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Longitudinal data are necessary to reveal changes within an individual as he or she ages. However, rarely will a
single cohort study capture data throughout a person’s entire life span.Here we describe in detail the steps needed
to develop life-course trajectories from cohort studies that cover different and overlapping periods of life. Such
independent studies are probably from heterogenous populations, which raises several challenges, including:
1) data harmonization (deriving new harmonized variables from differently measured variables by identifying
common elements across all studies); 2) systematically missing data (variables not measured are missing for all
participants in a cohort); and 3) model selection with differing age ranges and measurement schedules. We
illustrate how to overcome these challenges using an example which examines the associations of parental
education, sex, and race/ethnicity with children’s weight trajectories. Data were obtained from 5 prospective cohort
studies (carried out in Belarus and 4 regions of the United Kingdom) spanning data collected from birth to early
adulthood during differing calendar periods (1936–1964, 1972–1979, 1990–2012, 1996–2016, and 2007–2015).
Key strengths of our approach include modeling of trajectories over wide age ranges, sharing of information
across studies, and direct comparison of the same parts of the life course in different geographical regions and
time periods. We also introduce a novel approach of imputing individual-level covariates of a multilevel model with
a nonlinear growth trajectory and interactions.

Avon Longitudinal Study of Parents and Children; Barry Caerphilly Growth Study; Born in Bradford Study;
Christ’s Hospital School Study; life course; mixed-effects models; Promotion of Breastfeeding Intervention Trial;
repeated measures

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; BCG, Barry Caerphilly Growth; BiB, Born in Bradford;
CHS, Christ’s Hospital School; CI, confidence interval; MI, multiple imputation; PROBIT, Promotion of Breastfeeding Intervention
Trial.

Life-course epidemiology aims to elucidate biological,
behavioral, and psychosocial processes that operate across
an individual’s life course to influence the development of
disease risk (1). It requires repeatedly assessed data on risk
factors and trajectories that reflect the underlying propensity
of disease risk from infancy to adulthood (1). Trajectories
of underlying disease propensity are necessary to establish
ages of “peak” health for different diseases and the extent
to which intervening during certain periods (e.g., periods of
developmental origins or age-related decline) are likely to
maximize population health. However, rarely will a single

cohort study have data on a given risk factor or outcome
throughout the life span.

An alternative to examining life-course trajectories in a
single cohort is to model longitudinal data from multiple
cohorts that cover different and overlapping periods of life.
Examples include models of longitudinal blood pressure
data from age 7 years to more than 80 years from 8 United
Kingdom cohorts (2) and 4 United Kingdom studies (3),
alcohol consumption from age 15 years to over 90 years
from 9 cohort studies (4), and height and weight trajectories
from birth to age 18 years using sparse longitudinal data
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from 16 studies (5). While these analyses demonstrated the
potential of obtaining life-course trajectories by combining
data from several cohorts that cover different periods of the
life course, the authors did not describe the steps required to
overcome the challenges involved in conducting this type of
analysis.

In this paper, we investigate the challenges in combin-
ing data from independent cohorts with repeated measure-
ments that cover different and overlapping periods of life.
We describe in detail the steps needed to model life-course
trajectories from several cohort studies. The key challenges
are summarized in Web Table 1 (available online at https://
doi.org/10.1093/aje/kwab190), and our Stata software code
(StataCorp LLC, College Station, Texas) is presented in Web
Appendix 1.

ILLUSTRATIVE EXAMPLE

Our example examined the associations of sex, race/
ethnicity, and parental education with children’s weight tra-
jectories from birth to age 20 years. We analyzed data
from 5 prospective cohort studies: the Avon Longitudinal
Study of Parents and Children (ALSPAC) (6, 7), the Barry
Caerphilly Growth (BCG) Study (8, 9), the Born in Bradford
(BiB) Study (10), the Christ’s Hospital School (CHS) Study
(11), and the Promotion of Breastfeeding Intervention Trial
(PROBIT) (12, 13). The PROBIT cohort was from Belarus,
and the remaining cohorts were from the United Kingdom.
Collectively they covered different calendar periods from the
1930s to 2010. Children from multiple births were excluded
because their growth patterns differ considerably from those
of singletons. Parental education was a composite variable
that took on all possible joint values of maternal highest
educational attainment and paternal occupation (recorded
around the time of birth, except for CHS). Data were har-
monized across the cohorts.

