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Abstract.
Background: Gene Ontology (GO) is a major bioinformatic resource used for analysis of large biomedical datasets, for
example from genome-wide association studies, applied universally across biological fields, including Alzheimer’s disease
(AD) research.
Objective: We aim to demonstrate the applicability of GO for interpretation of AD datasets to improve the understanding
of the underlying molecular disease mechanisms, including the involvement of inflammatory pathways and dysregulated
microRNAs (miRs).
Methods: We have undertaken a systematic full article GO annotation approach focused on microglial proteins implicated in
AD and the miRs regulating their expression. PANTHER was used for enrichment analysis of previously published AD data.
Cytoscape was used for visualizing and analyzing miR-target interactions captured from published experimental evidence.
Results: We contributed 3,084 new annotations for 494 entities, i.e., on average six new annotations per entity. This included
a total of 1,352 annotations for 40 prioritized microglial proteins implicated in AD and 66 miRs regulating their expression,
yielding an average of twelve annotations per prioritized entity. The updated GO resource was then used to re-analyze
previously published data. The re-analysis showed novel processes associated with AD-related genes, not identified in the
original study, such as ‘gliogenesis’, ‘regulation of neuron projection development’, or ‘response to cytokine’, demonstrating
enhanced applicability of GO for neuroscience research.
Conclusions: This study highlights ongoing development of the neurobiological aspects of GO and demonstrates the value
of biocuration activities in the area, thus helping to delineate the molecular bases of AD to aid the development of diagnostic
tools and treatments.
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INTRODUCTION

There are currently no effective methods for pre-
vention or treatment of Alzheimer’s disease (AD)
and other dementias [1–3], and the development
of biomarker panels, which could be used in non-
invasive detection methods, is in its early stages [4].
Insufficient understanding of the underlying molecu-
lar bases and mechanisms of disease development,
including the involvement of inflammatory path-
ways [5–10] as well as dysregulated microRNAs
(miR) [11–16], contributes to this lack of effec-
tiveness in managing these debilitating conditions.
The challenge in delineating the molecular mecha-
nisms, which are key to healthy brain homeostasis
and are disrupted during development of AD, is that
the majority of cases are likely to be caused by
multiple genetic and environmental factors [17–19].
Nonetheless, several genes implicated in monogenic
AD have been identified [20, 21]. To delineate the
genetic risk factors contributing to polygenic AD,
high-throughput experimental approaches, such as
transcriptomic, proteomic and genome-wide asso-
ciation studies, resulting in sets of ‘big data’, are
being used [18, 22–28]. In order to be able to nav-
igate this knowledge and use it for data analyses in
an efficient way, researchers rely on bioinformatic
resources, such as Gene Ontology (GO) [29, 30].

The GO resource is a biomedical ontology that
uses a controlled vocabulary of GO terms to describe
the normal physiological roles of biological entities,
such as proteins and non-coding RNAs (ncRNAs),
across all species and biological fields, in a con-
sistent and computer-accessible manner. GO terms
are associated with biological entities manually by
scientific biocurators, based on published experi-
mental information, and automatically by electronic
pipelines, using carefully designed similarity criteria.
The resulting links between GO terms and biological
entities are known as ‘annotations’. The GO resource
comprises three categories of terms, describing
‘molecular functions’ (e.g., ‘protein kinase activity’),
the ‘biological processes’ toward which the func-
tions contribute (e.g., ‘microglial cell activation’),
and ‘cellular components’ or locations (e.g., ‘plasma
membrane’, or ‘axon’) [29, 30].

Annotation of proteins and ncRNAs serves to
bridge the gap between data collection and data
analyses by providing knowledge about their cel-
lular roles in a format accessible to both systems
biology and genomic investigators [22, 31]. In addi-
tion to GO [29, 30], other resources that provide

annotations of biological entities’ roles include Reac-
tome [32], the Kyoto Encyclopedia of Genes and
Genomes (KEGG) [33], and molecular interaction
databases [34]. One use of annotations provided by
these resources is to identify gene groups that are
represented at a higher (or lower) than expected fre-
quency within a given gene list. Annotations are
imported into independent enrichment or gene-set
analysis tools, such as g:Profiler [35], the WEB-
based Gene SeT AnaLysis Toolkit (WebGestalt) [36],
the VisuaL Annotation Display (VLAD) tool [37],
the Biological Network Gene Ontology (BiNGO)
tool [38], the Protein Analysis Through Evolutionary
Relationships (PANTHER) tool [39], or the Multi-
marker Analysis of GenoMic Annotation (MAGMA)
tool [40]. These analysis tools group genes with
shared characteristics (such as an involvement in the
same pathway or located in the same part of the
cell) and apply appropriate statistical parameters to
identify enriched or underrepresented gene groups,
defined by their associated GO terms, pathways, or
interactions. Thus, functional gene annotation data is
used to interpret datasets from genome-wide asso-
ciation, proteomic, and transcriptomic studies [27,
41–43].

In order to improve the GO resource for enrich-
ment analyses relevant to neurobiological conditions,
we previously annotated the biological roles of pro-
teins implicated in AD [44], Parkinson’s disease [45],
and autism [46], in addition to contributing to the
synapse annotation project [47]. The AD-focused GO
annotation initiative has already captured the roles
of proteins and complexes interacting with either
amyloid-� or the microtubule-associated protein
tau [44], the pathological hallmarks of AD [48–
51]. Furthermore, we have pioneered the functional
annotation of miRs using GO [52, 53]. Our contin-
ued, focused, and systematic full article annotation
approach, described here, has led to an enhanced GO
resource, with more descriptive GO terms associated
with AD-relevant microglial proteins [54, 55] and the
miRs that regulate their expression. Our annotations
have led to an improved interpretation of a previ-
ously published AD transcriptomic dataset [43] and
can be used to create a network of miR-mRNA inter-
actions. Thus, our work has potential implications
for research dedicated to preventing and/or treating
neuroinflammation implicated in AD.

As previously, annotations resulting from this Uni-
versity College London (UCL)-based project, funded
by the Alzheimer’s Research UK (ARUK) founda-
tion, are labelled in GO browsers and/or secondary
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resources as contributed by ARUK-UCL [44]. GO
data (ontology and annotations) are freely available
and can be downloaded from the AmiGO [56] and
QuickGO [57] browsers.

