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Inflammation is an important biological response to tissue damage caused by injury, with a
crucial role in initiating and controlling the healing process. However, dysregulation of the
process can also be a major contributor to tissue damage. Related to this, although
mitochondria are typically thought of in terms of energy production, it has recently become
clear that these important organelles also orchestrate the inflammatory response via
multiple mechanisms. Dysregulated inflammation is a well-recognised problem in skeletal
joint diseases, such as rheumatoid arthritis. Interestingly osteoarthritis (OA), despite
traditionally being known as a ‘non-inflammatory arthritis’, now appears to involve an
element of chronic inflammation. OA is considered an umbrella term for a family of
diseases stemming from a range of aetiologies (age, obesity etc.), but all with a common
presentation. One particular OA sub-set called Post-Traumatic OA (PTOA) results from
acute mechanical injury to the joint. Whether the initial mechanical tissue damage, or the
subsequent inflammatory response drives disease, is currently unclear. In the former case;
mechanobiological properties of cells/tissues in the joint are a crucial consideration. Many
such cell-types have been shown to be exquisitely sensitive to their mechanical
environment, which can alter their mitochondrial and cellular function. For example, in
bone and cartilage cells fluid-flow induced shear stresses can modulate cytoskeletal
dynamics and gene expression profiles. More recently, immune cells were shown to be
highly sensitive to hydrostatic pressure. In each of these cases mitochondria were central
to these responses. In terms of acute inflammation, mitochondria may have a pivotal role
in linking joint tissue injury with chronic disease. These processes could involve the
immune cells recruited to the joint, native/resident joint cells that have been damaged, or
both. Taken together, these observations suggest that mitochondria are likely to play an
important role in linking acute joint tissue injury, inflammation, and long-term chronic joint
degeneration - and that the process involves mechanobiological factors. In this review, we
will explore the links between mechanobiology, mitochondrial function, inflammation/
tissue-damage in joint injury and disease. We will also explore some emerging
mitochondrial therapeutics and their potential for application in PTOA.
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INTRODUCTION

Osteoarthritis (OA) is the most commonly occurring form of joint
disease worldwide, affecting approximately 3% of the global
population (1). The primary hallmark of OA is the degeneration
of articular cartilage, but dysregulation in other joint tissues such
as subchondral bone and synovium are also significant factors (2).
Joint degeneration results in debilitating stiffness and pain, with
major societal and economic implications. Despite the widespread
prevalence of OA, and its significant consequences, disease
modifying treatments are lacking. Current treatment options are
confined to either conservative (physical therapy, exercise, or pain
management) or surgical (joint replacement) approaches (3). OA
is often associated with aging, but other risk factors such as age,
obesity and steroid use exist (4). In addition, acute injury that
involves damage of the primary joint tissues (such as the anterior
cruciate ligament rupture in the knee), is also a well-established
risk factor for joint degeneration – even in relatively young
cohorts. The version of disease which develops in this scenario
is called Post-traumatic OA (PTOA). PTOA makes up
approximately 12% of the overall disease burden of OA and this
proportion is set to increase due to increased intensity of exercise/
activity being taken up by ever younger age-groups (5). The initial
inflammatory response to the injury, driven by a host of molecular
and cellular mechanisms, are likely to “set the course” of
subsequent disease progression (6). However precisely how the
Frontiers in Immunology | www.frontiersin.org 2
inflammatory response drive resident joint cells into a state of
chronic dysfunction is unknown. Interestingly, recent advances in
the field suggest a role for altered mitochondrial function as part of
the inflammatory response to injury (7), which may be linked to
subsequent chronic degeneration. In this review, we will
specifically address the links between mitochondrial function,
inflammation, and joint disease (Figure 1). We will also explore
recent advances in mechanobiology and how this may relate
to PTOA.
JOINT CELLS AND IMMUNE CELLS ARE
INVOLVED IN PTOA DEVELOPMENT

Although many cell types and tissues exist within the joint, it is
cartilage and its degeneration which is the central focus of OA
(2). Chondrocytes which are the primary resident cells in
articular cartilage, are unique in that they exist in an aneural,
alymphatic and avascular microenvironment (8). The cartilage
extracellular matrix (ECM) is mostly comprised of collagen and
proteoglycans (as well as water) (9) all of which are produced by
chondrocytes under normal healthy circumstances,. However
post-injury, chondrocytes begin to produce enzymes (such as
metalloproteases (MMP) and aggrecanases) which are harmful
to the ECM (10). This process occurs via activation of various
pathways such as NF-kB and MAP kinases and is also linked to
A B 