We briefly describe each cohort study below; further
details are provided in Web Appendix 2. Table 1 summarizes
the cohort participants’ characteristics.

ALSPAC cohort

All pregnant women residing in a defined area in the South
West of England with an expected date of delivery between
April 1, 1991, and December 31, 1992, were invited to take
part in ALSPAC (6, 7). The children of these pregnancies
have been followed up since birth. Weight was recorded
at multiple time points between birth and late adolescence
(e.g., at birth, at 6 weeks, at 10, 21, and 48 months, annually
between ages 7 and 11 years, and at the target ages 12, 13,
15, and 17 years) (14). These measurements were obtained
from several sources: medical records, research clinics, and
parental reports.

BCG Study cohort

The BCG Study is a follow-up of a dietary-intervention
randomized controlled trial of pregnant women and their
offspring (9) which recruited pregnant women residing in
2 towns in South Wales between 1972 and 1974 (8). Birth

weights were abstracted from hospital records, and weight
measurements were recorded by study nurses who visited
participants at 10 days, 6 weeks, and 3, 6, 9, and 12 months,
and thereafter at 6-month intervals, resulting in a total of 14
measurements by age 5 years (9).

BiB Study cohort

All pregnant women booked for delivery at the Brad-
ford Royal Infirmary (Bradford, United Kingdom) between
March 2007 and November 2010 who attended the oral
glucose tolerance test clinic (offered to all women at 26–28
weeks’ gestation) were invited to take part in the BiB Study
(10). The children from these pregnancies have been fol-
lowed up since birth. Weight measurements were recorded at
multiple time points between birth and midchildhood (e.g.,
birth and, on average, at 2 and 6 weeks, 8 months, and 4 and 6
years) (14). These measurements were obtained from several
sources: maternity records, child health records, primary-
care records, the national child measurement program, and
researchers’ assessments.

CHS Study cohort

Regular height and weight measurements were recorded
in boys aged 9–18 years who attended the (all-male) Christ’s
Hospital School in West Sussex, United Kingdom, between
1936 and 1969 (11). The students were measured 3 times per
school term (i.e., 9 measurements per year) by the school’s
medical officer (11).

PROBIT cohort

Thirty-one maternity hospitals and associated polyclinics
(outpatient clinics for routine health care) in the Republic
of Belarus participated in PROBIT, a randomized controlled
trial of the effects of a breastfeeding promotion intervention.
Mother-infant pairs were recruited during their postpartum
hospital stay between June 1996 and December 1997 (12,
13). Birth weight was abstracted from hospital records, and
weight was measured at scheduled study visits at ages 1, 2,
3, 6, 9, and 12 months and 6.5, 11.5, and 16 years (15).
In addition, weight measurements were abstracted from
primary-care records.

METHODS

Below we describe the steps needed to model life-course
trajectories from several cohorts: pooling the data (challenge
1), specifying an appropriate model for multilevel data on a
nonlinear growth process (challenge 2), selecting the model
for a large volume of data (challenge 3), and accounting
for missing outcome and covariate data (challenges 4 and
5, respectively).

Challenge 1: data harmonization

Data harmonization is required when pooling heteroge-
neous data from different studies (16). For comparable but
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Table 1. Baseline Characteristics (%) of Children in 5 Cohort Studies After Data Harmonization

Characteristic

Cohort

ALSPACa,
1990–2012
(n = 14,216)

BCG Studyb,
1972–1979
(n = 951)

BiB Studyc,
2007–2015
(n = 13,445)

CHS Studyd,
1936–1964
(n = 1,547)

PROBITe,
1996–2016
(n = 17,046)