MATERIALS AND METHODS

Community engagement

Collaborations were established between members
of the GO Consortium [29, 30] and neuroscience and
neuroinflammation community experts to ensure that
our biocuration efforts align with the needs of the AD
research community. Project progress and direction
were discussed and, if required, revised and updated
during biannual scientific advisory panel meetings
and through regular correspondence.

Curation priorities

A list of 40 human AD-relevant microglial proteins
(Supplementary Table 1) implicated in neuroin-
flammation was compiled based on recent review
articles [54, 55]. The microRNA-Target interac-
tions dataBase (miRTarBase) resource [58] and
scientific literature, indexed in PubMed [59], were
subsequently searched for human miRs involved in
silencing of genes encoding these 40 AD-relevant
microglial proteins; this resulted in a list of 66 human
miRs (Supplementary Table 2). Collectively, the 40
proteins and the 66 miRs comprised the 106 biologi-
cal entities prioritized for annotation as a part of this
project.

Identification of publications describing priority
proteins

The PubMed database [59] was used to identify
research articles that contained experimental data
suitable for annotation. For each of the 40 pri-
ority proteins, PubMed searches were performed
using the HUGO Gene Nomenclature Committee
approved gene symbol (HGNC symbol) [60], pro-
tein name or synonym. If the search retrieved more
than 100 papers, then the volume of papers was
reduced by the inclusion of additional keywords
(one at a time): ‘microglia’, ‘microglial’, ‘glia’,
‘glial’, ‘dementia’, ‘Alzheimer’s’, ‘Alzheimer’, ‘AD’,
‘neuroinflammation’, ‘neurology’, ‘neurological’,
‘neurobiology’, ‘neurodegeneration’, ‘nerve’, ‘ner-
vous’, ‘brain’, ‘synapse’, ‘synaptic’, ‘memory’,

‘cognition’, ‘age-related’ or ‘aging’. Research arti-
cles describing the human proteins were then selected
for annotation based on the relevance of their title or
abstract. If no, or insufficient, information on a human
entity was found, then papers describing mammalian
orthologues, identified using the HGNC orthologue
prediction tool ‘HCOP’ [61], were curated.

Identification of publications describing priority
miRs

Regulatory miRs (Supplementary Table 2) were
identified in two ways: firstly, using the miRTarBase
[58] by searching for a priority protein (Supple-
mentary Table 1) and selecting research articles
based on reporter assay evidence, or western blot
and qRT-PCR evidence; and secondly, by searching
the PubMed database [59] using the priority pro-
tein (Supplementary Table 1) HGNC approved gene
symbol [60], protein name, or synonym plus ‘miR’,
‘miRNA’, or ‘microRNA’. In contrast to the anno-
tation of only carefully selected articles describing
the priority proteins, all identified articles, which
described an experimentally verified molecular inter-
action between a priority miR and a messenger RNA
(mRNA) transcript of a priority protein, were anno-
tated, irrespectively of whether they were describing
neuroinflammation or other biological processes.
This approach helped to reduce the chances of
creating a set of miR annotations biased toward neu-
roinflammation.

Curation procedure

Research articles were read by skilled GO biocu-
rators and biological roles and cellular locations of
proteins and miRs were captured using GO terms,
following established standard GO annotation proce-
dures [53, 62–64]. Molecular interactions between
miRs and mRNA transcripts of their experimen-
tally validated target genes were captured using the
guidelines for GO curation of miRs [53]. Addi-
tional contextual information was provided in the GO
annotation extension using terms from GO or other
ontologies [64]. The Universal Protein (UniProt)
KnowledgeBase [65], RNAcentral [66], Complex
Portal [67], and Ensembl [68] identifiers were used
for annotation of, respectively: proteins, ncRNAs
including miRs, macromolecular protein complexes
and targets of gene silencing by miRs. Specific Evi-
dence and Conclusion Ontology (ECO) [69] codes
were included in each biocurator-generated annota-
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tion, based on the type of experimental data reported
in the research article (e.g., ‘IPI’: physical interaction
evidence used in manual assertion (ECO:0000353),
or ‘IMP’: mutant phenotype evidence used in manual
assertion (ECO:0000315)), or to infer evidence from
statements made in reviews (e.g., ‘TAS’: author state-
ment supported by traceable reference used in manual
assertion (ECO:000030)). In order to maximize the
value of the annotations to the research commu-
nity, selected research papers were annotated using
the full article annotation method. This approach
ensures that GO annotations are contributed for not
only the priority entities (Supplementary Tables 1 and
2), but also for any other protein, miR, or protein
complex described in those articles, thus increas-
ing the biocuration scope and reducing annotation
bias. Experimentally supported GO annotations asso-
ciated with rodent or other mammalian proteins,
miRs and complexes were transferred by biocura-
tors to human orthologues using the ECO code [69]
‘ISS’ (sequence similarity evidence used in manual
assertion; ECO:0000250), following established GO
Consortium guidelines [29, 30, 53, 62]. This biocura-
tion process was consistently applied for all annotated
entities.

Availability of GO annotations

The annotations contributed by this project to
the GO resource are attributed to ARUK-UCL and
included in the GO Consortium annotation files
[29, 30]. Consequently, our annotations are made
available through various http and ftp sites (e.g.,
http://geneontology.org/page/download-ontology
and ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/) and
the GO browsers QuickGO [57] and AmiGO
[56] and propagated to other major biological
databases, including NCBI Gene [70], Ensembl
[68], UniProt [65], miRBase [71], and RNA-
central [66]. The miR-target and protein-protein
interactions captured by our GO annotations
are included in the European Bioinformatics
Institute (EBI) GO Annotation (GOA) datasets,
respectively, in the EBI-GOA-miRNA [52] and
EBI-GOA-nonIntAct datasets available from the
PSICQUIC [72] web service (http://www.ebi.ac.uk/
Tools/webservices/psicquic/view/home.xhtml), the
QuickGO web service (http://www.ebi.ac.uk/Quick
GO/psicquic-rna/webservices/current/search/interac
tor/*), or from directly within Cytoscape [73], as
described previously [52, 53].