C

FIGURE 1 | Schematic of PTOA progression illustrating potential mitochondrial involvement in injury, inflammation, and disease. (A) Acute injury, such as ACL
rupture, results in joint swelling and infiltration of immune cells. (B) Crosstalk between immune cells, chondrocytes and subchondral bone cells occurs involving
DAMPS, PRRs, mechanotransduction, NLRP3 activation, cell-death/pyroptosis, mitochondrial dysfunction, cytokine release and ROS production from immune cells
generating a feed-forward loop to drive chronic inflammation, matrix degradation and subchondral bone dysfunction (C) Chronic development of PTOA, long-term
low-grade inflammation, bone marrow lesions and cartilage degeneration.
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increased production of Reactive Oxygen Species (ROS),
originating from mitochondria (11, 12). These degradative
proteases gradually disrupt the collagen network, promoting a
loss of proteoglycans and drive degradative changes in the matrix
which in turn feeds back to affect chondrocyte health and
function (13). Alongside these disruptive changes, the
production of collagens and aggrecans, which are required for
health homeostasis, are dramatically reduced (14, 15). This
switch, whereby chondrocytes reduce production of beneficial
ECM proteins, and increase production of harmful enzymes, is
thought to involve altered mitochondrial function (16). Injury
also has the effect of increasing crosstalk between cartilage and
surrounding joint tissues such as subchondral bone and the
synovial membrane (17). The latter of which is the central source
of acute inflammatory factors as it becomes quickly infiltrated by
activated immune cells in response to joint injury (18). Whether
immune cells are the initiator of the degenerative switch within
the damaged joint or an additional contributor to disease, is not
entirely known. Nonetheless it is becoming increasingly clear
that immune cells are central to PTOA development. At the
cellular level, within the damaged joint, synovial macrophages,
fibroblasts and infiltrating monocytes, and T-cells, B-cells,
natural killer cells and dendritic cells are all involved in
responding to injury and driving local inflammation (19, 20).
It now appears likely that crosstalk also occurs between these
immune cells and chondrocytes/subchondral bone populations.
While the nature of this relationship is unclear it is well
established that mitochondrial function governs many aspects
of immune function and may play a role in this situation (21, 22).
This is especially well documented in macrophages, in which
mitochondrial dynamics and function regulate cellular
trafficking, cytokine production, phagocytosis and wound
repair. While these processes have been well documented in
multiple macrophage subtypes, it is yet unclear if they hold true
in every population of macrophage that may be involved in
PTOA development, such as bone marrow macrophages, osteal
macrophages and macrophage like synoviocytes. However, it is
conceivable that the mitochondrial changes produce similar
effects in these cells and that changes in mitochondrial
function influence and drive the development of PTOA after
injury. Thus, understanding the details of events that occurs
between immune and joint cell-types, in the aftermath of injury,
and in particular the role of mitochondria will be crucial in
developing new treatments to prevent disease progression.
JOINT INJURY, INFLAMMATION AND
MECHANOBIOLOGY HAVE A ROLE IN
DEVELOPMENT OF PTOA

Originally, the process of inflammation was not deemed to be a
central factor in the aetiology of OA. Indeed historically it has
been known as ‘non-inflammatory OA’, especially when
compared to highly inflammatory versions of arthritis such as
rheumatoid, psoriatic, and juvenile arthritis. However, it is now
established that the persistence of a dysregulated inflammatory
Frontiers in Immunology | www.frontiersin.org 3
response does impact on PTOA (18). Intriguingly, mitochondrial
activities have also recently been shown to be significantly
modulated by these inflammatory stimuli (23), as well as by
other factors such as mechanical stimulus. Therefore,
understanding mitochondrial function (including morphology/
metabolism) within joint cells in response to injury, may provide
new insights in terms of the pathology of PTOA and
therapeutic development.