Age range, yearsf 0–20 0–5 0–6 9–18 0–16

Sex

Male 51 54 52 100 52

Female 49 46 48 0 48

Missing data 0 0 0 0 0

Race/ethnicity

White European 79 100g 39 100g 100g

South Asian 0 0 50 0 0

Other 4 0 8 0 0

Missing data 17 0 3 0 0

Maternal educational levelh

Left school at age 15 or 16 years 55 0 43 0 4

Left school at age 17 or 18 years 19 0 12 0 82

College degree or higher 11 0 21 0 14

Missing data 15 100 24 100 0

Paternal occupationi

Class I or II 22 17 13 55 11

Class III 36 58 19 21 60

Class IV, V, or other 21 23 44 3 25

Missing data 21 2 24 21 4

No. of weight measurementsj 157,000 12,737 78,110 89,070 205,864

No. of measurements per childk 10 (10) 14 (1) 5 (3) 57 (18) 13 (5)

Age at last measurement, yearsk 13.8 (13.1) 5 (0) 4.7 (2.7) 17.8 (1.5) 16.0 (1)

Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; BCG, Barry Caerphilly Growth; Bib, Born in Bradford; CHS, Christ’s
Hospital School; PROBIT, Promotion of Breastfeeding Intervention Trial.

a South West England.
b South East Wales.
c Center of North England.
d South East England.
e Republic of Belarus.
f Values are expressed as range.
g These cohorts had no record of race/ethnicity. On the basis of the populations from which they were recruited, we assigned all participants

to White European race/ethnicity.
h “Left school at age 15 or 16 years” in the United Kingdom means that the mother’s highest academic qualification was either a Certificate of

Secondary Education, Ordinary Level, or a General Certificate of Secondary School Education. “Left school at age 17 or 18 years” means the
mother’s highest academic achievement, generally, was the Advanced Level (A-Level). “College degree or higher” means the mother’s highest
academic achievement was either an undergraduate academic degree (awarded by colleges and universities upon completion of ≥3 years of
study) or a postgraduate qualification (such as a master’s-level or doctoral degree).

i Social class I or II: professional or managerial occupation; social class III: intermediate occupation; social class IV or V or other: routine or
unskilled occupation, or all other occupations (not categorized above).

j Values are expressed as total number.
k Values are expressed as median (interquartile range).

differently measured variables, such as race/ethnicity, data
harmonization derives new “harmonized” variables by iden-
tifying common elements across all studies.

Continuous measurements and sex. The continuous mea-
surements, age and weight, only required conversion to
the same units. Researchers in all 4 birth cohorts recorded
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assigned sex at birth. The CHS cohort was from an all-boys’
school.

Child’s race/ethnicity. For the BCG, CHS, and PROBIT
cohort studies, which did not record race/ethnicity, we
assumed that all children were of White European origin
because there were very few people from minority racial/
ethnic backgrounds in these populations during the cohort
recruitment periods. We harmonized the BiB variable to the
categories “South Asian” and “White European” (represent-
ing 50% and 39% of the cohort, respectively) and to “other”
for the 8% of participants who were Black, mixed-race,
and of other races/ethnicities (Web Table 2). Additionally,
we harmonized the ALSPAC variable to the categories
“White European” (79% of the cohort) and “other” (for
the 4% of participants from Black African/Caribbean, South
Asian, Chinese, mixed-race/ethnicity, and other racial/ethnic
backgrounds (17)).

Maternal education. Since qualifications can differ between
countries and between calendar periods within a country
(e.g., in 1987 the United Kingdom Ordinary-Level educa-
tional qualification was replaced by the General Certificate
of Secondary Education), we defined the harmonized
education variable by the number of years the mother had
spent in school (Web Table 3). Researchers in the 2 older
cohorts, BCG and CHS, did not measure maternal education,
so all of those values were set to missing.

