnson–Cook model was proposed by
Johnson G.R. and Cook W.H. [26]; it has clear physical meaning and was mainly used to
build flow stress model under the conditions of elevated temperature. However, this model
is not suitable for the small deformation behavior of materials. Various hardening models
have been used to describe the strain hardening behaviour of materials. These include
the Voce, Hockett–Sherby, and Asaro. However, these hardening models are mostly used
at room temperature and need to be modified when describing the thermal deformation
behavior of materials at high temperatures [27–29]. Compared with other models, the
Hansel–Spittel constitutive model has a wider range of applications. It is widely used to
delineate the hot and cold forming behavior of materials in the finite element software,
such as FORGE® and QFORM [30,31]. An appropriate constitutive model, combined with
the finite element method, can accurately describe the strain field and strain rate field of
each part of the metal’s deformation body in the hot processing process. This makes it
possible to simulate the formability of materials in the whole hot processing process by
coupling the hot processing map with finite element.

At present, there are few studies that closely combine hot processing maps with
the finite element method to realize the dynamic display of power dissipation values
and instability areas in various parts of forgings. Additionally, the coupling of 3D hot
processing maps and finite element simulation of the forming of Cr5 alloy steel’s large
backup roller is still blank. It is one of the bottlenecks of the technology for developing
large backup rollers, which can effectively control the microstructure defects, refine the
grain, improve the mechanical properties of the large backup roller, and prolong the service
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life by selecting the best thermal processing parameters. Therefore, it is of great practical
significance to analyze the formability and optimize the technological parameters in the
whole process of hot processing by using hot processing maps and computer simulation
technology.

In this study, the Gleeble-1500D thermal simulation testing machine was used to carry
out a thermal compression test to obtain the real stress and strain data of the material.
Considering the effect of strain on the thermal deformation behavior of materials, based on
the DMM model and hot processing maps theory, 3D hot processing maps, considering the
effect of strain, was constructed on the basis of traditional 2D hot processing maps. The
effects of strain, strain rate, and temperature on formability were analyzed. The dynamic
display of the power dissipation value and distribution and change of instability area on
the metal’s deformation body in the process of hot deformation is realized by integrating
the 3D hot processing maps with the finite element simulation software FORGE®. The
formability of different positions inside the forging parts in the process of hot processing
was analyzed intuitively, and the simulation results of typical deformation zone were
compared with the microstructure image.

2. Experimental Materials and Methods

The experimental material was Cr5 alloy steel, and Cr5 alloy steel increased the content
of alloying elements, such as Cr, Si, Mo, and V, on the basis of Cr3 alloy steel. The Cr
content increased from 3% to 5%, which not only greatly improved the wear resistance
and hardening depth of Cr5 alloy steel, but also played a positive role in delaying crack
formation and expansion, as well as improving tempering resistance. Cr5 alloy steel is
widely used in the manufacture of large backup roller in high-performance large rolling
mills [5,6]. In Table 1, chemical composition of Cr5 alloy steel is shown.

Table 1. Chemical compositions of Cr5 alloy steel (mass percentage: wt.%).

Fe C Mn Cr Ni Mo V

margin 0.51 0.46 4.94 0.44 0.53 0.16

Compression specimens were processed into Ø8 × 12 mm cylinders by electrical
discharge wire cutting, according to ASTM E209 standard. The Gleeble-1500D thermal
mechanical simulator was used for thermal compression testing. The specimen was heated
by resistance heating, and the temperature distribution in sample was kept uniformed
during heating. The compression test was carried out with constant strain rate, because the
Gleeble-1500D thermal mechanical simulator has a function of real-time calculation of true
strain during testing, and a strain rate equal to a constant can be achieved. The test was an
isothermal test via the thermocouple sensor’s real-time measures of sample temperature
and temperature closed-loop controls. When installing the specimen, apply an appropriate
amount of graphite lubricant to the indenter and end face of the specimen to decrease
the friction between the two. The process of the experiment is shown in Figure 1a. The
deformation temperatures of Cr5 alloy steels were 900, 975, 1050, 1125, and 1200 ◦C, and the
strain rates were 0.005, 0.01, 0.1, 1, and 5 s−1, respectively. The specimen was first heated
at a rate of 10 ◦C/s to a set deformation temperature and insulated for 180 s to eliminate
the temperature gradient and ensure that the material was an internally homogeneous
austenitic single-phase structure. Isothermal deformation is then started at the established
strain rate, with a maximum deformation of 50%, and the sample was water quenched
immediately after the end of deformation to preserve the final microscopic structure.
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Figure 1. Schematic diagram of experimental process: (a) deformation process of hot compression
experiment; (b) sectioned line and observed area.