Despite lacking an underlying mechanism to describe the link
between mechanical injury and inflammation, it is clear that
mechanical joint damage causes migration of immune cells from
the circulation through the synovial membrane and into the
synovial fluid (19, 20). Injury also causes a certain proportion of
cell death in the region. This cell death results in the production
of damage associated molecular patterns (DAMPs), which are
then detected by Toll-Like Receptor (TLR) proteins on cell
surfaces (24). These further promote inflammatory cascades
and cell and fluid infiltration and thus a damaging feed-back
loop is established. One central mechanism by which DAMPs
have been shown to promote inflammation in the joint is via
activation of the NLRP3 inflammasome in macrophages and
subsequent production of IL-1b (25). This mechanism will be
discussed in detail below, specifically in the context of
joint injury.
IL-1Β IS CENTRAL TO TISSUE DAMAGE,
INFLAMMATION AND MITOCHONDRIAL
RESPONSES TO INJURY

IL-1b is a highly pro-inflammatory cytokine that is involved in a
wide variety of disease states and is also increased in cases of OA
(26). Specifically, in this scenario, IL-1b is capable of shifting
chondrocytes to a catabolic state (27) thus providing a direct link
between joint injury, immune cell mitochondria and cartilage
degeneration. The specific details of how chondrocytes respond to
IL-1b have been studied extensively in vitro (27, 28), but
importantly it has also been shown to be present in significant
quantities in synovial fluid immediately after injury (6) (along with
some of its important precursors, such as NLRP3 (29) and other
DAMPs [Basic Calcium Phosphate (BSU) (30), monosodium
urate (MSU) (31) and ATP (32)]. Intriguingly, IL-1b levels
remain elevated for months post-injury (18, 33). Thus, this is
likely to be a primary mediator in the pathological process that
begins with joint injury and leads to disease. An interesting
supporting example of this stems from the large Canakinumab
Anti-Inflammatory Thrombosis Outcomes Study (CANTOS),
which involved >10,000 patients. CANTOS was a randomized,
double-blinded, placebo-controlled trial that investigated the use
of canakinumab, a monoclonal antibody targeting IL-1b, on high-
risk patients with established atherosclerotic disease who had
survived a myocardial infarction (MI) (34). Post-hoc
retrospective analyses of this cohort, found that canakinumab
treatment was associated with reduced rates of joint replacement
as well as OA symptoms. Regulation of IL-1b occurs at both the
transcriptional and post-translational levels – and both of these
September 2021 | Volume 12 | Article 695257
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processes have been shown to be mediated by mitochondria which
we will detail further below.

Since this cytokine plays such a central role in the response to
injury, it seems reasonable to consider it as a potential target for
direct OA prevention – following the encouraging data that
emerged from the CANTOS trial (34). In fact, treatment
strategies that directly target IL-1b and/or its cognate receptor
(IL-1R) have been tested (26). However, somewhat surprisingly,
these efforts have achieved only limited success. One potential
reason for this is that targeting any aspect of the IL-1b pathway,
once it has been activated, may be a case of ‘too little, too late’. In
order for IL-1b to be released from cells like macrophages it must
first be cleaved by an intracellular complex called the
inflammasome (25). The inflammasome is a multi-protein
complex that responds to both pathogenic micro-organisms
and, of direct relevance here, DAMPs which are released
within the joint after injury (25). The inflammasome is thus an
obligate precursor step to IL-1b activation and most importantly
to its release. Targeting inflammasome activation and thus the
release of IL-1b may prove to be a more promising therapeutic
strategy than targeting released IL-1b in the joint which may
already have exerted its catabolic effect on chondrocytes. There
are multiple inflammasomes that respond to a host of different
signals. However, one in particular called NLRP3 is the most
likely candidate for involvement in joint inflammation and
responses to DAMP signalling. The NLPR3 inflammasome is
composed of (1) a receptor protein called NLRP3, (2) an adaptor
molecule called ASC, and (3) Caspase 1 (25). Once NLRP3 senses
an activating signal, it oligomerises with ASC and Caspase-1.
This activates Caspase-1 allowing it to cleave IL-1b into its active
form. This entire process has been shown to be under
mitochondrial control. Specifically, high mitochondrial
membrane potential (35), mitochondrial ROS (36) and
mtDNA (37) are all involved in regulating inflammasome
activation. Of equal importance, is the fact that inflammasome
activation is also closely linked to the process of pyroptosis, a
specific form of inflammatory cell-death - also regulated by
mitochondria (38). Pyroptosis also ultimately results in IL-1b
release, as well as other inflammatory factors and DAMPs that
could potentiate the inflammatory response and drive cartilage
degeneration further.
MULTIPLE JOINT TISSUES ARE
INVOLVED IN INFLAMMATION
AFTER INJURY