Paternal occupation. The BCG and CHS studies classified
paternal occupational social class on the basis of the United
Kingdom Registrar General’s classification (18) (Web Table
4). For ALSPAC and BiB, paternal occupation was cat-
egorized using the United Kingdom Office for National
Statistics’ Standard Occupational Classification (of 1990
and 2000, respectively). Using the National Statistics Socio-
Economic Classification analytical classes (19) as a guide,
we mapped the ALSPAC and BiB Standard Occupational
Classifications to 3 occupational classes compatible with
those of BCG and CHS (professional or managerial; inter-
mediate; and routine or unskilled). The occupational cate-
gories of PROBIT cut across social classes (e.g., “service
worker” included occupations ranging from professional to
routine, and “manual worker” included skilled and unskilled
manual occupations). Therefore, we used paternal occupa-
tion along with paternal highest educational attainment to
classify PROBIT fathers’ jobs as “professional or manage-
rial,” “intermediate,” or “routine or unskilled.”

Challenge 2: accounting for the dependence structure
of the data

The data had a nested 3-level structure (repeated mea-
surements nested within an individual and individuals nested
within a cohort). There are 2 main approaches for modeling
multilevel data: marginal models (e.g., generalized esti-
mating equations models) and mixed-effects models (also
known as random-effects, multilevel, and hierarchical mod-
els) (20, 21). We focus on the linear mixed-effects model
(hereafter referred to as a multilevel model), which can

be used to make inferences about changes in the popula-
tion mean response and to examine the data’s dependence
structure (e.g., comparison of within-individual variability
to between-individual variability).

Briefly, a multilevel model consists of “fixed effects” and
“random effects” (22). The fixed effects describe the average
relationship between the repeated measurements and time,
which we shall call the “average growth trajectory.” The ran-
dom effects are defined at each level of the data and describe
the multiple sources of random variability in the data (e.g.,
random variability between cohorts, between individuals
in the same cohort, and within an individual). Restricted
maximum likelihood estimation is recommended because
maximum likelihood estimation of the variance parameters
(e.g., variance of a random effect) is biased downwards
(22).

In our example, an important consideration was the small
number of units at level 3 (i.e., 5 cohorts). Although there
is no clear rule of thumb regarding sample size require-
ments, a simulation study investigating multilevel mod-
eling of units with 1,000 observations each showed that
a sample size of at least 25 level 2 units was required
for reliable inference about the variance parameters (23).
Therefore, we decided to fit a 2-level model (repeated mea-
surements at level 1 and children at level 2) with cohort
included as a categorical variable in the fixed effects with
interactions between the cohort variable and the trajectory
terms to allow each cohort to have its own average growth
trajectory.

Modeling the nonlinear growth trajectory

Most biological growth processes show nonlinear changes
over time (14). Two common approaches to modeling non-
linear growth are fractional polynomials (24) and restricted
cubic splines (25).

A restricted cubic spline divides the growth trajectory into
distinct segments where adjacent segments are joined at knot
points. A separate curve is fitted to each segment, where the
first and last segments are restricted to be linear, and cubic
polynomials are fitted for the interior segments.

A fractional polynomial models the entire trajectory using
a single, special type of polynomial that can include log-
arithms (e.g., time0 = ln(time)), negative powers (e.g.,
time−2 = 1/time2), noninteger powers (e.g., time0.5 =√

time), and repeated powers (e.g., time2, time2). The degree
of the model indicates the number of fractional polynomial
terms allowed (e.g., time2 is a 1-degree fractional polyno-
mial, and time2, time3 is a 2-degree fractional polynomial).

In our example, we considered fractional polynomials of
1 and 2 degrees with powers of −2, −1, 0, 0.5, 1, 2, and
3 and restricted cubic splines with 3–7 knots. The knots
were placed at percentiles (of age) to ensure there were
adequate numbers of measurements between consecutive
knots, as recommended by Harrell (25) and Durrleman and
Simon (26). Our primary interest was the overall shape of
the trajectory. However, when the location of the knots is
of direct interest, subject-matter knowledge may be used to
help position the knots (25, 26).
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Modeling the covariance structure

The covariance structure of the multilevel model accounts
for the dependency within the data and is modeled via the
random effects. Misspecification of the covariance structure
can lead to incorrect standard errors for the fixed effects
and invalid estimates of the random effects’ variance com-
ponents (22).

