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Overview: prefrontal cortex dysfunction in 
obsessive-compulsive disorder
Obsessive-compulsive disorder (OCD) is a debilitating neu-
ropsychiatric disorder that affects 2–3% of the population 
worldwide and is associated with significant disability (Lochner 
et al., 2014; Meier et al., 2016; Murray et al., 1996; Perez-Vigil 
et al., 2018). The core symptoms of OCD are persistent intrusive 
thoughts, or obsessions, and uncontrollable repetitive rituals, or 
compulsions. Convergent neuroimaging and neurocognitive 
findings support a model whereby abnormalities in cortico-stri-
ato-thalamo-cortical (CSTC) loops play a critical role in these 
symptoms (Ahmari and Dougherty, 2015; Ting and Feng, 2011). 
Prefrontal cortex (PFC) dysfunction is central in this model, 
with the most well-replicated finding being orbitofrontal cortex 
(OFC) hyperactivity at baseline and following symptom provo-
cation (Baxter et al., 1987; Breiter et al., 1996; Rauch et al., 
1994); this activity is normalised following successful treatment 
(Benkelfat et al., 1990; Nakao et al., 2005; Saxena et al., 1999; 
van der Straten et al., 2017). In contrast, neuroimaging studies 
conducted during cognitive testing (e.g. reversal learning) con-
sistently reveal impaired recruitment of OFC in OCD patients 

(Chamberlain et al., 2008; Gillan et al., 2015; Gu et al., 2008; 
Remijnse et al., 2006, 2009, 2013).

In addition to these findings, there is substantial evidence for 
abnormalities in other PFC subregions in OCD patients either at 
baseline or associated with symptom provocation/cognitive impair-
ment. Similar to observations in OFC, these abnormalities tend to 
follow the pattern of increased activity at baseline and impaired 
modulation during task performance. For example, the anterior 
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cingulate cortex (ACC) shows hyperactivity at baseline (Perani 
et al., 1995), following symptom provocation (Breiter et al., 1996; 
Rauch et al., 1994), and during error processing (Fitzgerald et al., 
2005), whereas successful treatment is associated with normalisa-
tion of baseline hyperactivity (Perani et al., 1995). In contrast, 
reduced ACC activation has been reported in OCD patients during 
tasks measuring executive functioning, including working memory 
and cognitive flexibility (Gu et al., 2008; Koch et al., 2012). 
Ventromedial PFC (VMPFC) hyperactivity has also been observed 
during symptom provocation in patients with prominent hoarding 
(An et al., 2009) and in response to threatening stimuli in a 
Pavlovian fear task; this VMPFC hyperactivity in turn predicted 
failure to adapt fear-related responses following reversal of the neu-
tral and shock-paired cues (Apergis-Schoute et al., 2017). Again, 
opposite patterns of VMPFC dysfunction are observed during cog-
nitive testing, with impaired recruitment observed during fear 
extinction training and recall in OCD patients with extinction recall 
deficits (Milad et al., 2013), and during task-switching paradigms 
(Gu et al., 2008). Dorsolateral PFC (DLPFC) also shows robust 
hypoactivity in OCD patients during tasks assessing executive 
functioning, including the Tower of London task, reversal learning 
and task switching (Gu et al., 2008; Remijnse et al., 2006, 2013; 
Vaghi et al., 2017a; van den Heuvel et al., 2005), and reduced rest-
ing-state DLPFC-putamen functional connectivity was recently 
associated with impaired set-shifting (Vaghi et al., 2017b). Finally, 
whereas OCD patients with high sensitivity to disgust demonstrate 
ventrolateral PFC (VLPFC) hyperactivity in response to facial 
expressions of disgust (Lawrence et al., 2007), reduced resting-state 
functional connectivity in the VLPFC-dorsal caudate has been 
associated with impaired goal-directed behaviour (Vaghi et al., 
2017b). These recent functional connectivity studies from Vaghi 
et al. (2017b) may account for discrepancies between earlier studies 
reporting increased (Harrison et al., 2009, 2013) and decreased 
(Posner et al., 2014) resting-state functional connectivity in PFC-
striatal circuits, because the directionality of functional connectivity 
changes may depend on the degree or type of cognitive impairment 
observed in patients in each particular study.

Synthesising these data, a common pattern emerges across 
PFC subregions: dissociation between the abnormal activity pat-
terns that contribute to OCD symptoms and those that contribute 
to cognitive impairments (Table 1). Typically, hyperactivity in 
PFC (and striatal) regions is correlated with severity of obses-
sions, compulsions and symptom-associated affective states, 
including fear and disgust, whereas the same PFC regions often 
show hypoactivity across a variety of cognitive tasks. This is a 
striking observation that has not yet been reconciled within the 
clinical neuroimaging field, perhaps because the precise mecha-
nisms underlying this double dissociation may be difficult to 
address given the limited spatial and temporal resolution of clin-
ical neuroimaging methodologies. Preclinical models provide a 
number of unique advantages for gaining mechanistic insight 
into the contribution of different PFC subregions to specific 
OCD-relevant behaviours, but thus far they have not been fully 
utilised for this purpose. The goal of this Special Issue article is 
to (1) summarise recent findings from preclinical mouse models 
in OCD research, including attempts to probe PFC dysfunction; 
(2) describe OCD-relevant behavioural paradigms that are 
dependent on PFC functioning which can be applied in experi-
mental mouse systems; (3) highlight advanced neuroscience 
approaches for investigating genetic, neuronal sub-type and cir-
cuit-specific contributions to behaviour and (4) use recent exam-
ples from the literature to help develop a framework for 
integrating these approaches with translational PFC-dependent 
behavioural paradigms to gain new mechanistic insight about 
PFC dysfunction in OCD.

