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Abstract: Background: One of the current problems in the field of metabolomics is the difficulty in
integrating data collected using different equipment at different facilities, because many metabolomic
methods have been developed independently and are unique to each laboratory. Methods: In this
study, we examined whether different analytical methods among 12 different laboratories provided
comparable relative quantification data for certain metabolites. Identical samples extracted
from two cell lines (HT-29 and AsPc-1) were distributed to each facility, and hydrophilic and
hydrophobic metabolite analyses were performed using the daily routine protocols of each laboratory.
Results: The results indicate that there was no difference in the relative quantitative data (HT-29/AsPc-1)
for about half of the measured metabolites among the laboratories and assay methods. Data review
also revealed that errors in relative quantification were derived from issues such as erroneous peak
identification, insufficient peak separation, a difference in detection sensitivity, derivatization reactions,
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and extraction solvent interference. Conclusion: The results indicated that relative quantification
data obtained at different facilities and at different times would be integrated and compared by using
a reference materials shared for data normalization.

Keywords: metabolomics; relative quantification; method validation; inter-laboratory comparison;
data integration; quality control sample

1. Introduction

Metabolomics using mass spectrometry (MS) is a promising tool for the life science and
biotechnology fields [1–5]. In recent years, relative quantification data produced mainly by the targeted
metabolomics approach were integrated into large datasets for researches in medical biotechnology,
precision medicine, cohort studies, epidemiological studies, and genome-wide association studies [6–8].
It is anticipated that a massive generation of reliable data by inter-laboratory collaborative research
will promote data exchange and result in a larger accumulation of data over the next few decades.
However, there are several problems regarding the quantification of metabolites that must be solved in
order to share data obtained in different laboratories.

One of the biggest problems that must be addressed is that the targeted metabolome methods
have not been well validated to guarantee the production of reliable and comparable data. For the
case of drug metabolites analysis in biological samples, a draft guideline for method validation using
blank matrix and standard materials has been published (International Council for Harmonization
of Technical Requirements for Pharmaceuticals for Human Use) [9]. In targeted metabolomics,
method validation using a similar approach seems to be quite a difficult task. This is because true
values are unclear due to a lack of suitable blank matrix as well as many standard materials [10].
Therefore, reproducibility and reliability are always a matter of concern [11]. When peak separation is
insufficient, the calculation of peak area or intensity becomes less accurate. Additionally, the certainty
of identifying metabolites without standard substances is diminished [12].

Another problem is that the general gold standard approaches are lacking in metabolomics [13].
There are some activities regarding standardization of metabolome measurement; however, it is unlikely
that all researchers conduct unified protocols, as multiple combinations of MS, including quadrupole
mass spectrometry (QMS), time-of-flight mass spectrometry (TOFMS), quadrupole-time-of-flight
mass spectrometry (QTOFS), triple quadrupole mass spectrometry (TQMS), quadrupole-Orbitrap
mass spectrometry (Q Exactive), and quadrupole-Orbitrap-linear ion trap mass spectrometry
(Orbitrap Fusion) can be used. Several separation techniques, such as gas chromatography
(GC), liquid chromatography (LC), supercritical fluid chromatography (SFC), ion chromatography
(IC), or capillary electrophoresis (CE), are also available for the investigation of metabolites in
biological components.

Despite the diverse methods for relative quantitation, results that are essentially the same must be
produced when identical samples are analyzed by different methods in different laboratories. When the
results are similar, the relative quantitation results are probably close to the true value, and these
methodologies seem to be reliable. Moreover, a global quality control or a reference material is available
to normalize the datasets produced across various laboratories.

In the proteomic field, a multi-laboratory evaluation study at eleven sites around the world
was conducted using an identical protocol for the sequential window acquisition of all theoretical
mass spectra (SWATH-MS). They evaluated reproducibility for more than 4000 proteins in HEK293
cells and concluded that the quantitative characteristics were highly comparable across all sites [14].
In the metabolomics field, interlaboratory reproducibility for hydrophilic and hydrophobic metabolites
(mainly amino acids and phospholipids) was tested through the analysis of human serum and
plasma using Biocrates’ AbsoluteIDQ kit [15]. However, in the real world, different laboratories
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use different protocols on different devices. In this regard, community-based efforts reportedly
improved the versatility of lipidomics. Consensus values of plasma lipids in the standard reference
material (SRM) 1950-metabolites in frozen human plasma were obtained through the LIPID MAPS
consortium and the National Institute of Standards and Technologies (NIST) study group [16].
For instance, Bowden et al. conducted a thirty-one inter-laboratory study using different lipidomics
workflows to SRM 1950 [17]. The results of absolute quantitation of plasma lipid concentration were
different among these laboratories, suggesting that it is necessary to find the reasons behind these
differences [18]. Issues that need to be addressed were found in the process of pre-analytics [19,20],
analytics, and post-analytics [21,22]. Therefore, generally accepted guidelines for lipidomics across
independent laboratories are required, and community-initiated approaches have been attempted for
data harmonization among different instrumentation platforms [23].