At each level, the random effects are assumed to be
normally distributed with means of 0 and an estimated
variance-covariance matrix, where the diagonal elements are
the variances of the random effects and the off-diagonal ele-
ments are pairwise covariances between the random effects.
Many software implementations allow the analyst to place
restrictions on the variance-covariance matrix (e.g., restrict
a covariance to be 0). Typically, the random effects at each
level are assumed to be mutually independent of the random
effects at all other levels.

Including individual-level random effects for the intercept
and slope term(s) allows the growth trajectories (i.e., starting
positions and rate of change) to vary between individu-
als. Other variables, such as sex, can also be included as
individual-level random effects.

The measurement-level random effects describe how an
individual’s measurements vary about his/her growth trajec-
tory. The simplest structure is a single random intercept which
assumes the measurement-level variation is constant through-
out. Alternatively, the model can allow the measurement-
level variation to depend on age (known as complex level 1
variation (14)).

In our example, all models included individual-level ran-
dom effects for the intercept and all trajectory terms. We
did not put any constraints on the individual-level variance-
covariance matrix (i.e., distinct variances and covariances
were allowed).

Assuming a constant measurement-level variance was
implausible for our data because of the wide age span
(i.e., weights at age 18 years were more variable (e.g., 45–
75 kg) than birth weights (e.g., 2.0–4.5 kg)). Therefore,
we allowed for complex level 1 variation, comparing 2
approaches: 1) including an intercept and a linear term
for age as measurement-level random effects and 2) divid-
ing the age range into distinct segments and specifying
a measurement-level random intercept for each segment,
where measurement-level variance can vary across the seg-
ments but is assumed to be constant within each segment. For
both approaches, we restricted all pairwise covariances (of
the measurement-level variance-covariance matrix) to be 0.

Challenge 3: model selection across multiple studies

Applying model selection separately within each cohort
can bias selection toward simple functional forms, since
single studies may lack the statistical power for selection of
complex functional forms (27, 28). Conversely, conducting
model selection on the combined data from all studies may
be impractical because of the large volume of data.

We considered 2 alternative approaches: 1) performing
model selection on the summed likelihood across the cohorts
(i.e., the same model is fitted separately to each cohort

and the likelihoods are summed across the cohort) (29) and
2) using a data-splitting approach (25, 30) in which model
selection is conducted on a random sample of individuals
from the combined data, where the proportion of individuals
from each cohort is the same as per the combined data. An
advantage of this second approach is that the remaining data
(i.e., the unselected individuals) can be used as a “validation
data set” to further evaluate model fit (25, 30).

Selection criteria used to compare nonnested models in-
clude Akaike’s Information Criterion, the Bayesian Infor-
mation Criterion, and the mean squared prediction error (see
Web Appendix 3 for further information).

The summed likelihood approach requires the same model
to be fitted to each cohort separately. While we were able to
fit the same fractional polynomial model to each cohort, it
was not possible to fit the same restricted cubic spline model
to cohorts with differing age ranges (e.g., to fit a model
with knot points positioned at the same ages to cohorts
with age ranges birth to 5 years and 9–11 years). Therefore,
we used the random sample approach and selected the top
2 fractional polynomial and restricted cubic spline models
based on a random sample of 15,000 children, and then
compared the fit of these 4 models using the validation
data set.

To reduce the number of candidate models, we conducted
model selection in 2 stages. At stage 1 we selected the
form of the nonlinear growth trajectory, where all models
included the intercept and trajectory terms as fixed effects
and individual-level random effects, and the measurement-
level random effects were 2 independent random intercepts
for the age periods ≤2 years and >2 years. At stage 2 we
selected the measurement-level covariance structure of the
best-fitting model from stage 1.

Inclusion of covariates

In addition to the cohort variable, we included the covari-
ates child’s sex, child’s race/ethnicity, and parental education
as fixed effects, and for each covariate we included interac-
tions between the covariate and the trajectory terms. These
fixed effects were added to the best-fitting multilevel model.
Note that we excluded interaction terms from the model that
were not supported by the data (e.g., interactions between
the South Asian category and the spline terms for ages ≥5
years).