Preclinical OCD research

Overview of OCD-relevant mouse experimental 
systems

A rapidly expanding literature is using preclinical mouse models 
to study pathophysiological mechanisms underlying OCD 
(reviewed also in Monteiro and Feng, 2016; Szechtman et al., 

Table 1. Summary of functional imaging studies demonstrating PFC dysfunction in OCD patients.

Subregion Hyperactivity Hypoactivity

Paradigm Studies Paradigm Studies

OFC Baseline, symptom 
provocation
Normalised following 
successful treatment
Avoidance acquisition

Baxter et al. (1987), Rauch et al. 
(1994), Breiter et al. (1996)
Saxena et al. (1999), Nakao et al. 
(2005), Benkelfat et al. (1990)
Gillan et al. (2015)

Cognitive flexibility

Avoidance overtraining

Chamberlain et al. (2008), 
Remijnse et al. (2006, 2009, 
2013), Gu et al. (2008)
Gillan et al. (2015)

ACC Baseline, symptom 
provocation
Error processing

Rauch et al. (1994), Breiter et al. 
(1996), Perani et al. (1995)
Fitzgerald et al. (2005)

Cognitive flexibility
Working memory

Gu et al. (2008)
Koch et al. (2012)

VMPFC Symptom provocation
Threatening stimuli

An et al. (2009)
Apergis-Schoute et al. (2017)

Cognitive flexibility
Fear extinction/recall

Gu et al. (2008)
Milad et al. (2013)

DLPFC Cognitive flexibility

Planning

Gu et al. (2008), Remijnse et al. 
(2006, 2013)
van den Heuvel et al. (2005), 
Vaghi et al. (2017a)

VLPFC Disgust (facial expressions) Lawrence et al. (2007)  

PFC: prefrontal cortex; OCD: obsessive-compulsive disorder; OFC: orbitofrontal cortex; ACC: anterior cingulate cortex; VMPFC: ventromedial PFC; DLPFC: dorsolateral PFC; 
VLPFC: ventrolateral PFC.
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2017; Zike et al., 2017a). While it is important to recognise that 
no animal model can recapitulate all aspects of OCD, these 
experimental systems serve as valuable tools for examining com-
ponent processes and pathophysiologic/therapeutic mechanisms 
with a level of precision that cannot be achieved in clinical 
research. These preclinical models, which aim to mimic distur-
bances hypothesised to contribute to the aetiology of OCD, have 
been generated through a variety of methods, including genetic 
manipulations (Greer and Capecchi, 2002; Shmelkov et al., 2010; 
Ullrich et al., 2018; Welch et al., 2007; Xu et al., 2017), pharma-
cological manipulations (Shanahan et al., 2009, 2011) and, more 
recently, neural circuit perturbations (Ahmari et al., 2013; 
Burguiere et al., 2013; Rapanelli et al., 2017a). A number of dif-
ferent behaviours relevant to OCD have been measured in these 
models, including compulsive self-grooming (Kalueff et al., 
2016), other repetitive actions (Pogorelov et al., 2015; Xu et al., 
2015; Zike et al., 2017b), prepulse inhibition (PPI; Baldan 
Ramsey et al., 2011; Shanahan et al., 2009) and anxiety-like 
behaviour (Ade et al., 2016; Shmelkov et al., 2010; Welch et al., 
2007). Although construct and predictive validity have been tra-
ditionally used to determine the relevance of particular models 
for preclinical research (i.e. whether the model is generated via a 
pathophysiological change similar to that which generates the 
disease, and whether it is responsive to therapeutic interventions 
that are effective in patients), a large proportion of OCD patients 
do not show improvements with current treatment options (Eisen 
et al., 2013), and the precise mechanisms that cause OCD are still 
poorly understood. For this reason, it is important to note that 
face validity has often been emphasised in these models, despite 
the clear challenges that accompany translation of species-typical 
behaviours.

Compulsive grooming and striatal 
dysfunction in mouse models

A key advantage of using preclinical models is the opportunity 
for detailed characterisation of CSTC loop dysfunction impli-
cated in OCD pathophysiology with a level of precision that is 
not possible in clinical imaging studies. A large number of stud-
ies have now demonstrated that compulsive grooming in mice 
resulting from both genetic and circuit manipulations is often 
associated with striatal dysfunction. These studies have identi-
fied changes in striatal synaptic density and structure via Golgi 
staining and electron microscopy (Nagarajan et al., 2017; 
Shmelkov et al., 2010; Welch et al., 2007), changes in excitability 
of spiny projection neurons (SPNs) using ex vivo slice electro-
physiology (Aida et al., 2015; Krabbe et al., 2017; Nagarajan 
et al., 2017; Shmelkov et al., 2010; Ullrich et al., 2018; Welch 
et al., 2007) and calcium imaging (Ade et al., 2016) and altered 
SPN activity in vivo which has been linked to specific behav-
ioural disturbances (Ahmari et al., 2013; Burguiere et al., 2013). 
In several different models, striatal manipulations were found to 
be necessary or sufficient for the induction of compulsive groom-
ing. For example, viral-mediated striatal re-expression of a can-
didate risk gene for OCD (SAPAP3) normalised compulsive 
grooming in both SAPAP3 knockout (KO) mice and transcription 
factor MeCP2 mutant mice (Mahgoub et al., 2016; Welch et al., 
2007). Similarly, striatal-specific deletion of histone deacetylase 
genes 1 and 2 in a conditional mutant model was sufficient to 
recapitulate the compulsive grooming phenotype that resulted 

from whole forebrain gene deletion (Mahgoub et al., 2016). 
Further supporting a role for striatal disturbances in pathologic 
grooming, others have recently demonstrated that artificially 
increasing activity in a population of striatal neurons targeted by 
hypothalamic histaminergic neurons is sufficient to produce 
compulsive grooming (Rapanelli et al., 2017a). Together, these 
studies have provided valuable insights regarding the relation-
ship between striatal dysfunction and abnormal OCD-relevant 
behaviours. However, the questions of whether/how upstream 
cortical structures are involved in generating the striatal abnor-
malities leading to these pathologic behaviours remain 
unanswered.