The source(s) of NLRP3 in the injured joint have not been
explicitly identified; however the synovial tissues are an
extremely promising candidate - since they have a central role
in other examples of joint inflammation. Synoviocytes are the
resident cell types of this tissue, (with two sub-types: fibroblasts
and ‘Macrophage Like Synoviocytes [MLS]’) and both have
been shown to produce high levels of NLRP3 in culture
conditions (29, 39). Interestingly, a very recent study has
shown that chondrocytes in vitro are also capable of expressing
Frontiers in Immunology | www.frontiersin.org 4
inflammasome components and can undergo NLRP3 activation,
pyroptosis and IL-1b release when stimulated with LPS and ATP
in vitro (40). While TLRs are known to be present in
chondrocytes, and their expression to be altered in OA (41),
the presence of chondrocyte specific inflammasomes is a recent
and novel development. These interesting findings must still be
balanced against other inflammatory pathways, activated by
TNFa for example, which do not act through TLRs, but still
increase MMP activity, suggesting that IL-1bmay not be the only
driver of OA progression. It has also been proposed that even in
the presence of NLRP3, ASC and Caspase 1 in chondrocytes, OA
cartilage is unable to produce active IL-1b (42). However, these
studies used isolated cartilage explant models which lack
externally infiltrating immune cells, which are likely to be
central to IL-1b release and, thus NLRP3 activity.

Subchondral bone is also known to be involved in the early
post-injury phase, evident by the presence of Bone Marrow
Lesions (BMLs) in most cases of acute joint injury (17).
However, NLRP3 activity has yet to be identified in native
bone cells in the osteoblast lineage. Intriguingly however,
hydroxyapatite, which is the primary inorganic component of
bone tissue, is the predominant form of BCP crystal found in OA
joints (43, 44). It is possible that following injury, hydroxyapatite
is indirectly released into the joint, following increased
subchondral remodelling, (which has been also shown to occur
early after injury) or in relation to osteophytes which form later
in the disease process. Hydroxyapatite drives NLRP3 activation
in macrophages in vitro and in vivo through potassium efflux and
ROS dependant mechanisms (45). Direct delivery of BCP crystals
to mouse knees was shown to cause synovial macrophage
infiltration, chondrocyte death, synovitis, and cartilage
degeneration (46, 47). However, this study concluded that this
mechanism was NLRP3 and IL-1 independent. A similar study
showed that BCP crystals also impact on macrophage
metabolism, creating a shift from oxidative phosphorylation to
a glycolytic phenotype, and promoting the expression of the
highly pro-inflammatory transcription factor HIF-1a48). Thus
subchondral bone and its release of hydroxyapatite may be a
novel target tissue for indirect modulation of NLRP3 function
and macrophage metabolism.

Taken together, these findings suggest that NLRP3 activation,
which is tightly regulated by mitochondrial activities, may have
an important role in damage responses of multiple joint tissues.
Whether there is one critical cellular source leading to NLRP3
activation, or an aggregated combination of many, has yet to be
determined. Nonetheless NLRP3, as an obligate gate-keeper of
IL-1b activation, potentially in multiple joint tissues, is a prime
target in the search for novel therapeutics to limit PTOA.
MODULATING MITOCHONDRIAL
RESPONSES TO INJURY AS A NEW
AVENUE FOR PTOA PREVENTION

While the specific aspects of mitochondrial function that relate to
NLRP3 and IL-1b production in the joint remain poorly
September 2021 | Volume 12 | Article 695257