As shown in Figure 1b, the hot compressed and water quenched specimens were
cut along the axial centerline and mounted, ground, and polished until the surface of
the specimen was bright and scratch-free; then, the sample was corroded by saturated
picric acid. Finally, the grain structure in the uniform (maximum) deformation zone of the
specimen was observed and collected by optical microscope.

3. Experiment Results Analysis of Cr5 Alloy Steel
3.1. Influence of Process Parameters on Flow Stress

Figure 2 shows the true stress–strain curves of Cr5 steel under a variety of deformation
conditions. It can be seen that the stress had a strong sensitivity to temperature, strain
rate, and strain. At the same strain rate, the stress decreased gradually with the increase
of temperature. This can be seen in Figure 2a, where the peak stresses were 132.69 and
38.34 MPa at temperatures of 900 and 1200 ◦C, respectively, and the peak stress was reduced
by 94.35 MPa. Peak stress increased as strain rate increased with the same deformation
temperature. As shown in Figure 2f, under the deformation conditions of a deformation
temperature of 900 ◦C and strain rates of 0.005 and 5 s−1, respectively, the peak stresses
were 132.69 and 285.29 MPa, respectively, with an increase of 152.60 MPa. When the strain
rate decreased from 1 to 0.1 s−1, the stress decreased obviously. The peak stress decreased
from 260.71 to 193.58 MPa, with a difference of 67.13 MPa. This is shown in Figure 2. Under
most processing conditions, as strain increases, stress changes in roughly three stages,
i.e., work hardening (Figure 2a, red wireframe area), dynamic softening (Figure 2a, green
wireframe area), and stabilization (Figure 2a, blue wireframe area). As shown in Figure 2b,
the true stress–strain curve, which is under conditions of a strain rate and temperature
of 0.01 s−1 1050 ◦C, respectively, at the beginning of the deformation, the stress increases
linearly with the increase of the strain. The reason is that, at the beginning of deformation,
the dislocation density increases explosively with the increase of deformation, and the
migration efficiency seriously affects the diffusion of the dislocation, thus resulting in an
increase in deformation resistance and exhibiting process hardening characteristics [32]. As
the dislocation density increases, the dynamic recovery softening mechanism is triggered,
and the rate of stress growth slows down. As the dislocation density further increases to
the critical value of triggering dynamic recrystallization, dynamic recrystallization occurs
inside the metal deformation body, and the stress decreases as the dynamic recrystallization
softening effect increases. In the later stage of deformation, the softening effect of dynamic
recrystallization and recovery mechanisms tends to be balanced with process hardening,
and the stress values tends to stabilize and no longer raise with the increase of strain [33].
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Figure 2. True stress–strain curves of Cr5 alloy steel under various deformation conditions:
(a)

.
ε = 0.005 s−1; (b)

.
ε = 0.01 s−1; (c)

.
ε = 0.1 s−1; (d)

.
ε = 1 s−1; (e)

.
ε = 5 s−1; (f) T = 900 ◦C.

Figure 3 shows the metallographic photos of Cr5 alloy steel under different defor-
mation conditions at 1050 ◦C. From Figure 3a, it can be seen that, when the deformation
temperature of the material is 1050 ◦C, the grain without deformation is coarse equiaxed
grain; the average grain size measured was 27 µm. As shown in Figure 3b, when the strain
rate was 0.005 s−1 and strain was 0.65, the average grain size measured was 23 µm. As
shown in Figure 3b, when the strain rate was 0.01 s−1 and strain was 0.65, the average
grain size measured was 18 µm. When the strain reached 0.65, the coarse original grain of
the material was completely replaced by fine isometric crystals, and there was no obvious
immature recrystallized grain at the grain boundary, regardless of the strain rates of 0.005
or 0.01 s−1. The results show that the dynamic recrystallization of the Cr5 alloy steel was
completed when the temperature was 1050 ◦C, strain rate was 0.65, and strain rate was
0.005 s−1 and 0.01 s−1, which coincides with the change trend of the true stress–strain
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curve under the deformation conditions described above. Therefore, strain has a signif-
icant impact on the microstructure evolution and thermal deformation behavior of Cr5
alloy steel.