PANTHER functional GO term enrichment
analysis of genes differentially expressed in AD

The PANTHER version 14.1 Online Tool [39,
74] was used to perform functional enrichment re-
analyses on two transcriptomic datasets previously
analyzed by Avramopoulos et al., 2011 [43]. In the
Avramopoulos et al. study, RNA was extracted from
the superior temporal lobe of late onset AD and con-
trol brains. Two gene groups were identified within
the AD versus control dataset: one overexpressed in
AD (‘Higher is AD’, 505 genes), and one underex-
pressed in AD (‘Lower in AD’, 527 genes). UniProt
identifiers were used in the PANTHER re-analysis
of these datasets with the Fisher’s Exact test and the
Bonferroni correction for multiple testing and signif-
icance level of 0.05 applied. The human reference
proteome (released April 2018) was used as the ref-
erence set, with ontology and annotation GO files
(released 3 July 2019).

MiR-target molecular interaction networks
construction

Two miR-target molecular interaction networks
were constructed in Cytoscape 3.7.1 [73]. In the first
network the HGNC approved gene symbols [60], cor-
responding to the priority proteins (Supplementary
Table 1), were used as seeds and molecular interaction
data were imported from the EBI-GOA-miRNA file
[52] (accessed 1 July 2019); this network is referred
to as the ‘target-centered’ network. The second net-
work was created by using the RNAcentral identifiers
[66] of the prioritized miRs (Supplementary Table 2)
as seeds and importing molecular interaction data
from the EBI-GOA-miRNA file [52] (accessed 19
August 2019); this network is referred to as the ‘miR-
centered’ network. The ‘yFiles Organic Layout’ was
applied and adjusted manually.

Functional GO term enrichment analysis of
miR-target interaction networks

GO term enrichment analyses were performed
on the miR-target networks using the Cytoscape
plugins GOlorize [75] and BiNGO [38]. The selected
BiNGO settings included ‘Cluster from Network’,
‘Overrepresentation’, and ‘No Visualization’. The
Hypergeometric statistical test with the Benjamini
& Hochberg FDR correction for multiple testing
and a significance level of 0.05 were applied.
The GOlorize plugin [75] was used for visualiza-

http://geneontology.org/page/download-ontology
http://www.ebi.ac.uk/Tools/webservices/psicquic/view/home.xhtml
http://www.ebi.ac.uk/QuickGO/psicquic-rna/webservices/current/search/interactor/*
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tion of selected overrepresented categories after
correction. The human entities annotated to the
GO term ‘biological process’ or its descendants
were used as reference set. The Gene Ontology
file (go-basic.obo) (released 1 July 2019) was
downloaded from the GO Consortium website
(http://geneontology.org/page/download-ontology).
The gene association files for human proteins
(goa human.gaf), ncRNAs (goa human rna.gaf),
protein isoforms (goa human isoform.gaf), and com-
plexes (goa human complex.gaf) were downloaded
from the European Bioinformatics Institute ftp site
(ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/HUMAN/)
(released 17 July 2019) and merged into a single file
called ‘gene association.goa human’. No evidence
codes were discarded.

RESULTS

Gene Ontology annotation outcomes

Annotation priorities
Forty human microglial proteins relevant to AD

were identified and prioritized for annotation based
on the review by Simon et al. [55] and the per-
spective by Deczkowska et al. [54] (Supplementary
Table 1). This was followed by database and litera-
ture searches, which identified 66 human microRNAs
(miRs) that have been shown experimentally to reg-
ulate the expression of these 40 proteins, and they
were also prioritized for annotation (Supplementary
Table 2). Therefore, in total 106 human entities,
including proteins and miRs, were identified and pri-
oritized for GO annotation.

Increasing curation breadth through the full
article annotation approach

GO was used for annotation of 379 research articles
(Table 1), capturing the roles of these 40 microglial

Table 1
Number of published research articles annotated using GO as a

part of this project

Number of articles Number of articles
annotated All Human Human priority

entities* entities* entities*

Total 379 286 217
Describing proteins 269 201 126
Describing ncRNAs 171 130 108
Describing complexes 11 9 n/a

Data from QuickGO [57] (accessed 18 August 2019). *The term
‘entity’ is used to describe proteins, ncRNAs (including miRs) and
macromolecular protein-containing complexes.

priority proteins and the 66 miRs regulating their
expression (or their orthologues) as described in the
methods section. Importantly, the curation process
was based on the full article annotation approach;
consequently, the total number of annotated entities
is not limited to just the prioritized proteins and miRs,
but it also includes their isoforms and orthologues
as well as other entities described in the annotated
articles. Consequently, the total number of 341 anno-
tated human entities was over triple the number of
the 106 prioritized entities, whereas the total number
of human and non-human entities annotated was 494,
almost five times the number of the prioritized entities
(Table 2, section A). Hence, the full article annota-
tion approach allowed us to ensure that we capture
the breadth of the biology associated with the priori-
tized entities by annotating other proteins, miRs, and
macromolecular complexes implicated in the same
processes and pathways.

Systematic in-depth annotation of prioritized
entities

Based on the number of GO annotations and anno-
tated entities (Table 2, columns I, section A), it
is apparent that far more biological process (BP)
annotations were created (2,281, with an average
of > 4 BP terms per entity: 2,281/494) than anno-
tations using the two other GO aspects (452 using
molecular function (MF) terms and 349 cellular com-
ponent (CC) terms). For the prioritized entities, we
contributed an average of 12 annotations per entity
(1352/106), which is considerably higher than the
number of annotations we contributed for all entities
during this project, with an average of six annota-
tions per entity (3,084/494) (Table 2A, section A;
column III and column I, respectively). The major-
ity of annotations for prioritized entities were made
for proteins with an average of 20 annotations per
protein (839/42, Table 2, column III, section B).
Almost 600 of these were BP annotations (an aver-
age of 14 BP terms per protein: 597/42, Table 2,
column III, section D). Additionally, 101 MF and
141 CC GO terms were associated with the prior-
ity proteins (Table 2, column III, sections C and E,
respectively).