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Early et al. Mitochondria in Joint Diseases
understood, there are some clear contenders for central
involvement. For example, mitochondria-derived ROS, which
is the predominant source of ROS in cells, is involved in multiple
pathologies as well as in the process of ageing (49, 50). A strategy
of targeting ROS activity in infiltrating immune, and/or joint,
cells could lead to alternative ways to limit catabolic events in the
joint post-injury. For example promotion of natural ROS
inhibitors via antioxidants, falls into this category. Immediately
following joint injury and/or cartilage damage, alterations in
mitochondrial activity, swelling, polarisation and ROS
production occur in chondrocytes (51). The normally hypoxic
cartilage microenvironment is quickly altered and chondrocytes
become exposed to increased levels of oxygen as well as a variety
of other chemical species via neovascularisation of subchondral
bone and altered synovial activities (52). NRF2 is a master
antioxidant factor, which plays an important role in oxidative
stress regulation. NRF2 can limit NLRP3 inflammasome activity
in macrophages (53) and chondrocytes (40) and thus ultimately
inhibit IL-1b activity. NRF2 has also been found to be
upregulated in OA patient samples and surgical OA rodent
models, suggesting it may have a role in the natural protective
response to injury (29).

In addition to the local inflammatory state within the joint, an
interesting study showed that the overall inflammatory state of
an organism can also affect PTOA development. Priming of mice
with lipopolysaccharide (LPS), a major component of bacteria, 5
days prior to joint injury was found to exacerbate the severity of
PTOA resulting from injury (53). Subsequent RNA-seq analyses
highlighted the same set of genes, that was previously found to be
elevated in synovial macrophages from rheumatoid arthritis
patients. This suggests the existence of a compounding effect of
synovitis along with LPS administration. Furthermore,
significantly increased numbers of activated macrophages were
found in the injured joint, while cartilage loss and subchondral
bone changes were also seen following LPS administration prior
to injury (53). These findings have added further support to the
concept that overall inflammatory status at the time of injury
could also influence eventual disease severity. Viewed from a
different perspective, this also suggests that mechanobiological
responses may vary depending on overall inflammatory state of a
given tissue, at the time of injury. This once again highlights
the intersections of immune function and status with
mechanobiology in this scenario.
MECHANOBIOLOGICAL RESPONSES ARE
LINKED TO INFLAMMATION AND
MITOCHONDRIAL DYNAMICS

Independent of the inflammatory responses to injury, although
possibly involved in their initiation, the mechanobiological
properties of joint tissues are likely to be involved in linking
injury with subsequent disease. Furthermore, as with
inflammatory stimulus, mechanical forces have been shown to
be capable of modulating mitochondrial function (54, 55). It is
clear that mechanical forces are inherent in joint function, and
Frontiers in Immunology | www.frontiersin.org 5
that joint (and general) health can benefit greatly from moderate
mechanical loading (i.e. exercise, which is viewed, in many
quarters, as being a highly effective tool/treatment to combat
OA) (56). Mechanical stresses that exercise generates are
manifested at the cellular level in a variety of ways. For
example shear stress (which can be defined as a force that
causes deformation in the plane of the surface) is generated
within the joint by the flow of synovial/interstitial fluid across,
and through, cartilage tissue (57). Also hydrostatic pressures can
be generated in the joint from the compression and expansion of
the ECM (58). However, when mechanical forces exceed a
certain threshold (i.e. injury) joint damage, can occur which is
in turn linked to consequent chronic diseases like PTOA (56).
Surprisingly, precisely which cell type in the joint predominates
in the mechanobiological response is not currently clear. Cells in
synovial, bone and cartilage tissue itself have all been found to be
highly mechanosensitive (i.e. show altered biochemical activities
solely due to changes in their physical/mechanical environment).
Mechanotransduction in human primary synovial fibroblasts
was demonstrated experimentally by application of uniaxial
cyclical stretch tests (using a membrane deformation assay),
resulting in cell orientation, and cytoskeletal alignment,
changes perpendicular to the applied stress. Those studies used
the same system to show that stretch testing also resulted in
significant increases in intracellular calcium [Ca2+]. This
response was then blocked using nonspecific calcium channel
blockers [Ruthenium Red (RR)] (59). While this method did not
directly assess the level of mitochondrial involvement, it is
interesting to note that RR has also been shown to block
mitochondrial Ca2+ uptake in other scenarios (60), which
points to a potential link between these processes. In a similar
study, synovial fibroblasts were exposed to shear stresses by
application controlled fluid flow in a specialized bioreactor
culture system, and again were found to be highly sensitive to
changes in shear stress. This study also demonstrated a robust
calcium signalling response involving both external and internal
calcium sources (61), again highlighting the importance of
mechanobiology and mitochondrial dynamics in joint tissue
responses to injury.