In this study, we focused on the relative comparisons of 206 hydrophilic and 584 hydrophobic
metabolite levels among samples and performed an inter-laboratory comparison study of metabolite
measurements across 12 laboratories. One of the main purposes of this study was to verify the
targeted metabolomics methods based on a majority rule. A comparison of relative quantitation
data (HT-29/AsPc-1) showed that essentially identical results were obtained on more than half of the
measured metabolites among laboratories and assay methods. Another purpose of the inter-laboratory
study was to examine error shooting of metabolome analysis using a data review. The results
confirmed that comparable data could be produced for more than half of the metabolites using
different metabolome analysis methods, and several reasons leading to the incomparable results were
successfully identified.

2. Results and Discussion

2.1. Experimental Design

In the present study, we performed relative quantitation of various metabolites in two identical
samples using different targeted metabolomics methods (Figure 1). Two cell extract pools (samples)
were prepared from HT-29 and AsPc-1 cell cultures. The two samples were then distributed to
12 participating laboratories throughout Japan. In each laboratory, the peak was identified for
each metabolite and their relative signal intensity value (HT-29/AsPc-1) was measured according to
their own routine analytical methods. We did not share any protocols or lists of target metabolites.
Herein, an analytical method includes sample pretreatment, separation, detection, and data processing.
A total of six analytical runs were performed for triplicate extracts of two cell lines in each method.
The relative signal intensity data of metabolites were compiled to compare among laboratories.
The integrated data were subsequently analyzed using statistical tests to evaluate whether similar
results were produced by distinct analytical methods.
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2.2. Data Acquisition and Integration 

Figure 1. Experimental design in this study. Two crude extract pools were prepared from HT-29 and
AsPc-1 cell cultures. The two samples were dispensed and distributed to 12 participating laboratories.
In each laboratory, the peak was identified for each metabolite and their relative signal intensity value
(HT-29/AsPc-1) was measured according to their sample pretreatment, separation, detection, and data
processing methods. Data were compiled and analyzed using statistical tests.
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2.2. Data Acquisition and Integration

In this study, inconsistency in compound identifier (ID) usage became a problem during the
data integrating task, because different compound names and IDs were used in different laboratories.
Specifically, lipid structures have not been fully elucidated in many cases, and different names are given
to MS peaks among laboratories due to the lack of standardized metabolite nomenclature [24]. Thus, we
created a consensus list of compound IDs as well as a naming rule for lipidomics among participants
in order to address this issue. For the hydrophobic metabolites (lipids) analysis, we targeted 21 lipid
classes, including acylcarnitine (AC), cholesterol ester (ChE), ceramide (NS) (Cer(NS)), diacylglycerol
(DG), free fatty acid (FA), hexose ceramide (NS) (HexCer(NS)), lysophosphatidic acid (LPA),
lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE), lysophosphatidylglycerol (LPG),
lysophosphatidylinositol (LPI), lysophosphatidylserine (LPS), monoacylglycerol (MG), phosphatidic
acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG),
phosphatidylinositol (PI), phosphatidylserine (PS), sphingomyelin (SM), and triacylglycerol (TG),
with a variety of 20 FA side chains. Thus, the targeted lipid molecular species comprised 3390
compounds, including lysophospholipid positional isomers (e.g., LPA 16:0 (sn-1) and LPA 16:0 (sn-2)).

Identification of the hydrophilic metabolites, including amino acids, organic acids,
sugar phosphates, nucleic acids, and coenzymes, was accomplished by each laboratory’s protocol such
as by comparing the retention time (or migration time), MS and MS/MS spectra, and the multiple
reaction monitoring (MRM) transition of the target metabolites in the samples with those of authentic
standards analyzed under identical conditions. Identification of lipids was conducted based on
the retention time, precursor ion, and the fragmentation patterns or specific MRM transitions of
each molecule.