The greatest number of annotations per prioritized
miR was also in the BP category with just under six
GO terms per miR (384/65, Table 2, column III, sec-
tions B and D), again more than the average of nearly
5 BP GO terms per total annotated ncRNAs (738/154,
Table 2, column I, sections B and D). The average
number of MF annotations per miR is just under two

http://geneontology.org/page/download-ontology
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Table 2
Summary of the GO annotations resulting from this project. In the table, the rows are organized into sets: A) all GO annotations for all entity
types; B) all GO annotations separated into entity type (protein, ncRNA, complexes); C) molecular function (MF) GO annotations separated
into entity type; D) biological process (BP) GO annotations separated into entity type; E) cellular component (CC) GO annotations separated
into entity type. The columns are also grouped according to (I) totals for all entities; (II) totals for all human entities; (III) totals for human

prioritized entities

Number of: All entities (I) Human entities (II) Human priority entities (III) 
GO ID GO/ID GO/ 

totID 
GO ID GO/ID GO/ 

totID 
GO ID GO/ 

ID 
GO/ 
totID 

A GO 
annotations 

3084 494 6.24 6.24 2155 341 6.32 6.32 1352 106 12.64 12.64 

MF GO 
annotations 

452 246 1.84 0.91 370 185 2.00 1.09 226 91 2.48 2.11 

BP GO 
annotations 

2281 441 5.17 4.62 1626 302 5.38 4.77 981 106 9.17 9.17 

CC GO 
annotations 

349 154 2.27 0.71 259 109 2.38 0.76 145 33 4.39 1.36 

B GO 
annotations 
describing 
proteins 

2057
 

331
 

6.22
 

n/a
 

1458
 

216
 

6.75
 

n/a
 

839
 

42a 19.98
 

n/a
 

GO 
annotations 
describing 
ncRNAs 

969 154
 

6.29
 

n/a
 

743
 

111
 

6.69
 

n/a
 

513
 

65b

 
7.89

 
n/a

 

GO 
annotations 
describing 
complexes 

58
 

9 6.44
 

n/a
 

54
 

8 6.75
 

n/a
 

n/a
 

n/a
 

n/a
 

n/a
 

C MF GO 
annotations 
describing 
proteins 

237
 

119
 

1.99
 

0.72
 

195
 

90 2.17
 

0.90
 

101 29
 

3.48
 

2.40
 

MF GO 
annotations 
describing 
ncRNAs 

209
 

122
 

1.71
 

1.36
 

168 91
 

1.85
 

1.51
 

125
 

62
 

2.02
 

1.92
 

MF GO 
annotations 
describing 
complexes 

8
 

5 1.60
 

0.89
 

7
 

4
 

1.75
 

0.88
 

n/a
 

n/a n/a
 

n/a
 

D BP GO 
annotations 
describing 
proteins 

1499
 

286
 

5.24
 

4.53
 

1020
 

188
 

5.43
 

4.72
 

597
 

42a

 
14.21

 

BP GO 
annotations 
describing 
ncRNAs 

738
 

148
 

4.99
 

4.79
 

 565
 

108
 

5.23
 

5.09
 

384 65b
 

5.91
 

5.91
 

BP GO 
annotations 
describing 
complexes 

44 7
 

6.29
 

4.89
 

41
 

6
 

6.83
 

5.13
 

n/a
 

n/a
 

n/a
 

n/a
 

14.21



B. Kramarz et al. / Gene Ontology Analysis of Alzheimer’s disease data 1423

(Table 2, column III, sections B and C; 125/65), i.e.,
proportionately higher than for all annotated ncRNAs
(Table 2, column I, sections B and C; 209/154).

The amount of cellular location information cap-
tured for all annotated ncRNAs, as well as the
prioritized miRs, is low overall (Table 2, greater row
E). This was expected, since most experimental data
describing miRs involves reporter assays, or exper-
iments demonstrating changes in expression levels,
and not localization studies [76–79].

In summary, our focused annotation approach has
considerably enriched GO information content about
the roles of the prioritized entities, including proteins
as well as miRs. This result has been achieved despite
the fact that miRs have not been studied as broadly as
proteins, with proportionately less experimental data
published to date.

Association of prioritized entities with
neuroinflammatory processes

As a result of this project, 60 of the 106 prioritized
entities have been associated with a biological pro-
cess GO term relevant to neuroinflammation (Fig. 1A,
B), such as ‘glial cell activation’, ‘response to axon
injury’, or ‘cytokine production’, and/or their child
terms (Supplementary Table 3). Among these 60
prioritized entities, 31 were proteins and 29 were
miRs (data not shown); if a prioritized entity has not
been associated with a neuroinflammation-relevant
GO term, this indicates that no supporting pub-
lished experimental data had been identified at the
time of GO annotation. For the prioritized entities
this project has led to an increase in the number
of annotations to GO terms, such as ‘inflammatory
response’, ‘neuroinflammatory response’, ‘glial cell
activation’, ‘synapse pruning’, ‘response to axon
injury’, ‘ensheathment of neurons’, ‘cytokine produc-
tion’, ‘maintenance of permeability of blood-brain
barrier’, and/or their child terms, many of which
had not been associated with these GO terms before
(Fig. 1A). Among these the terms ‘neuroinflamma-
tory response’ and ‘glial cell activation’, shown in
Fig. 1C as descendants of ‘inflammatory response’,
had not existed in the ontology prior to this project.
However, GO terms describing processes involving
cytokines, synapses, migration, and proliferation of
glial cells, as well as ‘response to axon injury’ and
‘ensheathment of neurons’ had all been available for
annotation previously. The overall number of anno-
tations to the neuroinflammation-relevant GO terms
associated with the prioritized proteins or miRs by
ARUK-UCL was 247, which constituted 60% of all

annotations to these processes for the prioritized enti-
ties (Fig. 1B).

Impact of improved annotation on clinical data
analysis

Re-analyses of AD-associated genes
In order to demonstrate how our annotation

approach, focused on neuroinflammation in AD, can
contribute to a more informative analysis and inter-
pretation of disease expression data, a functional
GO analysis of previously published AD-relevant
datasets was undertaken. Avramopoulos et al. [43]
had identified two groups of genes in a transcrip-
tomic analysis of the superior temporal lobe, a brain
region usually greatly affected by the AD pathol-
ogy, of late onset AD and control brain samples:
one overexpressed in AD (‘Higher in AD’, Sup-
plementary Table 4A), and one underexpressed in
AD (‘Lower in AD’, Supplementary Table 4B),
relative to age-matched healthy controls [43]. A func-
tional enrichment of these datasets, by Avramopoulos
et al., had identified some highly AD-relevant
processes, for example, ‘synaptic transmission’.
However, numerous, less informative, high-level GO
terms, such as ‘mRNA transcription’, and ‘develop-
mental process’, were also identified as enriched in
these datasets (Table 1 in Avramopoulos et al. [43]),
suggesting a limited depth of annotation information
associated with the genes differentially expressed in
AD.