As described above, in addition to synovial fibroblasts the
intimal synovial membrane also contains resident macrophage
like synoviocytes (MLS), under normal healthy conditions. The
total number of these cells present in the synovium increases
dramatically after injury, when circulating monocytes are
recruited from the vasculature to the subintimal layer (62, 63). As
with synovial fibroblasts, macrophages have also been found to be
responsive to mechanical stimulus. A recent study reported that
macrophages express high levels of Piezo1, amechanically activated
calcium channel (64). This study was focused on lung
inflammation, where hydrostatic pressures predominate in the
cellular microenvironment. Thus, by applying hydrostatic
pressure to macrophages, Piezo1 was shown to facilitate calcium
influx, driving activation of AP-1, which in turn causes release of
Endothelin 1 and stabilization of HIF-1a. This upregulates a
spectrum of pro-inflammatory genes, including IL-1b. While this
paper focused on hydrostatic pressure within the respiratory
September 2021 | Volume 12 | Article 695257
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system, it nonetheless suggests that this mechanistic response may
be preserved in macrophages at other sites, and in other tissues.
Also, while the role of mitochondria in the response was not
addressed these studies, it is well documented that mitochondria
can stabilise HIF-1a via the production of mitochondrial ROS
pointing to a potential mitochondrial connection (65). TRPV4 is
another calcium influx channel which has been shown to be
involved in mechanotransduction and oxidative stresses
responses in macrophages. This channel becomes activated in
macrophages following a range of stimuli including mechanical
stretch (66). Stimulating this channel results in an increase in
mitochondrial membrane potential, via as yet unknown
mechanisms, as well as greater ROS and nitric oxide production.
While this was shown to be relevant to the pro-inflammatory
response induced by hydrostatic pressure, it is likely that a similar
mechanismmay occur in the mechanical environment of the joint.

Cartilage cells themselves have also been shown to be highly
sensitive to mechanical stimulus and damage. Intriguingly, Piezo
channels 1 and 2 (and TRPV4) were again found to be central
and were identified in human chondrocytes where they were
shown to be intimately involved in mechanotransduction and
injury responses (67, 68). Their expression was also significantly
increased in human osteoarthritic cartilage. Increased Piezo1
expression in chondrocytes resulted in a feed-forward
mechanism whereby it induced excess intracellular Ca2+, at
baseline and in response to mechanical deformation (69) Using
a bioreactor system with human chondrocytes isolated from end
stage OA cartilage Delco et al. (51) also demonstrated acute
cartilage responses to mechanical loading. Within 2 hours of
stimulus/injury the endogenous mitochondrial respiratory
function was impaired and membrane depolarisation had
occurred. Targeting of mitochondrial potential, capacity, and
membrane polarisation early in the post-injury period may lead
to discovery of factors that drive cartilage degradation after
injury. It may become possible to intervene, early after injury,
using targeted mitochondrial therapeutics to rescue the joint
from significant long-term damage. The extent/severity of
mechanical force/impact which the cartilage undergoes is also
important in determining the eventual outcome of disease -
adding yet further complexity to understanding this injury/
disease system. Bonnevie et al. (70) reported that mechanically
impacting cartilage tissue, in the stress range of 15-20 MPa,
results in significant chondrocyte death. It has also been shown
that impact forces below this range can induce matrix breaches
(6), depolarisation of mitochondrial membranes (71), and
catabolic cellular responses (72) and upregulation of matrix
degradation enzymes including MMP and ADAMTS.