Materials 2022, 15, x FOR PEER REVIEW 7 of 23 
 

 

has a significant impact on the microstructure evolution and thermal deformation 
behavior of Cr5 alloy steel.  

(a) (b)

(c)   

50 μm 50 μm

50 μm  
Figure 3. Metallographic photos of Cr5 alloy steel at various deformation conditions: (a) T = 1050 °C 
/ε = 0; (b) T = 1050 °C / ε  = 0.005 s−1/ε = 0.65; (c) T = 1050 °C / ε  = 0.01 s−1/ε = 0.65. 

3.2. Hot Processing Map of Cr5 Alloy Steel 
Processing maps, based on DMM models, have been used in a variety of alloys, 

including alloy steel, zirconium, copper, aluminum, and nickel-based superalloys [34–37]. 
In this paper, the processing maps of Cr5 alloy steel were constructed based on the DMM 
model. 

3.2.1. Establishment of Power Dissipation Map 
When the temperature and strain are fixed, the change in stress during thermoplastic 

deformation of an alloy can be described using dynamic material modeling (DMM) 
[18,38]: 

σ ε=  mK  (1)

where σ  portrays the stress, ε  portrays the strain rate, K is a constant, and m portrays 
the strain rate sensitivity coefficient. 

At a certain temperature and strain, m is constant; that is: 

ln
ln

σ
ε

∂=
∂ 

m  (2)

The hot deformation process can be considered a closed system. The total power 
absorbed by a material per unit volume during hot deformation can be expressed by the 
sum of two complementary functions [10,39]: 

0 0
=P G J d d

ε σ
σε σ ε ε σ= + = + 


    (3)

In Equation (3), P is the total power absorbed per unit volume of the material, G is 
the power dissipation, and J is the dissipation allowance. The G value represents the 

Figure 3. Metallographic photos of Cr5 alloy steel at various deformation conditions: (a) T = 1050 ◦C/ε = 0;
(b) T = 1050 ◦C/

.
ε = 0.005 s−1/ε = 0.65; (c) T = 1050 ◦C/

.
ε = 0.01 s−1/ε = 0.65.

3.2. Hot Processing Map of Cr5 Alloy Steel

Processing maps, based on DMM models, have been used in a variety of alloys, includ-
ing alloy steel, zirconium, copper, aluminum, and nickel-based superalloys [34–37]. In this
paper, the processing maps of Cr5 alloy steel were constructed based on the DMM model.

3.2.1. Establishment of Power Dissipation Map

When the temperature and strain are fixed, the change in stress during thermoplastic
deformation of an alloy can be described using dynamic material modeling (DMM) [18,38]:

σ = K
.
ε

m (1)

where σ portrays the stress,
.
ε portrays the strain rate, K is a constant, and m portrays the

strain rate sensitivity coefficient.
At a certain temperature and strain, m is constant; that is:

m =
∂ ln σ

∂ ln
.
ε

(2)

The hot deformation process can be considered a closed system. The total power
absorbed by a material per unit volume during hot deformation can be expressed by the
sum of two complementary functions [10,39]:

P = σ
.
ε = G + J =

∫ .
ε

0
σd

.
ε +

∫ σ

0

.
εdσ (3)
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In Equation (3), P is the total power absorbed per unit volume of the material, G is the
power dissipation, and J is the dissipation allowance. The G value represents the power
consumption due to plastic deformation, most of which is converted to heat. The J value
represents the power consumption associated with the change in microstructure during
material deformation.