Studying PFC dysfunction in preclinical 
mouse models

Compared to the literature detailing striatal abnormalities in pre-
clinical OCD mouse models, investigation of PFC disturbances is 
limited. One recent example used electron microscopy to identify 
synaptic disturbances, including increased length and density of 
spines and thinning of the post-synaptic density, in the frontal 
cortex of the Hoxb8 KO mouse model, which displays compul-
sive grooming (Greer and Capecchi, 2002) linked specifically to 
Hoxb8 deletion in microglia (Chen et al., 2010). However, it is 
unclear how these changes in PFC contribute to the development 
of abnormal behaviours (Nagarajan et al., 2017). In another 
study, genetic deletion of Slitrk5, a member of a synaptic trans-
membrane protein family that has been associated with OCD risk 
(Ozomaro et al., 2013; Song et al., 2017; Wendland et al., 2006), 
resulted in compulsive grooming and anxiety. In addition, medial 
OFC (mOFC) hypermetabolism was inferred via elevation of the 
neural activity marker FosB. However, far more extensive ana-
tomical, molecular and electrophysiological characterisation was 
completed in the striatum (Shmelkov et al., 2010). Finally, stud-
ies in mice have demonstrated that RU24969-mediated 5-HT1B 
receptor activation in ventrolateral OFC (vlOFC) induces disrup-
tion of PPI and perseverative locomotion (Shanahan et al., 2011) 
that are potentially relevant to OCD (Gross-Isseroff et al., 2004; 
Pittenger et al., 2016; Stein et al., 1999); however, the role of 
OFC 5-HT1B receptors has not yet been assessed in other pre-
clinical models.

Nuanced interpretation of these findings requires considera-
tion of cortico-striatal projection patterns. In particular, mOFC 
and lateral OFC (lOFC)  differ markedly in their striatal outputs 
(ventromedial striatum (VMS) and dorsal striatum, respectively; 
Berendse et al., 1992; Mailly et al., 2013; Schilman et al., 2008). 
This gradient of OFC-striatal connectivity is well conserved in 
primates (Heilbronner et al., 2016) and may contribute to func-
tional heterogeneity across the medial–lateral axis of the OFC 
(Izquierdo, 2017). This functional gradient is also highlighted by 
two studies that used optogenetics to determine how specific 
OFC-striatal projections contribute to OCD-relevant compulsive 
grooming. One study demonstrated that repeated optogenetic 
stimulation of the mOFC-VMS circuit can induce both excessive 
grooming and accompanying striatal plasticity in normal mice 
(Ahmari et al., 2013). Another study used optogenetics to probe 
cortico-striatal circuit involvement in OCD-relevant compulsive 
grooming in mice carrying a deletion of SAPAP3 (Welch et al., 
2007), a post-synaptic scaffolding protein that has been impli-
cated in OCD risk (Bienvenu et al., 2009; Mattheisen et al., 2015; 
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Stewart et al., 2013; Zuchner et al., 2009). In this model, acute 
stimulation of the lOFC-centromedial striatum (CMS) circuit 
normalised compulsive grooming, potentially by boosting activ-
ity in striatal parvalbumin positive (PV+) interneurons (Burguiere 
et al., 2013). Together, these findings support an important role 
for the PFC in the manifestation of OCD-like behaviour that is 
consistent with findings from clinical imaging studies, and sug-
gest areas that warrant further mechanistic investigation in pre-
clinical rodent models.

Consideration of PFC homology between 
rodent and primate

In preclinical psychiatry research, it is important to consider the 
degree of similarity between the human brain and that of the 
model species being used. This is particularly significant for 
studies of PFC, as this area has undergone rapid development 
within the primate order relative to other mammals (Smaers 
et al., 2017). One of the main concerns about the use of rodents 
to study PFC functioning is that they do not have six-layered 
granular cortex in the relevant frontal regions (Wise, 2008). 
However, the functional significance of the layer IV granule cells 
that are missing in rodent PFC is not clear, and other features 
known to be important for PFC functioning are similar between 
rodents and primates, including thalamic and dopaminergic 
inputs (Carlen, 2017; Uylings et al., 2003). Continued investiga-
tion to more thoroughly understand the shared and distinct 
aspects of rodent and primate PFC is therefore critical for appro-
priate interpretation and translation of rodent studies. Recent 
examples of such studies include the first thorough histological 
characterisation of mouse PFC (Van De Werd et al., 2010), which 
was used to help refine parcellation of subregions (Van De Werd 
and Uylings, 2014), and a detailed comparison of anatomical and 
electrical properties of PFC inhibitory interneurons between rat 
and primate (Povysheva et al., 2008). Functional homology 
between rodent and primate species has also been addressed 
using PFC-dependent behavioural paradigms, but it can be chal-
lenging to draw satisfying conclusions because identical para-
digms are often not used across species. This issue was 
highlighted in a recent review on cross-species investigation of 
OFC in decision-making (Wallis, 2011). It is therefore critical to 
directly compare behaviour in rodents and primates, as exempli-
fied by studies by Arnsten and colleagues demonstrating func-
tional homology between monkey DLPFC and rodent prelimbic 
PFC (PrL) during a working memory task (Gamo et al., 2015; 
Wang et al., 2007).