Challenge 4: accounting for missing outcome data

Likelihood estimation of multilevel models utilizes all
observed repeated measurements and is not biased by the
missing data when differences between the observed and
missing data can be explained by associations with the
observed outcome and covariate data (known as data that
are missing at random (31)). In the absence of auxiliary
information (i.e., data on variables not included in the multi-
level model), this likelihood-based approach makes the same
assumption about the missing data as standard implemen-
tations of multiple imputation (MI) and will yield standard
errors with the same or greater precision (31, 32). See Web
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Appendix 4 for comments on measuring missing outcome
data.

For ALSPAC, the age of last measurement indicated that
a sizeable proportion of the cohort exited the study prema-
turely, which was also reflected in the relatively wide vari-
ability in the number of measurements per child (Table 1).
In comparison, PROBIT, which had a similar age range to
ALSPAC, had lower levels of dropout and lower variability
in the frequency of measurement. The BCG Study was orig-
inally a trial with a prescribed measurement schedule, which
reflects the high levels of participant retention and near-
constant number of measures per child. CHS was a school-
based study, so participant retention was high. Despite its
prescribed measurement schedule, there was sizeable vari-
ation in the frequency of measurements (lower and upper
quartiles were 49 and 67, respectively). This variability was
mainly due to children entering the study (i.e., enrolling at
the school) at different ages, with 47% of children enrolling
before age 11 years, 52% enrolling between ages 11 and 12
years, and 1% enrolling at age 13 years or older. Since our
example did not have any auxiliary information, we decided
not to impute the outcome data.

Challenge 5: accounting for missing covariate data

Combining data across cohorts raises the problem of
systematically missing covariate data (i.e., covariate infor-
mation is missing for all participants in a cohort because
it was not measured (33)). Restricting the analysis to par-
ticipants with observed data on all covariates, which we
shall call “complete covariate analysis,” and using MI are
2 approaches with which to account for missing data. The
choice of approach will depend on the missing-data set-
ting (32). Specialized MI methods (e.g., see references 34–
38) and software (e.g., jomo (39) and Stat-JR (40)) are
required when the main analysis uses a multilevel model
(32, 41).

In our example, there were missing data on the individual-
level covariates race/ethnicity and parental education (both
components: maternal education and paternal occupation)
(Table 1). The discussion below excludes the missing data
on child’s race/ethnicity in BCG, CHS, and PROBIT, as
we assumed all children in these cohorts were of White
European origin.

We decided to use MI instead of complete covariate anal-
ysis for 2 reasons. First, our investigations indicated that the
chance of having complete covariate data depended on the
observed outcome data; thus, a complete covariate analysis
could have been biased by omitting children with missing
data (32). Second, a complete covariate analysis would have
been extremely wasteful, discarding all data on 17.4% of
children: all 2,498 children in the CHS and BCG cohorts
and 5,734 children in the ALSPAC and BiB cohorts. Factors
identified as predictors of missingness and the missing val-
ues were included in the imputation model. Since the aim
of our example was to illustrate our methodology, we only
considered a small number of factors.

Neither jomo nor Stat-JR was suitable for our exam-
ple because neither package allowed the measurement-level
variance to vary with age, and an imputation model that
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Figure 1. Observed mean weight trajectories of children in 5 cohort
studies. ALSPAC, Avon Longitudinal Study of Parents and Children
(1990–2012); BCG, Barry Caerphilly Growth Study (1972–1979);
BiB, Born in Bradford Study (2007–2015); CHS, Christ’s Hospital
School Study (1936–1964); PROBIT, Promotion of Breastfeeding
Intervention Trial (1996–2016).

assumed constant measurement-level variance failed to con-
verge. Instead we adapted an imputation procedure devel-
oped for imputing level 2 data using summary measures
of any level 1 data (36). Our adaption was an iterative
procedure which incorporated summaries of the children’s
growth trajectories in the imputation model. It accounted for
the interactions of the main analysis because we used the
same model to derive these child-specific growth trajectory
summaries (see Web Appendix 4 for further details). We
generated 25 imputed data sets and combined the multiple
sets of results into a single inference using Rubin’s rules
(42).