The metabolite extracts obtained from HT-29 and AsPc-1 cells with methanol were aliquoted
and distributed among 12 laboratories in April 2018. These samples were to be used for metabolome
analysis via routine measurements at participating laboratories. The list of measured metabolites and
their relative amounts were returned by August 2018 and compiled into a dataset. The completed
dataset consists of relative quantification results obtained using 15 methods for hydrophilic metabolites
and nine methods for lipids (Tables 1 and 2). It should be noted that ranges of measured metabolites
were partly overlapped but different among laboratories.

Table 1. Information on analytical methods used for hydrophilic metabolites.

Method ID Lab ID Analytical Method Analytical Mode Targeted Hydrophilic Metabolites Ref.

A 1 CE-TOFMS (cation mode) Scan (positive) Amino acids, Bases, Nucleosides, Amines, etc. [25]

B 2 CE-TOFMS (cation mode) Scan (positive) Amino acids, Bases, Nucleosides, Amines, etc. [25]

C 1 CE-TOFMS (anion mode) Scan (negative) Organic acids, Sugar phosphates, Nucleotides, etc. [26]

D 2 CE-TOFMS (anion mode) Scan (negative) Organic acids, Sugar phosphates, Nucleotides, etc. [27]

E 1 CE-TQMS (anion mode) MRM (negative) Monosaccharides [28]

F 2 C18-LC/QTOFMS Scan (positive/negative) Amino acids, Organic acids, Nucleotides, etc. [29]

G 3 C18-LC/TQMS MRM (positive/negative) Amino acids, Organic acids, Nucleotides, etc. [30]

H 4 C18-LC/TQMS MRM (positive) Amino acids [31]

I 5 Derivatization and C18-LC/TQMS MRM (positive) Amino acids, etc. [32]

J 6 PFPP-LC/Q Exactive Scan (positive/negative) Amino acids, Bases, Nucleosides, Amines, Organic
acids, etc. [33]

K 1 Capillary-IC/Q Exactive Scan (negative) Organic acids, Sugar phosphates, Nucleotides, etc. [34]

L 6 IC/Q Exactive Scan (positive/negative) Organic acids, Sugar phosphates, Nucleotides, etc. [34]

M 7 Derivatization and GC/QMS SIM Amino acids, Organic acid, etc. [35]

N 6 Derivatization and GC/QMS Scan Amino acids, Organic acid, etc. [36]

O 8 Derivatization and GC/TQMS MRM Amino acids, Organic acid, Base, Nucleosides, etc. [37]

PFPP, pentafluorophenylpropyl; and SIM, selected ion monitoring.
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Table 2. Information on analytical methods used to analyze hydrophobic metabolites.

Method ID Lab ID Analytical Method Analytical Mode Targeted Lipids Ref.

A 9 C18-LC/QTOFMS Scan (positive/negative) ChE, Cer(NS), DG, FA, HexCer(NS), LPC, LPE, LPI, LPS,
PC, PE, PG, PI, PS, SM [38]

B 5 C8-LC/Q Exactive Scan (positive) AC, HexCer(NS), LPC, LPE, LPS, PC, PE, SM [39]

C 5 C8-LC/Q Exactive Scan (negative) LPE, LPG, LPI, PC, PE, PG, PI, PS [39]

D 10 C18-LC/Orbitrap Fusion Scan (positive/negative) AC, ChE, Cer(NS), DG, HexCer(NS), LPC, LPE, LPI, LPS,
PC, PE, PG, PI, PS, SM, TG [40]

E 11 C8-LC/TQMS MRM (positive/negative) LPC, LPE, LPI, LPS, PC, PE, PI, PS, SM -

F 12 C18-LC/TQMS MRM (positive) ChE, Cer(NS), LPA, LPC, LPE, LPG, LPI, LPS, MG [41]

G 8 C18-LC/TQMS MRM (positive/negative) LPA, LPC, LPE, LPG, LPI, LPS [42]

H 6 Diethylamine-SFC/TQMS MRM (positive/negative) Cer(NS), DG, HexCer(NS), LPC, LPE, MG, PA, PC, PE, PG,
PI, PS, SM [43]

I 6 C18-SFC/TQMS MRM (positive/negative) ChE, FA, TG [44]