In the context of OCD research, careful consideration of the 
patterns of PFC projections to striatal targets in rodents versus 
primates is particularly critical, since PFC-striatal circuit distur-
bances are theorised to be central to the disorder (Ahmari and 
Dougherty, 2015). Cortico-striatal circuits are thought to be topo-
graphically organised in parallel (Alexander et al., 1986) or spi-
ralling (Haber, 2016) loops, whereby PFC projections to striatum 
generally follow a rough dorsal–ventral gradient (Haber, 2003, 
2016). This organisation produces broadly separable functional 
loops; with primary and supplementary motor areas projecting 
dorsolaterally to caudate to form the ‘motor loop’; DLPFC and 
OFC projecting centrally to caudate/putamen to form the ‘cogni-
tive/associative loop’ and VMPFC/ACC projecting ventrally to 
nucleus accumbens (NAc) to form the ‘motivational/limbic loop’ 

(converging with inputs from limbic areas including the amyg-
dala). Recent studies by Heilbronner et al. (2016) have demon-
strated substantial homology in striatal projection patterns of 
medial and orbital PFC subregions through head-to-head ana-
tomical comparison between rats and non-human primates. 
However, some discrepancies were observed in ACC-striatal pro-
jections, with reduced ventral spread of ACC projections in 
rodents relative to primates leading to decreased overlap with 
NAc shell and amygdala-striatal projection fields. This suggests 
the possibility that rodent ACC is less involved in ‘limbic loop’ 
affective and motivational behaviours than primate ACC. These 
examples highlight that careful consideration of functional 
homology of PFC subregions in the context of their outputs and 
associated behavioural domains is essential to design preclinical 
studies that can be used as a foundation for developing targeted 
circuit-specific neuromodulatory treatments.

All rodents are not created equal

Mice and rats are the predominant rodent models in neuroscience 
research. For purposes of this review, although most of the extant 
literature examining neuroanatomical homology between rodents 
and primates has focused on rats, we will assume that mouse and 
rat PFC have similar levels of homology. However, it is clear that 
there are other differences between these rodent species that 
influence their suitability for mechanistic studies of PFC contri-
butions to OCD-relevant behaviours. Most broadly, rats typically 
have more rapid acquisition of complex instrumental behaviours, 
whereas a wider range of sophisticated genetic models are avail-
able for mechanistic studies in mice. The current preclinical 
OCD literature can therefore be largely segregated into two sub-
fields: (1) mechanistic studies in mouse models focusing on sim-
ple OCD-relevant behaviours and (2) studies of more complex 
cognitive behaviours in rats with less ability to explore mecha-
nisms. We will focus here on approaches for studying PFC dys-
function in mouse models, as this literature has expanded rapidly 
in recent years. However, it is important to note that because of 
advances in genetic technologies that can be applied in rats (e.g. 
clustered regularly interspaced short palindromic repeat – 
CRISPR-associated protein (CRISPR-CAS); Heidenreich and 
Zhang, 2016; Wright et al., 2016), and home-cage based instru-
mental paradigms that can facilitate more complex behavioural 
testing in mice (Remmelink et al., 2016, 2017), integration of 
these subfields is now possible.

OCD-relevant behavioural paradigms 
for probing PFC functioning in 
preclinical models

Development of paradigms in rats for the 
assessment of OCD-relevant compulsive 
responding

Very little behavioural characterisation of the mouse models 
described above has been performed beyond assessment of com-
pulsive grooming, repetitive stereotypies, anxiety-like behav-
iours and PPI. A number of paradigms developed in rats may 
therefore be valuable for more deeply probing OCD-relevant 
compulsive behaviours in preclinical mouse models. Training in 
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these paradigms causes rats to perform task-specific compulsive 
responses, in contrast to the non-instrumental behaviours that are 
typically studied in mice (i.e. grooming, stereotypy). Three key 
examples are as follows: (1) the development of compulsive 
avoidance after failed extinction with response prevention (Ex-
RP) training in an avoidance conditioning paradigm (Rodriguez-
Romaguera et al., 2016), (2) the development of excessive lever 
pressing following extinction of the reward-paired cue in the sig-
nal attenuation task (Joel and Avisar, 2001) and (3) the develop-
ment of compulsive checking responses to gain information 
about the location of the active lever in an observable response 
task (Eagle et al., 2014).