RESULTS

The 5 cohorts contributed data from birth to age 20
years. The combined sample size was 47,205 children with
542,781 weight measurements (Table 1). The cohorts cov-
ered overlapping but differing age ranges with repeat weight
assessments: birth to age 20 years for ALSPAC, birth to
age 5 years for BCG, birth to age 7 years for BiB, ages 9–
18 years for CHS, and birth to age 18 years for PROBIT.
The CHS Study had the highest median number of weight
measurements per child (at least quadruple that of the other
cohorts), and the BCG Study had the second highest, with a
median of 14 measures.

Figure 1 shows observed mean growth trajectories among
the cohorts. During the first 6 months, the observed mean
trajectory was approximately linear; otherwise the general
trajectory shape was nonlinear: curving over in the first
year, curving slightly under between ages 5 and 12 years,
and starting to plateau around age 17 years. Compared with
ALSPAC and PROBIT, the CHS cohort had a lower growth
trajectory.

The results of the model selection procedure and a sum-
mary table of the components of the final model are provid-
ed in Web Appendix 5 and Web Table 5, respectively. The
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Figure 2. Predicted mean weight trajectories of children in 5 cohort studies according to cohort (A), child’s sex (B), child’s race/ethnicity
(C), and parental education and employment status (D). Key for panel D—black long-dashed line: mother left school at age 15 or 16 years
(i.e., the mother’s highest academic qualification was either a Certificate of Secondary Education, Ordinary Level, or a General Certificate of
Secondary School Education) and father had a routine/unskilled occupation; light gray short-dashed and dotted line: mother left school at age 17
or 18 years (i.e., the mother’s highest academic achievement was Advanced Level (A-Level)) and father had a routine/unskilled occupation; dark
gray solid line: mother had a college degree or higher and father had a routine/unskilled occupation; black short-dashed and dotted line: mother
left school at age 15 or 16 years and father had an intermediate occupation; light gray solid line: mother left school at age 17 or 18 years and father
had an intermediate occupation; dark gray long-dashed line: mother had a college degree or higher and father had an intermediate occupation;
black solid line: mother left school at age 15 or 16 years and father had a professional/managerial occupation; light gray long-dashed line: mother
left school at age 17 or 18 years and father had a professional/managerial occupation; dark gray short-dashed and dotted line: mother had a
college degree or higher and father had a professional/managerial occupation. The solid black line in each graph denotes the predicted mean
weight trajectory for the reference participants: White boys from the ALSPAC cohort with a mother who left school at age 15 or 16 years and a
father whose occupation was classified as professional or managerial. ALSPAC, Avon Longitudinal Study of Parents and Children (1990–2012);
BCG, Barry Caerphilly Growth Study (1972–1979); BiB, Born in Bradford Study (2007–2015); CHS, Christ’s Hospital School Study (1936–1964);
PROBIT, Promotion of Breastfeeding Intervention Trial (1996–2016).

appropriateness of a linear slope in the early months of life
is supported by the observed mean trajectory (Figure 1) and
by the low values for the mean squared prediction error
when fitting the restricted cubic spline with 7 knots (see
Web Table 6) and has been reported elsewhere (14). Figure 2
shows predicted mean weight trajectories, using the MI point
estimates of the final model, between children of different
cohorts, sexes, racial/ethnic groups, and parental education
groups (in each case holding all other covariates constant).
Weight trajectories were very similar between the cohorts
in the first 4 years of life. Between ages 10 and 15 years,
children from ALSPAC were heaviest, those from PROBIT
in between, and those from CHS lightest (e.g., at age 15
years, the predicted mean difference in weight between

children from PROBIT and ALSPAC was −0.93 kg (95%
confidence interval (CI): − 0.49, −1.37) and that between
children from CHS and ALSPAC was −6.88 kg (95% CI:
− 6.23, −7.52)). By age 20 years, the difference in weight
between children from CHS and ALSPAC had narrowed
(predicted mean difference = − 3.05 kg, 95% CI: − 1.80,
−4.31). The marked plateauing effect after age 15 years
for PROBIT could have been due to its limited number of
measurements between ages 15 and 20 years. The weight
trajectories of boys and girls were similar until adolescence
and started to diverge after age 15 years. There were very
little differences between children of different race/ethnic
backgrounds or between those whose parents had different
educational levels.
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DISCUSSION