By integrating the results from all analytical methods, a total of 206 hydrophilic metabolites and
584 hydrophobic metabolites were identified from the HT-29 and/or AsPc-1 cell extracts at least by
one analytical method (Figure 2A and Table 3). Among these, a total of 148 hydrophilic metabolites
and 285 hydrophobic metabolites in both HT-29 and AsPc-1 cell extracts were detected using two
or more analytical methods (Figure 2B and Table 3). A total of 433 metabolites were identified by
multiple methods, which corresponded to 54.8% of the total 790 metabolites. The number was much
higher than that of previous report. For instance, it has been reported that 217 metabolites in total were
identified by multiple methods [24]. These results demonstrate that the coverage of metabolomics
could be greatly improved by sharing data among multiple laboratories.
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580 hydrophobic metabolites were identified in both HT-29 and AsPc-1 cell extracts. Among them,
148 hydrophilic metabolites and 285 hydrophobic metabolites were measured across multiple methods.



Metabolites 2019, 9, 257 6 of 12

Table 3. Summary of the dataset.

Hydrophilic Metabolite Hydrophobic Metabolite Total

1. Number of identified metabolites from HT-29 and/or AsPc-1 samples by at
least one analytical method 206 584 790

2. Number of identified metabolites from both samples by two or more methods 148 285 433

3. Number of metabolites that were statistically significant between samples
HT-29 and AsPc-1 among multiple methods based on a two-sided Student’s
t-test (α = 0.05)

104 199 303

4. Number of metabolites that showed HT-29/AsPc-1 levels in different directions
among methods based on a two-sided Student’s t-test (α = 0.05) and a relative
quantitative value of 1

5 7 12

5. Number of metabolites that were statistically similar HT-29/AsPc-1 levels
among multiple methods using a one-way ANOVA (α = 0.05) 57 113 170

6. Number of metabolites that were statistically similar HT-29/AsPc-1 levels
among multiple methods ignoring one outlier method using a one-way ANOVA
(α = 0.05)

98 162 260

2.3. Comparison of Analytical Methods for Relative Quantification

Relative ratios (HT-29/AsPc-1) of 206 hydrophilic metabolites obtained using 15 different
methods and of 584 hydrophobic metabolites obtained using nine different methods are shown
in Tables S1 and S2, respectively. Statistical significance of each metabolite between samples HT-29
and AsPc-1 was determined using a two-sided Student’s t-test (p < 0.05). In total, 104 hydrophilic
metabolites and 199 hydrophobic metabolites were statistically significant between samples HT-29 and
AsPc-1 among two or more methods (Table 3 and Tables S1 and S2). Among them, the HT-29/AsPc-1
values of five hydrophilic and seven hydrophobic metabolites were significantly changed to distinct
directions among multiple methods (Table 3, Figure S1, and Tables S1 and S2). For instance, the
incorrect results were observed for acetylglycine (Acetyl-Gly), allantoin, dihydroxyacetone phosphate
(DHAP), isocitric acid, (IsoCit), and lysine (Lys) as well as LPC 16:0 (sn-1), LPC 20:1 (sn-2), LPE 22:6
(sn-1), PE 16:0/18:0, PE 18:0/18:0, PG 16:0/18:1, and PI 18:0/20:2 (Figure S1). An obviously incorrect
result was observed for only 4.0% (12/303) of metabolites in total, indicating a basic agreement of the
relative amounts data among all analytical methods.

The one-way ANOVA using HT-29/AsPc-1 values (α = 0.05) shows that there is no difference
between the 57 hydrophilic and 113 hydrophobic metabolites across the various methods (Table 3).
The total of 170 metabolites corresponded to 39.2% for 433 metabolites identified from both samples by
two or more methods. The results of the one-way ANOVA indicated that, when considering AsPc-1
cells as a global quality control sample in this study, the ratios of HT-29/AsPC-1 for 10 amino acids,
including asparagine (Asn), aspartic acid (Asp), cysteine (Cys), glutamic acid (Glu), glycine (Gly),
histidine (His), leucine (Leu), serine (Ser), threonine (Thr), and tyrosine (Tyr), were similar among
multiple methods (Figure 3). However, the ratio of tryptophan (Trp) ranged from 0.93 to 1.11 in the
six methods, but in one protocol was as high as 3.81 (Figure 3). Similar outliers were observed for
41 hydrophilic metabolites and 49 hydrophobic metabolites (Table 3 and Tables S1 and S2), likely due
to errors in the analysis method as discussed below.