The previous analysis of the ‘Higher in AD’ and
‘Lower in AD’ datasets, by Avramopoulos et al.
[43], was undertaken using the functional enrich-
ment online analysis tool PANTHER version 6 [39,
74] with Fisher’s test and Bonferroni correction
for multiple testing. Therefore, our re-analysis used
the same tool and these same parameters, but with
more recent GO ontology and annotation data. Genes
‘Higher in AD’ were enriched (overrepresented) for
GO terms such as ‘gliogenesis’, ‘regulation of cell
migration’, ‘response to cytokine’, and ‘response
to stress’ (Table 3A and Supplementary Table 5A),
suggesting that there is an increase in neuroinflam-
matory processes in the analyzed AD cases. Other
GO terms identified in the ‘Higher in AD’ group
include the highly descriptive ‘regulation of neu-
ron projection development’ as well as the broader
GO term ‘nervous system development’, both of
which can potentially be indicative of attempted
regeneration processes occurring in AD brains. The
re-analysis also revealed enrichment of genes asso-
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Fig. 1. Association of prioritized entities with neuroinflammation-relevant GO terms. a) Number of prioritized entities associated with the
listed GO terms and their descendants, bars indicate total number of entities (1st bars), number of entities annotated by ARUK-UCL (2nd
bars) or other contributors (3rd bars). b) Number of annotations for the prioritized entities, contributed by ARUK-UCL or other groups,
categorized by entity type. c) A fragment of GO, representing the relationships among some of the terms selected for analyses shown in (a)
and (b). (Data from QuickGO: accessed 18 September 2019, filtered by prioritized entities, GO terms listed in Supplementary Table 3 and
their descendants, evidence used in manual assertion and contributor).

ciated with more general processes relevant to brain
function, for example, ‘establishment or maintenance
of cell polarity’ and ‘regulation of signal transduc-
tion’ (Supplementary Table 5A); overexpression of
genes associated with these ‘house-keeping’ roles in
AD brains suggests that these may be compensatory
mechanisms, triggered by AD-related stresses. Even
though these GO terms had existed in the ontology at
the time of the original analysis (data from QuickGO:

GO term Change Logs, accessed 7 November 2019),
they had not been identified by Avramopoulos et al.
[43], restricting data interpretation at the time.

This re-analysis of genes ‘Lower in AD’, i.e.,
having higher levels in healthy brains when com-
pared to AD brains, revealed they were enriched
(overrepresented) for GO terms relevant to mainte-
nance of normal neurological functions and processes
impaired in AD, such as ‘regulation of cation chan-
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Table 3
Selection of GO terms enriched in a re-analysis of an AD transcriptomic dataset. Selected GO terms identified by PANTHER enrichment
analysis of genes differentially expressed in AD. Two groups of genes, identified as ‘Higher in AD’ (A) and ‘Lower in AD’ (B) in Avramopou-
los et al., 2011 [43], were analyzed using the PANTHER overrepresentation Test [39, 74]. The full set of enriched GO terms is available in

Supplementary Table 5

A) Enrichment analysis of transcripts expressed at a higher level in AD
GO BP n (N = 20996) x (X = 487) Expected Fold Enrichment p

gliogenesis 219 19 5.08 3.74 2.06E02
regulation of neuron projection development 501 35 11.62 3.01 2.18E-04
regulation of cell migration 847 49 19.65 2.49 1.19E-04
nervous system development 2351 119 54.53 2.18 5.35E-12
response to cytokine 1114 54 25.84 2.09 6.71E-03
response to stress 3535 127 81.99 1.55 3.24E-03
B) Enrichment analysis of transcripts expressed at a lower level in AD
GO BP n (N = 20996) x (X = 497) Expected Fold Enrichment p
regulation of cation channel activity 180 19 4.26 4.46 1.81E-03
regulation of ion transmembrane transporter activity 263 22 6.23 3.53 8.17E-03
synaptic signaling 459 30 10.87 2.76 1.25E-02
behavior 576 34 13.63 2.49 2.59E-02
cellular component organization 5658 182 133.93 1.36 2.85E-02

The p-value was adjusted using the Bonferroni correction for multiple testing (significance level < 0.05); N, the total number of human
protein-coding genes associated with a GO BP term (background dataset); n, number of protein-coding genes in the background dataset
associated with a given GO ID; X, the total number of protein-coding genes in the query dataset; x, number of protein-coding genes in the
query dataset associated with a given GO ID; Expected, the number of genes in the query dataset expected to be associated with a given
GO term by chance; Fold Enrichment, the ratio of the obtained versus expected number of genes associated with a given GO term in the
analyzed group of genes.

Fig. 2. Target-centered miR-target molecular interaction network. This network describes interactions between miRs and the mRNAs
encoding AD-relevant microglial proteins. The network was constructed in Cytoscape [73] by seeding with 40 AD-relevant microglial gene
symbols (Supplementary Table 1) and importing molecular interaction data from the EBI-GOA-miR file (accessed 1 July 2019). The protein-
protein interactions (PPIs) edges were added to the network manually, based on data from another network seeded with the 17 AD-relevant
microglial proteins shown in this Figure 2 (Supplementary Figure 1, Supplementary Table 7). The colors of node fragments correspond to
GO terms (see key). Data associated with the enriched GO terms displayed in this figure is summarized in Table 4.
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Table 4
Selection of GO terms enriched in the Cytoscape BiNGO analysis of the target-centered molecular interaction network. The network, shown
in Fig. 2, was constructed in Cytoscape [73] by seeding with the 40 prioritized AD-relevant microglial genes (Supplementary Table 1) and
importing molecular interaction data from the EBI-GOA-miRNA file [52] (accessed 1 July 2019). All results of the BiNGO enrichment

analysis are provided in Supplementary Table 8

Gene Ontology term n (N = 52563) x (X = 77) Expected Fold Enrichment p

neuroinflammatory response 48 7 0.07 99.55 8.26E-12
regulation of neuroinflammatory response 44 11 0.06 170.66 5.57E-21
inflammatory response 570 9 0.83 10.78 9.33E-07
regulation of inflammatory response 407 28 0.60 46.96 1.22E-37
microglial cell activation 37 6 0.05 110.70 1.70E-10
regulation of microglial cell activation 21 5 0.03 162.53 1.02E-09
cytokine-mediated signaling pathway 875 11 1.28 8.58 3.82E-07
regulation of cytokine-mediated signaling pathway 181 12 0.27 45.26 9.10E-16
regulation of cytokine production 793 35 1.16 30.13 4.73E-41