Early studies using these paradigms in rats have demonstrated 
their potential for further mechanistic research investigating PFC 
dysfunction relevant to OCD. For example, using the avoidance 
conditioning paradigm, persistent avoidance following Ex-RP 
was found to be differentially modulated by pharmacological 
inactivation of the lOFC depending on the success of Ex-RP. Rats 
that were resistant to Ex-RP (high freezing throughout extinc-
tion) typically showed persistent avoidance in a probe test, and 
avoidance was reduced in these rats following lOFC inactivation. 
Surprisingly, persistent avoidance was increased following lOFC 
inactivation in rats that showed successful Ex-RP training 
(Rodriguez-Romaguera et al., 2016). This differential contribu-
tion of the OFC to compulsive behaviour in pathological (high 
freezing/persistent avoiders) and normal (low freezing/low 
avoiders) conditions is somewhat consistent with the differential 
effects of optogenetic stimulation of OFC circuits in normal 
(Ahmari et al., 2013) versus mutant (Burguiere et al., 2013) mice, 
and supports the importance of dissection of these circuits in both 
healthy and pathological conditions in preclinical models. In 
addition, persistent avoidance was rescued following deep brain 
stimulation (DBS) in the dorsal portion of the ventral striatum 
during Ex-RP training (Rodriguez-Romaguera et al., 2016) com-
parable to the ventral capsule/ventral striatum (VC/VS) target 
used in OCD DBS (Dougherty et al., 2016; Greenberg et al., 
2006; Rauch et al., 2006). DBS at this site was previously found 
to induce expression of the plasticity marker phospho-ERK 
across PFC subregions, including mOFC, lOFC, PrL and infral-
imbic (IL) PFC (Rodriguez-Romaguera et al., 2012, 2015), and 
lOFC in vivo recordings during VC/VS DBS in rats show activity 
consistent with antidromic activation of cortico-striatal projec-
tions (McCracken and Grace, 2007, 2009). These findings sup-
port clinical neuroimaging data suggesting that modulation of 
PFC activity is involved in mediating the therapeutic effects of 
VC/VS DBS (Dougherty et al., 2016; Figee et al., 2013). Further 
studies in preclinical models are necessary to demonstrate a 
causal role.

The OFC has also been implicated in the development of 
excessive lever pressing following signal attenuation training, 
with lOFC lesions increasing compulsive behaviour in this para-
digm (Joel et al., 2005; Schilman et al., 2010), and blockade of 
lOFC 5-HT2C receptors exerting an anti-compulsive effect 
(Flaisher-Grinberg et al., 2008). Although PFC involvement in 
the observable checking task has not been directly assessed, 
compulsive checking was exacerbated by quinpirole sensitisa-
tion (Eagle et al., 2014), a well-established paradigm for the 
induction of compulsive exploration that is dependent on lOFC 
functioning (Dvorkin et al., 2010). Thus, the quinpirole data 
support a potential role of lOFC in expression of compulsive 

checking in this task. Together, these studies provide convergent 
evidence of a critical role for PFC in the development of differ-
ent types of compulsive responses, supporting the utility of these 
tasks for further mechanistic studies probing OCD-relevant PFC 
dysfunction.

Translatable neurocognitive paradigms that 
are consistently abnormal in OCD

In addition to the OCD-relevant paradigms developed in rats 
described above, there are several established rodent tasks that 
can be used to measure neurocognitive domains that are con-
sistently abnormal in OCD (Table 2). These domains include 
cognitive flexibility (Chamberlain et al., 2006, 2007; Gottwald 
et al., 2018; Gu et al., 2008; Remijnse et al., 2006; Vaghi et al., 
2017b), goal-directed behaviour (Gillan et al., 2011, 2014a; 
Vaghi et al., 2017b), response inhibition (Chamberlain et al., 
2006; Menzies et al., 2007), working memory (Chamberlain 
et al., 2007; Jaafari et al., 2013) and aversive learning processes 
(Apergis-Schoute et al., 2017; Gillan et al., 2014b; Milad et al., 
2013). Functional neuroimaging in patients during many of 
these paradigms has identified abnormalities in task-related 
PFC activity (Table 1). Testing preclinical models relevant to 
OCD in these translational paradigms will be an important first 
step towards gaining new mechanistic insight into PFC dys-
function in OCD.

Advanced neuroscience approaches 
for gaining mechanistic insight into 
PFC dysfunction in OCD
While findings from clinical neuroimaging provide strong evi-
dence for disrupted PFC functioning in OCD, studies in patients 
are severely limited in their ability to identify neural mecha-
nisms causing these changes in activity. The popularity of 
mouse models in neuroscience is largely due to compatibility 
with advanced approaches for examining contributions of spe-
cific genes, cell types and circuits to behaviour. In the following 
section, we will expand on the neuroscience approaches intro-
duced in our summary of the preclinical literature, and highlight 
their utility for facilitating mechanistic investigations of PFC 
functioning.

Tools for precisely manipulating gene 
expression

OCD is a highly heritable disorder, with genetic variance account-
ing for ~40% of phenotypic variance as measured in familial 
studies (Taylor, 2011) and more recent genome-wide common 
variant analyses (Davis et al., 2013). Despite this, strong candi-
date risk genes are lacking. Genome-wide association studies 
(GWAS) conducted to date have been underpowered, with a 
recent meta-analysis of the two largest studies including less than 
3000 patients (International Obsessive Compulsive Disorder 
Foundation Genetics Collaborative (IOCDF-GC) and OCD 
Collaborative Genetics Association Studies (OCGAS), 2018). 
Nevertheless, there has been strong convergent evidence that 
genes expressed at the glutamatergic synapse are involved in 
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OCD risk (Wu et al., 2012), and a number of transgenic models 
have attempted to test this hypothesis (Aida et al., 2015; 
Shmelkov et al., 2010; Welch et al., 2007; Xu et al., 2017; Zike 
et al., 2017b).