When ignoring one outlier in the data, the results improved such that HT-29/AsPc-1 levels were
similar among 98 hydrophilic and 162 hydrophobic metabolites. The total 260 metabolites corresponded
to 60.0% for 433 metabolites identified from both samples by two or more methods (Table 3). The values
of these metabolites seem to be close to the true values because a similar result was obtained regardless
of the difference in measurement method (Tables S1 and S2). Although the results cannot be compared
directly, the analysis of plasma samples by the metabolomics platforms in Metabolon and Broad
Institute demonstrated that 111 overlapped metabolites were correlated with each other (the median
Spearman correlation was 0.79) [24]. Although the majority voting is not always correct and there are
still many outliers, the results demonstrated that identical relative quantitation data was produced by
the targeted metabolomics methods throughout various laboratories.
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2.4. Community-Based Correction of Targeted Metabolome Analysis Methods

Data review of the inter-laboratory study also allowed for the troubleshooting of each metabolome
analysis method. Since the dataset was large, we could review only a small part of this study.
For instance, almost all the outlier values in the amino acid data including Gln, Phe, Pro, and Trp were
produced by the methods using GC/MS (Figure 3). Among the GC/MS-based methods for hydrophilic
metabolite analysis, including methods M, N, and O, the ratios of Gln and Pro determined by method N
were slightly different from that of other methods. The result suggested that the derivatization reaction
for Gln and Pro in method N might be insufficient. On the other hand, the relative quantification of
Lys using method G (C18-LC/TQMS, MRM) was significantly different from the other seven methods
(Figure 3). The possible reason was the co-elution with the isobaric ions because method G set
similar MRM transitions for Lys (146.9 > 84.1) and Gln (147.0 > 84.1), and both compounds were not
chromatographically separated.

Furthermore, several errors were derived from the insufficient separation of various structural
isomers such as glucose and fructose. In this study, the relative quantification value of glucose was
obtained from four laboratories (methods E, L, N, and O for hydrophilic metabolites). However, the
value obtained from method L was an outlier (Figure 4A). The data review pointed out that the method
L did not include fructose in the targeted metabolite list, suggesting that glucose and fructose were
coeluted in the method L. A similar case was found in phospholipid analysis. For example, PI 38:2
contains PI 18:0/20:2 and PI 18:1/20:1. Both isomers were measured by methods C, E, and H for
hydrophobic metabolites (Figure 4B). The relative values of PI 18:0/20:2 and PI 18:1/20:1 determined
by methods C, E, and H were close to each other. On the other hand, methods A and D commonly
employed the C18-LC separation and detected only PI 18:0/20:2. The relative values of PI 18:0/20:2
determined by methods A and D were significantly larger than that of other methods, suggesting
that PI 18:0/20:2 and PI 18:1/20:1 was likely to be coeluted by methods A and D. Similarly, PE 34:2
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primarily contains PE 16:1/18:1 and PE 16:0/18:2. Both isomers were measured by methods E and H that
produced similar quantification values each other (Figure 4C). Another three facilities measured only
PE 16:1/18:1 and produced incomparable values (Figure 4C). The data review found that different peaks
having different retention times were identified in the method C. There results showed that these errors
and misidentifications would not have been noticed unless it was checked using reference material.
To minimize such error, strict thresholds for metabolic identification or peak integration, as well as
standardization of data analysis, are desired. However, the work will require many compromises
because one of the main objectives of metabolome analysis is to identify as many molecules as possible.
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3. Materials and Methods

3.1. Cell Cultures

Human colon colorectal adenocarcinoma HT-29 cells and human pancreatic cancer AsPC-1 cells
were obtained from the American Type Culture Collection (ATCC, Manassas, VA, USA). Both cells
were cultured in RPMI 1640 medium (Nissui Pharmaceutical Co., Ltd., Tokyo, Japan) supplemented
with 10% (v/v) fetal bovine serum, 100 unit mL−1 penicillin, 100 mg mL−1 streptomycin, and 0.25 mg
mL−1 amphotericin B at 37 ◦C in a humidified atmosphere with 5% CO2.