Key: Gene Ontology (GO) term name; n, number of entities associated with a given GO ID in the whole reference set of 52563 human
entities annotated with GO (N); x, number of entities associated with a given GO ID in the analyzed network of a total number of 410 entities
(X); Expected, the number of genes in the query dataset expected to be associated with a given GO term by chance; Fold Enrichment, the
ratio of the obtained versus expected number of genes associated with a given GO term in the analyzed group of genes; p-value, corrected
p-value obtained using the Benjamini & Hochberg False Discovery Rate (FDR) correction (significance level chosen as 0.05).

nel activity’, ‘synaptic signaling’, and ‘behavior’
(Table 3B and Supplementary Table 5B). More gen-
eral GO terms, identified in this re-analysis and
relevant to AD biology, included ‘cellular component
organization’. Plausibly, impairments in these pro-
cesses would hinder any potential regenerative events
in inflamed AD brains. In comparison, the original
analysis had resulted in identification of the GO terms
‘synaptic transmission’ and ‘ion channel activity’ as
enriched in the ‘Lower in AD’ datasets [43], con-
firming that in 2011 neurological processes impaired
in AD had been annotated to a greater extent than
neuroinflammatory processes elevated in AD.

Network analysis and bioinformatics-based
prediction of neuroinflammatory genes

Two GO term enrichment analyses were performed
in Cytoscape 3.7.1 [73] on networks of the prioritized
human proteins and miRs, and their interacting part-
ners, in order to delineate more specific roles of these
entities in neuroinflammation.

Analysis of the target-centered miR-target
network

Firstly, we constructed a network of miR-
target associations centered around the prioritized
microglial protein-coding genes. We seeded the net-
work with the 40 priority genes (Supplementary
Table 1) and imported the associated miR-target
molecular interaction data into Cytoscape [73],
from the EBI-GOA-miRNA file [52] containing

experimentally-validated miR-target interaction data
contributed by the British Heart Foundation (BHF)-
UCL [80] and ARUK-UCL GO annotation initiatives
[52, 81]. The resulting network included a total of
77 nodes, of which only 17 represented mRNA tran-
scripts of the protein-coding genes and 60 represented
miRs targeting these mRNAs (Fig. 2, Supplemen-
tary Table 6). The low number of mRNAs included
in the network reflects the fact that, at the time of
GO annotation, we did not find any published exper-
imental evidence demonstrating miR-mediated gene
silencing of the remaining 23 protein-coding genes.

The target-centered miR-target network contained
75 edges representing associations between miRs
and the targets of their regulation. As this network
only included miR-target interactions, four additional
edges, corresponding to protein-protein interactions
(PPIs) were manually added, which increased the
association between the 5 isolated sub-networks. In
order to identify these PPIs, we constructed a network
of PPIs only (Supplementary Fig. 1, Supplementary
Table 7) by using the 17 protein-coding genes from
Fig. 2, as seed nodes, and importing PPI data meeting
the International Molecular Exchange standard [82].

GO term enrichment analysis, performed in
Cytoscape [73], using the BiNGO [38] and GOlorize
[75] plugins (Supplementary Table 8, Table 4, and
Fig. 2), demonstrates that among the 60 miRs,
regulating the expression of the prioritized protein-
coding genes, 17 are overrepresented in ‘regulation
of inflammatory response’ (Fig. 2). Of those 17, four
are enriched specifically in ‘regulation of neuroin-
flammatory response’ and one, miR-155-5p, was also
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Table 5
Selection of GO terms enriched in the Cytoscape BiNGO analysis of the miR-centered molecular interaction network. The network, shown
in Supplementary Figure 2, was constructed in Cytoscape [73] by seeding with the 66 miRs prioritized for annotation (Supplementary Table
2) and importing molecular interaction data from the EBI-GOA-miRNA file [52] (accessed 19 August 2019). All results of the BiNGO

enrichment analysis are provided in Supplementary Table 10

Gene Ontology term n (N = 52563) x (X = 410) Expected Fold enrichment p

neuroinflammatory response 48 14 0.37 37.39 1.12E-17
regulation of neuroinflammatory response 44 13 0.34 37.88 1.53E-16
inflammatory response 570 49 4.45 11.02 4.09E-34
regulation of inflammatory response 407 60 3.17 18.90 7.87E-56
microglial cell activation 37 10 0.29 34.65 1.81E-12
regulation of microglial cell activation 21 6 0.16 36.63 5.81E-08
cytokine-mediated signaling pathway 53 6 0.41 14.51 1.40E-05
regulation of cytokine-mediated signaling pathway 181 28 1.41 19.83 1.48E-26
regulation of cytokine production 793 84 6.19 13.58 7.80E-67

Key: Gene Ontology (GO) term name; n, number of entities associated with a given GO ID in the whole reference set of 52563 human
entities annotated with GO (N); x, number of entities associated with a given GO ID in the analyzed network of a total number of 410 entities
(X); Expected, the number of genes in the query dataset expected to be associated with a given GO term by chance; Fold Enrichment, the
ratio of the obtained versus expected number of genes associated with a given GO term in the analyzed group of genes; p-value, corrected
p-value obtained using the Benjamini & Hochberg False Discovery Rate (FDR) correction (significance level chosen as 0.05).

Fig. 3. MiR-centered miR-target molecular interaction sub-network constructed by selecting four miRs enriched for ‘regulation of neuro-
inflammatory response’ and their direct targets. The sub-network was constructed in Cytoscape [73]. BiNGO [38] results (Supplementary
Figure 2 and Supplementary Table 10) were used to identify relevant nodes and the first neighbors of the selected nodes. The four hub nodes
represent miRs. The hub nodes are linked to the target nodes by the dashed edges, which represent experimentally demonstrated associations
between miRs and their targets shown as nodes labelled with the HGNC-approved gene symbols. The purple cap at the end of each edge
faces the target of miR silencing. The BiNGO enrichment analysis had been performed on the original large network of 415 nodes, shown in
Supplementary Figure 2 and Supplementary Table 9. Key BiNGO analysis results are shown Table 5; all of the analysis results are provided
in Supplementary Table 10. The background colors of the nodes’ fragments correspond to GO terms shown on the same background colors
in the ‘Key to background colors’ text box.
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in a group of entities overrepresented in ‘regulation
of microglial cell activation’.