A growing number of conditional and inducible expression 
systems are available to control cell type, brain region, timing 
and directionality of gene expression changes, providing new 
opportunities to go beyond constitutive KO models and dissect 
specific contributions of genes to behaviour (Branda and 
Dymecki, 2004; Tanaka et al., 2010; Wang et al., 2012; Zhou 
et al., 2018). Several preclinical OCD studies have used these 
approaches for cell-type-specific gene disruption (Aida et al., 
2015; Chen et al., 2010; Nagarajan et al., 2017), temporal con-
trol over gene disruption (Aida et al., 2015) and selective rescue 
of gene expression (Mahgoub et al., 2016; Welch et al., 2007; 
Zike et al., 2017b). Cell-type specific expression systems will be 
particularly valuable for determining which PFC cell types (i.e. 
excitatory pyramidal cells, inhibitory interneurons or glia) are 
responsible for the development of OCD-relevant behaviours. 
Increased efficiency of genome editing using the CRISPR-CAS 
system will make generation of more sophisticated transgenic 
lines even more widely available in both rats and mice 
(Heidenreich and Zhang, 2016; Wright et al., 2016). Finally, 
genes can be deleted in specific circuits using retrograde viral 
approaches (Gremel et al., 2016), including herpes simplex virus 
(HSV), canine adenovirus (CAV) and recombinant adeno-asso-
ciated viruses (rAAV-retro) (Kremer et al., 2000; Tervo et al., 
2016; Ugolini et al., 1987). Recent advances have helped to limit 
toxicity and improve transfection efficiency (Reardon et al., 
2016; Tervo et al., 2016), paving the way for using this approach 
to investigate the contribution of specific cortico-striatal circuits 
to OCD-relevant behaviours.

Tools for manipulating and recording neural 
activity

To date, the most consistent pathological hallmark of OCD is 
altered neural activity patterns in PFC and striatum (Baxter 
et al., 1987; Breiter et al., 1996; Del Casale et al., 2011; Rauch 
et al., 1994; van der Straten et al., 2017). Over the last 10 years, 
rapid development of new approaches to precisely control neural 
activity in vivo has facilitated the testing of causal relationships 
between specific changes in PFC and striatal neural activity and 
the development or resolution of OCD-relevant behaviours in 
preclinical models. Optogenetics (Boyden et al., 2005; Kim 
et al., 2017) and chemogenetics (Alexander et al., 2009; Smith 
et al., 2016) are the most widely used methods for specific 
manipulation of neural activity. Both approaches require viral-
mediated expression of exogenous membrane proteins, such as 
light-activated ion channels and pumps (optogenetics), or 
G-protein-coupled receptors activated by otherwise inert ligands 
(chemogenetics). Genetically engineered variants enable either 
excitation or inhibition of target neural populations. In addition, 
a variety of promoter systems, including those described in the 
previous section, can be used to generate cell type and tempo-
rally specific expression of these tools, with Cre-lox being the 
most widely used conditional expression system. Recent devel-
opments also allow selective manipulation of neurons that are 
activated during a discrete temporal window; this approach was 

recently used to demonstrate that striatal neurons activated by 
hypothalamic histaminergic cells are necessary and sufficient 
for the induction of compulsive grooming (Rapanelli et al., 
2017a). Spatial restriction of optogenetic light delivery can pro-
vide further circuit specificity by allowing selective activation 
or inhibition of neural projections to a specific target structure 
(see Ahmari et al., 2013; Burguiere et al., 2013). Furthermore, 
precise timing of light delivery during optogenetic stimulation is 
a powerful tool for determining when neural activity in a popula-
tion of neurons is contributing to behaviour, that is, during spe-
cific task epochs of neurocognitive paradigms such as outcome 
presentation (Bolkan et al., 2017; Spellman et al., 2015). Unlike 
optogenetics, chemogenetic approaches have long-lasting 
effects that can be advantageous for chronic elevation or sup-
pression of neural activity (though note that step-function opsins 
have also helped address this limitation of optogenetics; Yizhar 
et al., 2011). For example, a chronic approach may be more use-
ful for suppressing neural activity throughout cognitive testing 
in a paradigm that requires long training sessions (e.g. 30 min or 
more) over several days or weeks (Parnaudeau et al., 2015) or 
investigating effects of chronic elevation or suppression of neu-
ral activity relevant to symptoms and treatment of psychiatric 
disorders (Urban et al., 2016). Integration of these advanced 
approaches for circuit manipulation with techniques for record-
ing activity in specific neural populations while an animal 
engages in complex behaviours – for example, opto-tagging 
(Cohen et al., 2012; Kim et al., 2016; Kvitsiani et al., 2013; 
Lima et al., 2009), in vivo imaging with ultrasensitive calcium 
indicators (Cai et al., 2016; Chen et al., 2013; Ghosh et al., 2011) 
and projection-specific fibre photometry (Cui et al., 2013, 2014; 
Gunaydin et al., 2014) – will be essential for progress in pre-
clinical OCD research.

Framework for integrating advanced 
neuroscience approaches to gain 
translationally relevant insight about 
the PFC in OCD
Sophisticated integration of the methods described above can be 
used to address the precise ways in which genetic and cellular 
disturbances in the PFC impact neural encoding, circuit function 
and resulting behaviour. Already, a number of groups have begun 
to use this approach in mice to understand cognitive domains that 
are impacted in OCD; however, these studies have generally 
focused on dissection of normal circuit functioning. This section 
will provide a summary of this work probing neural mechanisms 
controlling cognitive functioning in the normal brain, and dis-
cuss how these studies may serve as a guide for future investiga-
tions of similar behaviours in preclinical OCD experimental 
systems.