Under the condition of fixed strain and temperature, the rate of change for J and G
constitutes the definition of the strain rate sensitivity coefficient m:

dJ
dG

=

.
εdσ

σd
.
ε
=

d ln σ

d ln
.
ε
=

∣∣∣∣∂(ln σ)

∂(ln
.
ε)

∣∣∣∣
ε,T
≡ m (4)

Murty et al. [40] thought the changes in J represent changes in the microstructure.
Since J varies nonlinearly, for computational convenience, comparing it with the ideal linear
dissipation factor Jmax yields a dimensionless parameter—the power dissipation factor η:

η =
J

Jmax
(5)

The material is in an ideal linear dissipation state; that is, J reaches the maximum
value Jmax when m = 1 and J = G when m = 1, so Jmax is:

Jmax =
σ

.
ε

2
(6)

According to Equation (5), the relationship between the power dissipation η and strain
sensitivity coefficient m is as follows:

η =
2m

m + 1
(7)

As shown in Figure 4, according to Equation (2) and the true stress–strain curve of Cr5
alloy steel, the relationship diagram of ln σ and ln

.
ε can be obtained. Taking true strains of

0.4 and 0.5 and temperatures of 975 and 1125 ◦C as examples, it can be seen that ln σ and
ln

.
ε have a strong linear relationship under different temperature conditions, and the fitting

degrees(R2) of all the curves are above 0.97. This shows that Cr5 alloy steel conforms to the
assumptions of Equation (2) and is, therefore, able to calculate and construct hot processing
maps using all of the above equations.

At the same strain and deformation temperatures, a and b can be fitted with least
squares as cubic polynomials, with the expression of Equation (7):

ln σ = a + b ln
.
ε + c(ln

.
ε)

2
+ d(ln

.
ε)

3 (8)

As shown in Figure 5, the ln σ and ln
.
ε of Cr5 alloy steel, under different strain

conditions, are fitted with the least squares method to a cubic polynomial. For instance,
when the true strains are 0.4 and 0.5, strains 0.4 and 0.5, and temperatures 975 and 1125 ◦C,
the fitting degrees(R2) of all the curves are above 0.98. This shows that Equation (7) can be
used to describe the relationship between ln σ and ln

.
ε, thus deriving Equation (8):

m =
∂ ln σ

∂ ln
.
ε
= b + 2c ln

.
ε + 3d(ln

.
ε)

2 (9)
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According to Equations (8) and (9), the strain rate sensitivity coefficient m values can
be obtained, and the m values can be substituted into Equation (7) to acquire the power
dissipation values under the corresponding conditions. Contour maps constructed under
the same strain, different strain rates, and temperature conditions are power dissipation
maps. As can be seen from the Figure 6, with the increase of strain, power dissipation maps
have significant changes, and the peak of the power dissipation value, distribution, and
proportion of the high-power dissipation area with a power dissipation value greater than
0.30 are different under different strain conditions, which shows that there is a significant
impact, caused by strain, on the dissipation map of Cr5 alloy steel.
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3.2.2. Establishment of Instability Map

Ziegler [41] believes that the plastic flow of materials is unstable. If the material
system does not produce entropy constitutively at a rate that at least matches the rate of
entropy input through imposed process parameters, the flow becomes localized and causes
a flow instability. Therefore, he proposes the instability criterion Equation (10) for dynamic
material models:

ξ(
.
ε) =

∂ ln( m
m+1 )

∂ ln
.
ε

+ m < 0 (10)

According to Equations (9) and (10), Equation (11) can be derived:

ξ(
.
ε) =

m′

m(m + 1)
+ m =

2c + 6d ln
.
ε

m(m + 1)
+ m < 0 (11)
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According to Equation (11), the instability map can be obtained under conditions of
different strain rates and temperatures at the same strain, and the part less than 0 in Figure 7
(the blue shaded area in the figure) indicates that the region has flow instability. As can be
seen from Figure 7, the instability area of Cr5 alloy steel under different strain conditions
changes with the increase of strain, but the impact is not significant. The instability area
is mainly concentrated in the high strain rate region, with strain rates of 0.6–5 s−1 at
temperatures of 900–1125 ◦C.
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3.2.3. Establishment of 3D Hot Processing Map

The traditional 2D hot processing map does not consider the influence of strain, but as
can be seen from the true stress–strain curve, the material has a significant strain softening
effect. Meanwhile, the power dissipation value distribution of the 2D power dissipation
maps under different strains of Cr5 alloy steel are analyzed, and it can be found that
the strain has a key impact on the processing maps of the material. Accordingly, it is
indispensable to establish the processing map the strain effect involved to evaluate the
formability of Cr5 alloy steel.