In context of protein (mRNA target) nodes, the
GO term enrichment analysis revealed that seven of
the 17 prioritized proteins (CX3CL1, GRN, IFNG,
IL6, TNF, TREM2, TYROBP) were associated with
the GO term ‘microglial cell activation’ or one
of its regulation terms (Fig. 2). Furthermore, addi-
tional two (IL1B, MMP9) and four (CD47, CSF1 R,
LPL, SIRPA) proteins were associated with the more
general, but related, parent (or regulatory parent)
terms ‘neuroinflammatory response’ and ‘inflamma-
tory response’, respectively.

Other GO terms, identified in the enrichment
analysis and highlighted in Fig. 2, represent
‘cytokine-mediated signaling pathway’ and its reg-
ulation and also ‘regulation of cytokine production’.
Fourteen of the protein-coding genes and 27 of the
sixty miRs in the network are enriched for at least
one of these cytokine-related GO terms (Fig. 2).

Several highly evolutionarily conserved miRs are
encoded as polycistronic clusters containing paralo-
gous genes [83]. We hypothesized that some miRs in
the miR-target network, involved in silencing of the
same gene, may indeed be encoded by the same poly-
cistron. Interestingly, the gene encoding the SIRPA
protein is silenced by two miRs from the hsa-miR-
17∼92 cluster, hsa-miR-17-5p, and hsa-miR-20a-5p,
which are also paralogues of each other [83]. More-
over, hsa-miR-17-5p regulates the expression of TNF,
which is also regulated by one more member of
the hsa-miR-17∼92 cluster, hsa-miR-19a-3p [83].
In agreement with previous suggestions [83], results
presented in Fig. 2 support the hypothesis that miRs
encoded on one cluster cooperate with each other to
regulate the same downstream processes.

While, several of the miRs in this network have
not yet been associated with the highlighted AD-
relevant inflammatory processes, this is likely due
to either a lack of experimental data supporting their
role, or a need for further curation of these miRs.
A good example of this is the hub miR node hsa-
miR-29b-3p, which has not been enriched in any
of the highlighted processes (grey triangle node in
Fig. 2). This miR has been shown to regulate cell
migration and differentiation [84] and regulates the
expression of three proteins (CX3CL1, GRN, IFNG)
overrepresented in ‘microglial cell activation’ and
‘neuroinflammatory response’ (of which two are also
enriched in cytokine-relevant processes), as well as
one protein (LPL) overrepresented in ‘regulation of
inflammatory response’ and ‘regulation of cytokine

production’. It could be inferred from this network
that hsa-miR-29b-3p is also likely to be involved
in regulating these neuroinflammation-relevant pro-
cesses; however, relevant GO terms have not been
associated with hsa-miR-29b-3p, because we had not
found published experimental evidence to support the
direct role of hsa-miR-29b-3p in these neuroinflam-
matory processes, at the time of GO annotation.

Analysis of the miR-centered miR-target network
A network of miR-target associations centered

around the 66 human miRs, prioritized for annotation
as a part of this project was also constructed (Sup-
plementary Table 9). The network was seeded with
the prioritized miRs and miR-target interaction data
from the EBI-GOA-miRNA file [52] was imported
into Cytoscape [73]. This resulted in a network of
415 nodes and 524 edges (Supplementary Figure 2).

A GO term enrichment analysis, performed in
Cytoscape [73], using the BiNGO [38] and GOlorize
[75] plugins, reveals that 14 entities were over-
represented for the ‘neuroinflammatory response’
and 13 for its regulation GO term (Supplementary
Table 10, Supplementary Figure 2, Table 5). Four
of the entities enriched for ‘regulation of neuroin-
flammatory response’ were miRs (hsa-miR-26a-5p,
hsa-miR-155-5p, hsa-miR-181b-5p, hsa-miR-195-
5p). A sub-network of these miRs was extracted from
the complete network in order to identify the targets of
their regulation with putative new roles in (regulation
of) neuroinflammatory processes. The sub-network
shows that the four miRs collectively regulate the
expression of sixty target entities (Fig. 3). Twenty
of the regulation targets have not yet been associ-
ated with a neuroinflammatory process. This may be
either because these entities do not in fact have any
roles in neuroinflammation, or, if they are involved
in these processes, then there has not been any pub-
lished experimental evidence available to support
these roles, or, even if published information is avail-
able, it has not been annotated yet. Consequently,
this group of protein-coding genes, silenced by miRs
implicated in regulating neuroinflammation, might
include candidates with novel putative roles in neu-
roinflammatory response.

This evaluation implies that a GO term enrichment
network analysis can be a helpful tool for identifying
candidate entities for future functional studies and/or
knowledge curation initiatives in a highly targeted
manner. Additionally, our re-analyses demonstrate
how the GO resource has been improved in the area
of neuroinflammation and now allows for a better
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interpretation and understanding of neurobiological
studies.

DISCUSSION

The main finding of the present study is that
recent improvements to the GO resource, focusing on
aspects relevant to neuroinflammation, have allowed
for a more informative re-analysis and interpreta-
tion of a decade-old dataset of genes differentially
expressed in AD [43]. Additionally, we demonstrate
that a GO term enrichment analysis performed on a
network of miR-target interactions is a useful tool for
identification and prioritization of biological entities
with probable novel roles in neuroinflammation, thus,
informing future studies.

The first goal of our GO annotation project was to
identify microglial proteins with roles in AD [54, 55]
(Supplementary Table 1), which subsequently paved
the way for identification of miRs involved in their
silencing (Supplementary Table 2). Protein annota-
tion using GO began over 20 years ago [29, 30]
resulting in a breadth of information having already
being captured for the microglial proteins, which
we prioritized for this project. Consequently, our
annotation objective was to associate more descrip-
tive GO terms with these proteins and to capture
experimental support for their fundamental molec-
ular activities, e.g., whether a protein was a kinase,
or a transmembrane transporter, etc., as well as their
roles specifically in neuroinflammatory processes, for
instance, ‘regulation of microglial cell activation’.
It was also important for this project to curate the
role of these proteins in other processes relevant to
AD, such as ‘memory or learning’, ‘modulation of
age-related behavioral decline’, and ‘regulation of
synaptic plasticity’.