Studies linking neural activity in the PFC to 
specific aspects of cognitive functioning that 
are impacted in OCD

Several recent studies have used advanced neuroscience tech-
niques to gain new mechanistic insight into cognitive functions 
that are impaired in OCD (Table 2). First, a recent study used 
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conditional gene manipulation to investigate genetic regulation 
of the balance between goal-directed and habitual behaviour. 
Cannabinoid type 1 (CB1) receptors were selectively deleted in 
lOFC neurons projecting to striatum using retrograde viral 
approaches. Activation of presynaptic CB1 receptors in this cir-
cuit typically suppresses circuit function; conversely, CB1 recep-
tor deletion is thought to disrupt this brake on lOFC-dorsal 
striatum signalling. Interestingly, this intervention disrupted the 
expression of habitual behaviour, while selective inhibition of 
this pathway using chemogenetic approaches disrupted the 
expression of goal-directed behaviour (Gremel et al., 2016).  
Expression of the neurotrophic factor BDNF (brain-derived neu-
rotrophic factor) in the lOFC was also found to be critical for the 
expression of goal-directed behaviour, and ‘disconnection stud-
ies’ combining unilateral lOFC BDNF depletion with contralat-
eral amygdala lesions have demonstrated that lOFC projections 
to the amygdala are responsible for this effect (Zimmermann 
et al., 2017). Together, these studies suggest that expression of 
specific synaptic genes in lOFC output circuits regulates the bal-
ance between goal-directed and habitual behaviour. Because 
OCD patients show a bias towards habitual behaviour (Gillan 
et al., 2011, 2014a; Vaghi et al., 2017b), it may be important to 
investigate this balance in OCD preclinical models.

Integration of in vivo electrophysiology and optogenetics has 
provided a powerful approach for demonstrating the precise tem-
poral patterns of neural activity that are associated with specific 
aspects of cognition, and determining whether that activity is 
necessary for optimal behavioural performance. Working mem-
ory tasks have been an exemplar for this approach, as there are 
distinct phases of the task where information is presented, held 
online and retrieved in order to make a correct decision. Using 
multi-site electrophysiology followed by temporally specific 

optogenetic inhibition, it has been demonstrated that hippocam-
pal inputs to medial PFC (mPFC) are critical for encoding during 
information presentation (Spellman et al., 2015). In contrast, tha-
lamic inputs to mPFC support maintenance of information across 
a delay, and mPFC outputs back to thalamus are critical for using 
the information that was held online to select the correct choice 
(Bolkan et al., 2017). These two studies demonstrate the com-
plexity of PFC input and output contributions to distinct compo-
nents of a single cognitive function (i.e. working memory). 
Working memory impairments have been reported in OCD 
patients, with larger effects during more difficult (Chamberlain 
et al., 2007) and visuospatial (Snyder et al., 2015) tasks, which 
may account for some inconsistencies between studies (Ahmari 
et al., 2014). Similar approaches could therefore be used to 
examine the substrates of different components of working mem-
ory in preclinical OCD models.

Optogenetics has also been used with Cre-driver lines to dis-
sect the role of specific PFC interneurons in different aspects of 
cognition. For example, optogenetic inhibition of PV+ interneu-
rons in mPFC during presentation of a previously shock-paired 
stimulus can reinstate the expression of fear-related behaviours 
following extinction, whereas inhibition during exploration of a 
distinct context produces acute place avoidance (Courtin et al., 
2014). Interestingly, optogenetic inhibition of all mPFC interneu-
rons also disrupted cognitive flexibility in a task-switching para-
digm (Cho et al., 2015), whereas optogenetic activation of PV+ 
interneurons at a much lower frequency than they typically fire 
(10 Hz) disrupted response inhibition in a three-choice serial 
reaction time task (3-CSRTT; Kim et al., 2016). Cognitive flexi-
bility, response inhibition and fear extinction recall are all 
impaired in OCD patients (Chamberlain et al., 2006; Menzies 
et al., 2007; Milad et al., 2013; Remijnse et al., 2006; Vaghi et al., 

Table 2. Summary of select preclinical studies that have provided new mechanistic insight into PFC contributions to cognitive functions that are 
altered in patients with OCD.

Cognitive 
domain

Impairment in OCD Translational 
behavioural paradigms

Preclinical studies providing mechanistic insight into PFC 
contributions

Goal-directed 
behavior

Gillan et al. (2011, 2014a), 
Gottwald et al. (2018)

Habit testing (e.g. 
outcome devaluation 
or contingency 
degradation)

BDNF expression in mOFC-amygdala circuits controls goal-
directed behavior (Zimmermann et al., 2017)
OFC-dorsal striatum endocannabinoid signalling regulates goal-
directed behaviour (Gremel et al., 2016)

Working 
memory

Chamberlain et al. (2007), Jaafari 
et al. (2013)

Delayed-match to 
sample task (e.g. T 
maze)

Multi-site electrophysiology/optogenetics used to demonstrate 
that hippocampal-mPFC inputs are critical for encoding the 
sample (Spellman et al., 2015)
Multi-site electrophysiology/optogenetics used to demonstrate 
that mediodorsal (MD) thalamus-mPFC inputs support 
maintenance, whereas mPFC-MD thalamus inputs support 
choice (Bolkan et al., 2017)

Aversive 
learning

Milad et al. (2013), Apergis-Schoute 
et al. (2017), Gillan et al. (2014b, 
2015)

Fear and avoidance 
conditioning and 
extinction

Optogenetic inhibition of mPFC PV interneurons is associated 
with expression of fear and avoidance behaviours (Courtin 
et al., 2014)

Cognitive 
flexibility

Remijnse et al. (2006), Gu et al. 
(2008), Chamberlain et al. (2006, 
2007), Vaghi et al. (2017b)

Reversal learning,
set-shifting

Optogenetic inhibition of mPFC interneurons disrupts cognitive 
flexibility (Cho et al., 2015)