Based on the 2D hot processing maps under different strain conditions established
above, the temperatures 900–1200 ◦C, strain rates 0.005–5 s−1, and strains 0.1–0.6 range of
3D hot processing maps were established with the strain, temperature, and strain rate as
the variation. This is shown in Figures 8 and 9. Figure 8a is a 3D distribution of the power
dissipation value at strains of 0.1–0.6, and it can be seen from the figure that, with increase
in strain, the proportion of the region with the power dissipation value greater than 0.30
gradually increases, showing that the value is only 6.22% when the strain is 0.1 and 33.98%
when the strain is 0.3; the peak value is 61.20% when the strain is 0.5 and 60.67% when
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the strain is 0.6. It is close to the proportion under strain 0.5. At the same time, with the
increase of strain, the power dissipation value under some deformation conditions reaches
the peak; for example, when the deformation temperature is 1050 ◦C, the deformation rate
is 0.01–0.5 s−1 and when the strain is increased from 0.3 to 0.6, the power dissipation value
is gradually increased from 0.27 to 0.41. This is because the change in the power dissipation
value is interrelated to the evolution of the microstructure inside the material; with the
increase of deformation, the distortion energy of the deformed body augments, thus
providing more recrystallization driving force and increasing the probability of forming
nuclei, which is conducive to generating more fine recrystallization grains. As shown in
Figure 10, the metallographic structure under different strain conditions of temperature
1050 ◦C and strain rate 0.1 s−1 was observed, and it can be seen in Figure 10a,b that the
initial grain was relatively coarse. When the strain reached 0.4, dynamic recrystallization
occurred inside the material, resulting in more strand-like fine recrystallization grains at
the grain boundaries of the original grains. At this time, the dynamic recrystallization was
not complete, and the power dissipation value was 0.29. As shown in Figure 10c, when the
strain reached 0.6, the fine recrystallization grain at the grain boundary had grown, and the
initial grain had been completely replaced by a fine recrystallization grain. At this point,
dynamic recrystallization had been completed, and the power dissipation value was 0.40.
The main mechanism of microstructure evolution of Cr5 alloy steel under this deformation
condition was dynamic recrystallization.
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Figure 8b is the 3D distribution of the power dissipation value at temperature values
of 900–1200 ◦C. From this figure, we can see that, with the increase of temperature, the
proportion of the area with a power dissipation value greater than 0.30 gradually increased;
the proportion was 0.086% when the forming temperature was 900 ◦C, and it was mainly
distributed in the high strain region. The proportion increased to 24.06% when the forming
temperature was 1050 ◦C, and the proportion reached 65.21% when the forming temper-
ature was 1200 ◦C. This is because the atom activity capacity was enhanced at higher
temperatures, thus the resulting dislocation movement was easier to carry out, so that the
number of recrystallization-shaped nuclei increased, which is conducive to dynamic recrys-
tallization. However, meanwhile, it can be found that as the deformation temperature rise,
the power dissipation value under some deformation conditions decreases. For example,
under the conditions that the deformation temperature was 1200 ◦C, strain was 0.6, and
strain rate was 0.005 s−1, the power dissipation value reduced from 0.24 at 1125 ◦C to 0.11.
This is because, as the temperature increased, the driving force for recrystallization grain
growth also increased significantly to coarse the grain. As shown in Figure 11, i.e., the
microstructure of Cr5 alloy steel under strain 0.6, strain rate 0.005 s−1, and different defor-
mation temperatures, when the temperature rose from 1125 to 1200 ◦C, grain coarsening
occurred after the recrystallization was completed. The average grain size was 85.93 µm
at 1125 ◦C, and the power dissipation value was 0.24 at this time. When the temperature
rose to 1200 ◦C, the average grain size rose to 102.02 µm, and the power dissipation value
reduced to 0.11.
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Figure 9 shows the 3D distribution of the instability area under different deformation
conditions of Cr5 alloy steel. The green shaded area is the safe area, and the blue shaded
area is the instability area. As can be seen in Figure 9a, when the strain was less than 0.3, the
instability zone was mainly concentrated in two regions: one was in the temperature range
of 1125–1200 ◦C and strain rate range of 0.005–0.3 s−1; the other was in the temperature
range of 900–1050 ◦C and strain rate range of 0.6–5 s−1. When the strain was greater than
0.3, the instability region was mainly concentrated in the region with temperature range
of 900–1125°C and strain rate range of 0.6–5 s−1. When the strain was larger than 0.3, the
impact of strain on the proportion of the instability area was not obvious. The proportion
of the instability zone was 21.99% at the strain 0.3, and the proportion of the instability
zone was 19.16% when the strain is 0.6; the difference was only 2.83%. With the increase in
temperature, the proportion of unstable regions declined gradually, as shown in Figure 9b.
The proportion of instability areas was 51.30% at 900 ◦C, 29.85% at 1050 ◦C, and 10.72% at
1200 ◦C.