On the other hand, since scientific interest in ncR-
NAs is more recent, and so fewer articles describing
their roles in cellular events have been published
to date, our second objective was to annotate every
article we could find, which described an interac-
tion between a miR and the mRNA transcript of a
protein-coding gene from the priority list (Supple-
mentary Table 1). A total of 379 articles describing
the prioritized proteins and miRs were thoroughly
curated using the full article annotation approach,
thus increasing the breadth of the captured biological
knowledge and reducing annotation bias (Table 1).
This led to an increase in the number of GO terms
associated with the prioritized entities and other pro-

teins, ncRNAs and molecular complexes, with a total
of 3,000 GO terms associated with almost 500 enti-
ties. We additionally achieved a greater specificity of
annotations for the prioritized entities, as indicated
by double the number of annotations per prioritized
entity in comparison to any other entity annotated as
a part of this project (Table 2: >12 annotations per pri-
oritized entity versus > 6 annotations per any entity).
Moreover, through our process-focused annotation
approach we substantially increased the number of
entities associated with neuroinflammatory GO terms
(Supplementary Table 3); now over a third of all
GO annotations relevant to neuroinflammation will
have resulted from this project. Consequently, 60%
of neuroinflammation-relevant annotations associ-
ated with the 106 prioritized entities were created by
this project (Fig. 1).

Our next aim was to demonstrate how our con-
tribution to the neuroinflammatory process branch
of GO has led to a more meaningful interpretation
of AD gene expression data. A previously pub-
lished transcriptomic study, which had identified two
groups of genes: ‘Higher in AD’ and ‘Lower in
AD’ (Supplementary Table 4) and had analyzed the
data using PANTHER [39, 43] was selected for re-
analysis. The GO term enrichment analysis of these
datasets was repeated using the same tool and sta-
tistical parameters in order to faithfully reproduce
their research method, but with the current GO data
version. This led to a substantially more informa-
tive analysis in comparison to findings published
nearly a decade ago [43]. For instance, we found
that the genes ‘Higher in AD’ were associated with
‘gliogenesis’, ‘regulation of neuron projection devel-
opment’, or ‘response to cytokine’ (Table 3A and
Supplementary Table 5A), indicating an increase
in neuroinflammation in the AD cases. These GO
terms had not been identified in the original analy-
sis [43], even though they had existed in GO at the
time (data from QuickGO: GO term Change Logs,
accessed 7 November 2019). On the other hand, genes
‘Lower in AD’ were enriched for GO terms, such as
‘regulation of ion transmembrane transporter activ-
ity’, or ‘behavior’ (Table 3B and Supplementary
Table 5B), i.e., key processes perturbed in AD.
Thus, this re-analysis demonstrates how continuous
enhancements of the GO resource, including our most
recent contributions, have improved the applicability
of GO for analyses of AD data.

Another objective of this study was to show
the applicability of performing functional GO term
enrichment analyses of miR-target interaction net-
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works for identification of entities with putative novel
roles. Previous studies revealed a number of miRs
implicated in dementia (reviewed in [15, 85, 86]). Our
analyses revealed that at least 66 miRs (Fig. 2) reg-
ulate mRNAs encoding the 40 AD-relevant priority
proteins involved in inflammatory and neuroinflam-
matory processes. However, only 17 of these 66 miRs
have to date been associated with GO terms describ-
ing the regulation of neuroinflammatory processes.
Given our thorough and systematic approach to miR
annotation, this allows us to infer that these miRs
have not yet been studied in context of neuroinflam-
mation, or even systemic inflammation, yet they are
likely implicated in these processes. This hypothesis
refers especially to hsa-miR-29b-3p, which regu-
lates the expression of three proteins involved in
‘microglial cell activation’ (CX3CL1, GRN, IFNG;
Fig. 2). Hence, this investigation demonstrates how
functional analyses of molecular interaction networks
can be used to reveal knowledge gaps, thus allowing
for a better targeted design of future functional exper-
iments and/or prioritization of biological entities for
data curation initiatives.

The current project, focusing on biocuration of
microglial proteins involved in AD and miRs regulat-
ing their expression, is a continuation of our previous
work on GO annotation of proteins interacting with
amyloid-� and tau [44]. It must be emphasized that
GO is a controlled biological vocabulary, or ontol-
ogy, which describes the normal physiological roles
of biological entities [29, 30], such as proteins or
ncRNAs. Therefore, similarly to a previous project
[87], we have been capturing normal roles of entities
implicated in AD, which complements other collab-
orative initiatives aiming to semantically describe
disease phenotypes and processes occurring during
AD [88–91]. The advantage of GO is that it is
a well-established, regularly updated, and quality-
controlled ontology [29, 30], imported by a variety
of tools [35–39, 92], which has been used for anal-
yses of data across a wide range of biomedical
fields [43, 62, 93–95], including in clinical practice
[96].

In conclusion, through our focused and systematic
full article annotation approach, we have contributed
a breadth of new knowledge about neuroinflamma-
tion and related biological aspects to the GO resource
by capturing 3,084 new annotations for 494 entities,
i.e., on average six new annotations per entity. This
included a total of 1,352 annotations for 40 prior-
itized microglial proteins implicated in AD and 66
miRs regulating their expression, yielding an aver-

age of twelve annotations per prioritized entity. All
of the GO data is freely available and can be down-
loaded from the GO browsers, QuickGO [57, 97], or
AmiGO [56].

We subsequently demonstrated how our contribu-
tions to the GO resource have rendered it a more
helpful tool for meaningful interpretation of AD
datasets by re-analyzing gene expression data pub-
lished a decade ago, using the publicly available
PANTHER tool [39, 74], which had been used in the
original study [43].

Finally, our GO term enrichment analysis of a
network of miR-target interactions, validated the
applicability of the GO resource for identification of
potential novel roles of these biological entities, using
the freely available Cytoscape tool [73] with BiNGO
[38] and GOlorize [75] plugins.

Collectively, our previous, current and future
biocuration activities, concentrated on GO annotation
of normal biological processes and entities perturbed
in AD, will help to improve the understanding of
molecular bases of this disease, thus providing a more
solid foundation for development of diagnostic tools
and treatments.
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