Response 
Inhibition

Chamberlain et al. (2006), Menzies 
et al. (2007)

Three-choice serial 
reaction time task

Activation of PV interneurons (at 10 Hz) increased premature 
responses (Kim et al., 2016)

OCD: obsessive-compulsive disorder; PFC: prefrontal cortex; BDNF: brain-derived neurotrophic factor; OFC: orbitofrontal cortex; mOFC: medial OFC; mPFC: medial PFC; PV: 
parvalbumin.
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2017b) and may contribute to impaired control over persevera-
tive thoughts and actions (Gruner and Pittenger, 2017). These 
convergent findings of mPFC interneuron involvement in three 
different cognitive domains that are impaired in OCD suggest 
that they may be a good candidate for further examination in pre-
clinical models, especially since striatal interneurons have also 
been implicated in the emergence of OCD-relevant behaviours 
(Burguiere et al., 2013; Rapanelli et al., 2017b; Xu et al., 2015).

Framework for applying this approach in 
preclinical OCD-relevant models

The studies summarised above provide examples of integration 
of advanced neuroscience approaches with OCD-relevant cogni-
tive paradigms to uncover specific neural mechanisms underly-
ing behaviour. The strategies used in these studies can provide a 
valuable framework for addressing experimental questions that 
are specifically related to OCD pathophysiology, using both 
existing and new preclinical models. Our proposed step-by-step 
framework is summarised below and in Figure 1.

1. Behavioural characterisation using PFC-dependent and 
OCD-relevant paradigms

A first step to accelerate discovery of neural changes in PFC that 
modify behaviours relevant to OCD is characterisation of exist-
ing (and new) preclinical models in OCD-relevant behavioural 
paradigms that are known to be PFC-dependent. Although there 
is some preclinical evidence that the PFC is involved in excessive 
grooming (Ahmari et al., 2013; Burguiere et al., 2013), this may 
not be the most effective behavioural paradigm for probing PFC 
contributions to behaviours in OCD. Here, we have highlighted 
translational neurocognitive paradigms similar to those that have 
been used in OCD clinical imaging studies, and behavioural par-
adigms first developed in rats that cause the development of task-
specific compulsive responses. These paradigms can serve as an 
initial screening tool to identify promising preclinical models for 
further mechanistic studies.

2. Detailed investigation of the PFC in models that show 
relevant behavioural changes

Preclinical models that show OCD-relevant behavioural changes 
in PFC-dependent paradigms are good candidates for more 
detailed investigation of the PFC. There are a number of 
approaches that can be used at this step, which can be broadly 
categorised into methods assessing PFC functioning in vivo and 
those assessing the PFC in post-mortem brain tissue. In vivo 
measurements of neural activity are powerful tools for linking 
PFC functioning to behavioural deficits. Given the bidirectional 
changes observed in OCD patients in neuroimaging studies 
(Table 1), comparison of activity at baseline, during cognitive 
testing and during symptom-related behaviours (e.g. compulsive 
grooming) is highly warranted and may provide insight into 
mechanisms underlying these observations in patients. However, 
because simultaneous assessment of multiple subregions is not 
always feasible (e.g. using calcium imaging), post-mortem 
immunohistochemical analyses examining the distribution of 
specific cell types (e.g. interneuron subtypes or microglia) and 

neural activity indices (e.g. immediate early gene activation) can 
be valuable for selecting candidate PFC subregions for detailed 
in vivo characterisation.

3. Mechanistic studies to test causality

Guided by detailed characterisation of the PFC, mechanistic 
studies can establish causal links between gene expression 
changes, cell and circuit dysfunction, and behaviours relevant 
to OCD. We have provided a number of examples of how cell 
type and circuit-specific control of gene expression and neural 
activity can be used to understand specific neural mechanisms 
in the PFC that underlie distinct aspects of cognition (Table 2). 
Mechanistic insight provided by these studies may highlight 
candidates for the development of targeted treatment strategies, 
including pharmacotherapy aimed at specific molecular distur-
bances or stimulation approaches to target impaired circuits and 
subregions that are causally linked to behavioural dysfunction 
relevant to OCD.

Figure 1. Framework for new preclinical studies examining the PFC in 
OCD. New and existing mouse models can be characterised in PFC-
dependent OCD-relevant behavioural paradigms including translational 
neurocognitive tasks (Table 2) and paradigms that induce task-specific 
compulsive behaviours that were originally developed in rats. Preclinical 
models that show changes in behaviour in these paradigms are good 
candidates for further characterisation of the PFC, using in vivo methods 
that assess neural activity underlying behaviour (e.g. electrophysiology 
and calcium imaging) and post-mortem methods to characterise 
neuropathology (e.g. gene expression analysis and immunohistochemistry 
and quantitative assessment of cell type and neural activity markers). 
Finally, neural changes identified in these studies can be further 
investigated to determine whether they are causally linked to the 
development of OCD-relevant behaviours, using various methods to 
control the functioning of genes, cell types and circuits in vivo.



Manning and Ahmari 9

Summary
Harnessing the strengths of preclinical models for mechanistic 
dissection can provide critical details that cannot be inferred 
from studies in human subjects. Building on the success of 
mechanistic studies in preclinical models focused on the role of 
the striatum, clinically relevant paradigms will help to guide 
studies of PFC contributions to behavioural dysfunction in 
OCD. Insight into how pathological changes in PFC function-
ing lead to abnormal behaviour is necessary to develop a foun-
dation for targeting the PFC with novel therapeutic approaches, 
given the complexity of the changes that have been described in 
clinical neuroimaging studies in OCD patients.
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