When selecting the hot processing parameters of the material, the instability areas
in the instability maps should be avoided, as these areas are prone to defects, such as
flow localization, adiabatic shear bands, micro cracks, and crystal mixing [8,18,37,42]. In
principle, it is safe to carry out hot processing in non-instability areas. However, in order
to optimize the formability of the material and effectively control the microstructure, the
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power dissipation value under different processing conditions should also be considered.
In the processing maps, the magnitude of the power dissipation values is connected with
the mechanism of the microstructure evolution in the region. In the non-instability areas,
the microstructure inside the material is better if the power dissipation value is high, thus
resulting in better formability [43,44]. Based on the analysis of the hot processing maps and
metallographic photos, the optimal hot deformation areas of Cr5 alloy steel are temperature:
1000–1125 ◦C, strain rate: 0.01–0.2 s−1, and strain greater than 0.3.

3.3. Hot Formability Analysis of Cr5 Alloy Steel by Coupled 3D Hot Processing Maps and FEM

While hot processing maps can be applied for determining the optimal processing
area of a material, it is a static display, and the actual thermal deformation process is more
complex. In the actual processing process, the parts are affected by friction, heat exchange,
and other factors, thus resulting in uneven temperature and deformation fields inside the
parts. As shown in Figure 12, which is the schematic diagram of the macroscopic deforma-
tion of the specimen after thermal compression, according to the degree of deformation, the
deformation body is able to be divided to divided into three regions, as follows. Region I.
In contact with the upper and lower indenters, it is affected by tangential friction during the
deformation process, and it is not easy to produce plastic flow, which is called the difficult
deformation area. Region II. The stress state of the region is two pressures and one pull,
which is the free deformation area; it is more likely to deform than the region I. Region III is
subjected to a three-way compressive stress state, and the deformation resistance is small,
which is the large deformation area.
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Figure 12. Schematic of the non-uniformity of compressed sample.

The non-uniformity deformation and temperature fields of a material during hot
processing undoubtedly increase the difficulty of the application of the hot processing
maps. Integration of hot processing maps with the finite element can realize the dynamic
display of power dissipation values and instability areas in various portions of the part
during thermal processing, which helps to intuitively, comprehensively, quantitatively, and
accurately formulate and optimize the hot processing parameters.

Through secondary development, the 3D hot processing maps (Figures 8 and 9) of Cr5
alloy steel, established above, are embedded in the finite element software FORGE®. The
compression of a cylindrical billet is modelled by the FORGE® software. The diameter and
initial height of the billet were 8 and 12 mm, respectively. The Hansel–Spittel constitutive
model of Cr5 alloy steel was used in the simulation calculation, as established by the author
in the previous study [45] and shown in Equation (12). Other simulation parameters are
shown in Table 2.

σ = 9.135695·1015·e0.001413T ·ε0.174840· .ε−0.075205·e−0.005456
ε

·(1 + ε)−0.001042T ·e0.030937ε· .ε0.000212·T−4.713008
(12)
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Table 2. Process parameters used in simulation.

Heat Exchange
Coefficient of

Material/Die Interface
(W/m2/K)

Coulomb Friction
Coefficient of

the Material/Die Interface
Die Temperature (◦C) Type of Mash Size of Mesh (mm)

1000 0.1 250 tetrahedron 0.2

According to the same deformation temperature and rate as the experiment, the
thermal compression process of Cr5 alloy steel under different deformation conditions
was simulated and calculated. The dynamic distribution of power dissipation values
and instability areas of Ø8 × 12 mm cylindrical specimens under different deformation
conditions were obtained. Typical simulation conditions and parameters were chosen, in
order to avoid repeating the same conclusions.