3.2. Preparation of Cell Extract for Metabolite Quantification

Human HT-29 and AsPc-1 cells were seeded at a density of 4 × 106 and 3 × 106 cells/15 cm dish,
respectively, and 31 dishes (one dish was used for cell count) were prepared for each sample. Each dish
was cultured for 72 h. After the cultivation, the cells were washed with phosphate-buffered saline
(PBS, Sigma-Aldrich, St Louis, MO, USA) and lysed in 5 mL (per dish) methanol. Thirty dishes were
scraped and pooled for each sample. Finally, each sample cell number was adjusted to 4 × 106 cells
mL−1 by adding methanol. After mixing to obtain a homogenous solution, 350 µL of the sample were
packaged at −80 ◦C and sent to individual laboratories.

3.3. Analytical Procedure

The metabolite extract was distributed among 12 laboratories and was analyzed using their own
metabolome analysis methods, including 15 methods [25–37] for hydrophilic metabolites and nine
methods [38–44] for hydrophobic metabolites. Here, an analysis method includes the pretreatment
of samples (such as addition of internal standards, extraction, phase separation, clean up, and/or
derivatization), chromatographic separation, MS detection, and data processing. From each six



Metabolites 2019, 9, 257 9 of 12

distributed samples (triplicate extracts of two cell lines), six pretreated samples were prepared.
Metabolome data were obtained by six runs in total, from which signal intensity data were prepared.
The details of each analytical method are described in the Supplementary Materials Tables S3 and S4.

3.4. Data Analysis

Data processing, including peak picking and metabolite identification, was conducted according
to each laboratory’s specific method. The relative quantitative data (HT-29/AsPc-1) for each metabolite
were obtained from the triplicate analyses. The details of data processing and normalization data for
each analytical method are described in the Tables S3 and S4. The integrated data were subsequently
analyzed based on a two-sided Student’s t-test or a one-way ANOVA to evaluate whether similar
results were produced by multi-laboratory distinct analytical methods. Statistical significance of each
metabolite between samples HT-29 and AsPc-1 was determined using a two-sided Student’s t-test
(p < 0.05). The number of metabolites that showed HT-29/AsPc-1 levels in different directions among
two or more methods was examined based on a two-sided Student’s t-test and a relative quantitative
value of 1 (Tables S1 and S2). The number of metabolites with statistically similar HT-29/AsPc-1
levels was also examined among multiple methods using a one-way ANOVA analysis (p > 0.05).
Subsequently, the number of metabolites that changed to a p-value of >0.05 by a one-way ANOVA
when ignoring one outlier in the data showing a p-value of <0.05 by a one-way ANOVA was searched
(Tables S1 and S2). All statistical analyses were performed using in-house scripts written in Python 3
using Numpy and Scipy modules.

4. Conclusions

In the present study, even if the results were obtained by different analytical methods, the results
could be compared by relative quantification. This indicates that if global quality control samples or
reference materials are prepared and shared for data normalization, data obtained at different facilities
and at different times may be integrated and compared. On the contrary, each analytical method that
gave similar results for a certain substance seemed to be accurate. However, it is difficult to generalize
this, and it seems that it can be applied only to specific metabolites. Of course, if the matrix (i.e., serum,
plasma, urine, etc.) is different, the assay must be revalidated for each metabolite. The reason why the
results differed among analyses was not only that other peaks (i.e., isobaric or isomeric ions) were
overlapping, but also because the peaks were identified incorrectly, or the sensitivity was poor and the
noise was significantly impacted. For the former, it could be improved by using a standard material
and for the latter by specifying a lower limit of quantification. In this study, relative values were
often very different, but if these variations could be corrected, relative quantitative data obtained from
different laboratories could be integrated for new biological findings by a large dataset that cannot be
achieved by one facility. It can also be a means to verify the certainty of new analytical methods.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/11/257/s1,
Figure S1: Incomparable relative quantitative values produced from multiple methods (PDF), Table S1:
Relative quantitative data (HT-29 cell extracts/AsPc-1 cell extracts) and results of statistical tests of 206
hydrophilic metabolites obtained using 15 different methods (XLSX), Table S2: Relative quantitative data
(HT-29 cell extracts/AsPc-1 cell extracts) and results of statistical tests of 584 hydrophobic metabolites
obtained by 9 different methods (XLSX), Table S3: Sample preparation procedure, separation, MS detection,
data processing, and normalization of data for each analytical method of hydrophilic metabolites (XLSX),
Table S4: Sample preparation procedure, separation, MS detection, data processing, and normalization of data for
each analytical method of hydrophobic metabolites (XLSX).
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