Mechanical loadingof cartilage, aboveacertain threshold levelhas
also been shown to create an imbalance inmitochondrial superoxide
levels (9). For example, delivery of a permeable antioxidant ascorbyl
6-palmitate 2-phosphate (APPS), a derivative of vitaminC, to the site
of injury was shown to effectively suppress the response and reduce
cartilage degeneration in mice (9). Elsewhere, repeated mechanical
overloadingof cartilagewas shown toproduce anoxidant-dependant
state of mitochondrial dysfunction in chondrocytes (73).
Furthermore it was shown that this damaging outcome could be
Frontiers in Immunology | www.frontiersin.org 6
rescued via introductionoffree radical scavengers ordisruptors of the
electron transport chain (ETC), such as rotenone (inhibitor of
complex 1 of the ETC) (74). In a related, and very relevant, study
using a porcine model of PTOA, targeting mitochondrial responses
following mechanical injury had favourable outcomes in terms of
reducing disease severity at six months post-injury (75). Injury-
induced changes to the ETC in chondrocytes has been linked with
greater oxidative damage and ultimately cell death (12). This study
used amobarbital to inhibit chondrocyte electron transport or N-
acetylcysteine (NAC) to inhibit oxidative stress further downstream
(75). Both treatments resulted in maintenance of proteoglycan
content, decreased histological severity, and more normalised
chondrocyte metabolic function 6 months post injury. These
studies once again show that mitochondrial function is critical for
maintenance of cellular energy production via the gradient created in
the ETC in joint tissues. Pathogenic unfolding of membrane cristae
and loss of membrane polarisation are characteristic of diseases in
many tissues, but it is interesting to note that the same has recently
been shown to be true in OA (76). These studies also support the
potential application of antioxidants and targeting chondrocyte
mitochondrial metabolism after injury to mediate PTOA and
promote healthy cartilage (75). Ultimately, while this work is still at
a relatively early stage, and biological means of repairing damage to
cartilage after injury remains elusive; determining the role of
mechanotransduction in damaged joint tissues, and the
intersection this has with mitochondrial function, inflammation
and PTOA, may reveal exciting possibilities for new therapies and
targets in the joint.
THERAPEUTIC POTENTIAL

Taking these findings together, the emerging theme is that
mitochondria, through a number of mechanisms, are extremely
important for joint injury and disease. Therefore the next question
iswhetherwe can target this organelle and its function for therapeutic
gain in the treatment of joint disease. It has been demonstrated that
therapies aimed at mitochondrial repair, for example Szeto-Schiller
(SS) peptides developed by Szeto et al. (77–79) – in particular SS-31,
are protective to mitochondria after impact and subsequent
degeneration. This effect is achieved via targeting the permeability
of the mitochondrial membrane and production of ROS (77).
Specifically, SS peptides work by interacting with cardiolipin and
cytochrome c (78) thus producing an antioxidant effect on the inner
mitochondrialmembrane (80). These peptides have also been shown
toprotect chondrocyteviabilitybypreventionofcytochromecrelease
and induction of apoptotic cascade (80). Moreover, they have the
ability to preserve cartilage integrity and chondrocyte cell viability
after impact in an ex vivomodel (81). Investigation of mitochondrial
therapy at this level suggests that compounds which target these
pathways may have great utility in prevention of the onset of PTOA,
even in cases where administration occurs up to 12 hours post-
injury (81).

Another potential strategy involves targeting mitochondrial
ROS production directly. A recent study used the antioxidant,
Licochalcone A (Lico A), to limit NLRP3 inflammasome induced
September 2021 | Volume 12 | Article 695257
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damage to chondrocytes in vitro and in a surgical model of OA
(40). Those studies showed that Lico A can ameliorate
chondrocyte damage and death by promoting the NRF2/HO-1
axis to limit NF-kB activation during injury. Further studies have
identified the therapeutic potential of nanoparticles to
successfully deliver and retain anti-oxidant agents to
chondrocytes, and cartilage protection. While promoting the
use of antioxidants, these studies also highlighted the viability of
NLRP3 inhibitors in OA. A potent inhibitor of NLRP3, MCC950,
has also come to prominence in the wider field of immunology,
and has been shown to be both safe and effective in limiting
NLRP3 activity in human models of disease (82). While joint
diseases such as gout, which involves direct activation of NLRP3
within the joint may be the first targets of such drugs, there is also
great potential for them to provide benefits as a first line, early
intervention, strategy in PTOA prevention.
CONCLUSION

In conclusion strong links have recently emerged between
mechanobiology, mitochondrial function, inflammation/tissue-
damage in skeletal joint pathologies. As or understanding of
these links are further developed, they combine to form new
Frontiers in Immunology | www.frontiersin.org 7
paradigms for therapeutic intervention, particularly at early
stages post-injury, to prevent the subsequent development of
chronic PTOA.
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