The distribution of power dissipation values with a deformation condition of
1125 ◦C/0.1 s−1 was shown in Figure 13. According to the figure, it is evident that, with the
increase of the compression deformation, the area with a power dissipation value greater
than 0.31 increased rapidly, which was mainly concentrated in the large deformation (Re-
gion III) and free deformation (Region II) regions. The power dissipation value in the
difficult deformation region (Region I) was relatively low, but it also increased with the
increase of compression deformation.
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power dissipation values. As shown in Figure 15, as the strain rate increased, an instability 
area (shade of gray) appeared at the edge of the cylinder at a strain rate of 0.1 s−1. As the 
strain rate increased, the instability area shifted to the center of the cylinder and expanded; 
the results coincide with the results of the hot processing maps analyses. 
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Figure 13. Distributions of power dissipation at 1125 ◦C/0.1 s−1: (a) 10%; (b) 30%; (c) 50%.

The distribution of power dissipation values at a temperature of 1125 ◦C, press quantity
of 50%, and different strain rates are shown in Figure 14. As the strain rate decreases, the
power dissipation value increases rapidly. Peaks are reached at strain rates of 0.1 s−1,
followed by a decrease at strain rates 0.01 s−1. This is due to the fact that dynamic
recrystallization takes more time at lower strain rates; however, at higher deformation
temperatures, the grains will grow further after completion, resulting in a decrease in
power dissipation values. As shown in Figure 15, as the strain rate increased, an instability
area (shade of gray) appeared at the edge of the cylinder at a strain rate of 0.1 s−1. As the
strain rate increased, the instability area shifted to the center of the cylinder and expanded;
the results coincide with the results of the hot processing maps analyses.
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Figure 17. Evolution of flow instability at 0.1 s−1/50%: (a) 1050 °C; (b) 1125 °C. 

The simulation calculation results of the power dissipation values at different strain 
rates under the deformation condition of 1050 °C/50% were compared with the 
metallographic photos, as shown in Figure 18. In the range of 0.005–0.1 s−1, with an 
increase in strain rate, the power dissipation increased gradually. When the strain rate 
was 0.005 s−1, the power dissipation of the sample core was 0.28. When the strain rate was 
0.01 s−1, the power dissipation value of the sample core was 0.30. When the strain rate was 
0.1 s−1, the power dissipation value of the sample core was 0.32. It can also be found that 

Figure 15. Evolution of flow instability at 1125 ◦C/50%: (a) 0.01 s−1; (b) 0.1 s−1; (c) 1 s−1.

The effects caused by different deformation temperatures on the power dissipation
and flow instability distribution are shown in Figures 16 and 17. From Figure 16, it can
be seen that the high-power dissipation value area increased with increasing temperature,
and Region I varied significantly. As shown in Figure 17a, instabilities occur at the edge
of the cylinder and junction of the three typical regions under a temperature of 1050 ◦C.
Due to the uneven deformation of the I, II, and III Regions, the shear strain at the junction
is highly concentrated, and adiabatic shear belts appeared, thus leading to the emergence
of instability areas. As shown in Figure 17b, with the increase of temperature, the area of
instability area decreased. At 1125 ◦C, instability occurred only at the edge of cylinder,
which was consistent with the distribution of instability area in the hot processing maps.
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The simulation calculation results of the power dissipation values at different strain
rates under the deformation condition of 1050 ◦C/50% were compared with the metallo-
graphic photos, as shown in Figure 18. In the range of 0.005–0.1 s−1, with an increase in
strain rate, the power dissipation increased gradually. When the strain rate was 0.005 s−1,
the power dissipation of the sample core was 0.28. When the strain rate was 0.01 s−1, the
power dissipation value of the sample core was 0.30. When the strain rate was 0.1 s−1, the
power dissipation value of the sample core was 0.32. It can also be found that the grain size
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decreased gradually with the increase of strain rate, and the average grains were 23, 18, and
13 µm, respectively. Higher power dissipation has finer grain structure. The experimental
results were consistent with the simulation results.
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The simulation results of 1125 ◦C/50%/0.1 s−1 with deformation conditions were
compared with metallographic photographs, as shown in Figure 19. It can be seen from the
figure that, although there was no instability in Region I, it had the lowest power dissipation
value (0.28) in the three regions, and the grains in this region were also the coarsest; there
was no obvious dynamic recrystallization behavior, and the microstructure was not ideal.
Region III had the largest amount of deformation, which caused dynamic recrystallization
to easily occur. From the figure, it can be seen that the power dissipation value of this
region was 0.32 and the grain was the smallest; the coarse original grain was replaced by a
fine recrystallization grain, which means it had completed dynamic recrystallization, and
microscopic organization was more ideal. As can be seen from Figure 13, when the press
quantity increased from 30% to 50%, Power dissipation of Region III decreased from 0.36
to 0.32. This is due to the grain grew after dynamic recrystallization, thus resulting in a
slight decrease in the dissipation value. Region II had the highest power dissipation value
(0.34) in three zones, as well as an instability zone. As can be seen from the metallographic
photographs, there were many tiny dynamic recrystallization grains at the initial grain
boundaries in this region, and vigorous dynamic recrystallization was underway. It can
also be seen that, in addition to the fine recrystallization grains in the microscopic tissues of
this region, there were also coarse crystals; coarse grains can easily lead to instability in
this region. A good agreement exists between the simulation results and microstructure
photographs, which show that the way of integrating the 3D processing maps into FORGE®