Ideally, life-course epidemiology should use data from
repeated assessments carried out from the time when partici-
pants were in utero or born to old age. The oldest birth co-
horts currently available are from the 1950s/1960s (43, 44),
meaning even they only go up to midlife. Those 2 cohorts
also lack very detailed repeat measurements even of weight
and height, with substantial gaps between childhood and
later adult measures. An alternative is to combine cohorts
that cover different but slightly overlapping life periods to
understand the impact of developmental/early-life exposures
on outcome trajectories across the life course (2). We have
illustrated the key challenges in the use of this alternative
approach and the fact that it allows not only examination of
a longer life span but also direct comparison of the same
parts of the life course in different geographical regions and
time periods. We have also introduced a novel approach of
imputing individual-level covariates of a multilevel model
with a nonlinear growth trajectory and interactions.

In order to cover a life course, it is usually necessary to
combine data from heterogeneous cohorts, in contrast to a
meta-analysis of longitudinal studies (e.g., that of O’Neill
et al. (45)), which selects cohorts for analysis based on
their similarity of design. This raises the question of how to
interpret results in terms of the target population. Because
our aim is to explore meaningful trajectories across the life
span, we are by definition assuming that all of the studies re-
flect the same underlying population. Thus, we might con-
sider the results from our illustrative example to relate to a
target population of all people, with the trajectories reflect-
ing change from birth to age 20 years, despite differences
in geography and race/ethnic distributions between studies.
However, heterogeneity between cohort studies will assist
in determining whether an overall target population is a
reasonable concept here or not (46).

It is also necessary to make some modeling assumptions
that are common to all cohorts in order to gain information
over separate modeling of each cohort. This requires the ana-
lyst to make decisions on which common assumptions are
plausible and which notable differences between the cohorts
must be accommodated in the model. In our example, the
weight trajectories of each cohort had the same shape, so
it was plausible to model all of the data using the same
nonlinear trajectory. At the same time, we had to allow for
important differences, such as a lower mean trajectory for
CHS than for ALSPAC and PROBIT. Because of differences
between the cohorts, we did not use the model to predict
mean trajectories beyond the data (e.g., for children aged ≥5
years from a South Asian background).

Data harmonization is required when pooling heteroge-
neous data from different studies. By necessity, the level of
detail in the harmonized variable is often determined by the
cohort with the most simplified definition of the variable.
In addition, even after harmonization the interpretation of
the harmonized variable may differ between cohorts (e.g.,
the meaning of maternal education may change over time or
geography).

In meta-analyses, MI has been proposed as a solution
for systematically missing covariate data (33, 47, 48), and

in a study examining early- and midlife risk factors for
cardiovascular disease in 4 pooled cohorts, al Hazzouri et
al. (49) imputed values for exposure variables on which
data were not available in younger cohorts. In our example,
we multiply imputed the systematically missing data on
maternal education but used a simpler approach for race/
ethnicity, since population demographics at the time indi-
cated that almost of all of the participants would have been
of White European origin. For cohorts with greater racial/
ethnic diversity, external population-level information could
be utilized to multiply impute race/ethnicity as part of a
sensitivity analysis (50).

Caution is needed when interpreting parameters common
to all cohorts. In our example, the trajectories of boys and
girls appeared to diverge from age 15 years onwards. While
this may be a real phenomenon, we must also consider that
this pattern may have been unduly influenced by the CHS
cohort, which was the only cohort to cover the time period
from the 1930s to the 1950s and which included data on boys
only; its weight trajectories would probably have differed
from those of boys from later periods because of changes in
lifestyle and increases in average height.

In summary, careful analysis can harmonize and bring
together information from different cohorts to inform studies
of life-course trajectories. Our approach can allow investi-
gators to leverage data from several cohorts to obtain more
information on life-course trajectories and can help them
examine heterogeneity between cohorts to shed light on
influences on those trajectories.
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