can effectively predict and analyze the microstructure evolution and formability of Cr5
alloy steel at different times, as well as in different positions, during thermal processing,
and provide guidance for the simulation calculation and actual production of a subsequent
large backup roller.
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4. Conclusions

In this paper, the traditional 2D and 3D hot processing maps of Cr5 alloy steel were
obtained, based on thermal compression test data, and the 3D processing map was em-
bedded in FORGE® for simulation calculation through program’s secondary development.
Combined with metallographic photo analysis, the formability of Cr5 alloy steel during
thermal processing was studied.

(1) Changes in the true stress of Cr5 alloy steel were strongly connected to the thermal
deformation parameters. The true stress increased with the increase of strain rate
and reduction of deformation temperature. At the early stage of deformation, the
stress increased swiftly, reached the peak value, and then decreased. As the defor-
mation proceeded, the stress value became stable, thus showing typical dynamic
recrystallization characteristics.

(2) At high temperatures, the effect of strain on the formability of Cr5 alloy steel can be
characterized by 3D hot processing maps. As the temperature and strain increased,
the percentage of high-power dissipation areas increased. As the temperature and
strain increased, the percentage of high-power dissipation areas increased, mainly
in the following parameters: temperature, 1000–1125 ◦C; strain rate, 0.01–0.2 s−1,
the peak power dissipation in these areas is 0.41. With increasing temperature, the
area of instability decreased. The impact of strain on the instability area was not
significant, which was mainly concentrated in two regions: one is in the temperature
range of 1125–1200 ◦C and strain rate range of 0.005–0.3 s−1; the other is in the
temperature range of 900–1050 ◦C and strain rate range of 0.6–5 s−1. Combined
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with metallographic analysis, the optimal hot processing area of Cr5 alloy steel was:
temperature, 1000–1125 ◦C; strain rate, 0.01–0.2 s−1; strain > 0.3.

(3) By integrating hot processing maps with finite element, the dynamic display of power
dissipation and the instability region of the metal deformation body under different
deformation conditions can be obtained. The variation trend of the power dissipation
and instability regions with temperature, strain rate, and strain were calculated by
simulation and are in good agreement with the 3D thermal processing chart.

(4) Through the simulation of the compression process of Cr5 alloy steel sample, it was
found that the power dissipation value and instability coefficient of each part of the
sample were not the same. There were obvious differences that should be taken
into account when optimizing the hot processing parameters of the material. It is
not that the area with higher dissipation value was smaller in grain size, so it was
necessary to analyze and discuss the whole change process of the dissipation value.
The simulation results of the typical deformation areas were in good agreement with
the metallographic photos. This method can effectively analyze the formability of
different parts of the material in the process of hot processing and provide guidance
for the simulation calculation of formability and optimization of actual production
process parameters of the stress support roll for large Cr5 alloy.
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