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Abstract

Organisms generate a variety of noise types, including neural noise, sensory noise, and

noise resulting from fluctuations associated with movement. Sensory and neural noises are

known to induce stochastic resonance (SR), which improves information transfer to the sub-

jects control systems, including the brain. As a consequence, sensory and neural noise pro-

vide behavioral benefits, such as stabilization of posture and enhancement of feeding

efficiency. In contrast, the benefits of fluctuations in the movements of a biological system

remain largely unclear. Here, we describe a novel type of noise-induced order (NIO) that is

realized by actively exploiting the motion fluctuations of an embodied system. In particular,

we describe the theoretical analysis of a feedback-controlled embodied agent system that

has a geometric end-effector. Furthermore, through several numerical simulations we dem-

onstrate that the ratio of successful reaches to goal positions and capture of moving targets

are improved by the exploitation of motion fluctuations. We report that reaching success

rate improvement (RSRI) is based on the interaction of the geometric size of an end-effec-

tor, the agents motion fluctuations, and the desired motion frequency. Therefore, RSRI is a

geometrically induced SR-like phenomenon. We also report an interesting result obtained

through numerical simulations indicating that the agents neural and motion noise must be

optimized to match the prey’s motion noise in order to maximize the capture rate. Our study

provides a new understanding of body motion fluctuations, as they were found to be the

active noise sources for a behavioral NIO.

Introduction

The bodily movements of a biological system are noisy because of the stochastic nature of bio-

logical sensory, neural, and actuation systems. Sensory and neural noise induce stochastic res-

onance (SR), which provides a variety of benefits to an organism. These benefits include

improvements in information transmission to and through the neural system. Furthermore,

sensory and neural noise enhance cognitive performance [1, 2], reflexes [3], feeding [4–6], sto-

chastic action selection [7], and memory-perception balance [8, 9] (for other benefits of SR,

see the following reviews [10–12]). In contrast to the tremendous known benefits of neural
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and sensory noise, the benefits of the noise inherent in motion fluctuations are largely unclear.

In fact, only a few SR-like benefits have been proposed for this type of noise (e.g., improve-

ments in visual acuity due to eye tremor [13]).

The major reason that motion fluctuation is not considered to be a source of behavioral SR

or other noise-induced order (NIO) is that it exhibits a Lorentz-type spectrum and long-term

correlation. In fact, it has been shown that colored noise in general degrades the SR effect in a

nonlinear system [14, 15]. Because the motion fluctuations of relatively large-bodied animals,

such as mammals, reptiles, and fish mostly have long correlation times, they cannot be used

directly as sources of noise to induce SR in a nonlinear system. However, these motion fluctua-

tions can still be helpful for a neurophysical agent. We find that by using the measure of reach-

ing success rate, we can observe a novel kind of NIO. Furthermore, we report that the bodily

motion fluctuations of a neurophysical agent provide aperiodic and stochastic input signals to

a feedback motion controller consisting of neurons. This leads to the emergence of neural ape-

riodic SR [16–18].

In the following article, we report the results of our theoretical analysis of the reaching suc-

cess rate improvement (RSRI) of a Brownian particle that is controlled to reach a periodically-

moving target. Next, we demonstrate that the RSRI ratio is dependent on the geometric size of

an end-effector used to catch a target. We further show the RSRI is a novel NIO based on the

mechanism of geometric-stochastic resonance (GSR), wherein the geometric size of the end-

effector, the frequency of the target movement, and the motion noise intensities interact with

each other and improve reaching success ratio. As an applicative and more general experimen-

tal framework of GSR, we consider a numerically-simulated neurophysical agent with a two-

dimensional body and a neural motion controller consisting of two arrays of FitzHugh-

Nagumo neurons. Furthermore, we consider two experimental setups implemented using

numerical simulations: a static reaching task, wherein the agent tracks along a predesigned

path, and a dynamic capturing task, wherein the agent captures randomly moving objects.

Methods

Theoretical basis of RSRI via GSR

We consider an overdamped Brownian particle driven by a feedback controller as

_x ¼ � lx þ Kðxgðt0Þ � xÞ þ
ffiffiffiffiffiffiffiffi
2D0

p
xðt0Þ; ð1Þ

where x is the position of the particle, xg is the pre-designed goal position at time t0 and xg(t0)

= �0 cos(f0t0), K is the feedback gain, D0 is the noise intensity, and ξ is the Gaussian noise of the

unit standard deviation [Fig 1(A)]. By introducing a new timescale t = (λ + K)t0, we can elimi-

nate the prefactor of the term (λ + K)x which appears on the right hand side, and Eq (1) is

transformed to the standard form of the Langevin equation

_x ¼ � x þ � cos ðftÞ þ
ffiffiffiffiffiffi
2D
p

xðtÞ; ð2Þ

where � = �0K/(λ + K), f = f0/(λ + K), D = D0/(λ + K). The probability density function of the

particle position P(x, t) is fully described by the following Fokker-Planck equation:

@tPðx; tÞ ¼ @xðx � � cos ðftÞ þ D@xÞPðx; tÞ; ð3Þ

where @x denotes the operator @/@x. The exact solution of Eq (3) is provided by the Ref. [19] as

Pðx; tÞ ¼
ffiffiffiffiffiffiffiffiffi

1

2pD

r

exp
� ðx � g cos ðft þ aÞÞ

2

2D

� �

; ð4Þ
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where g ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 2

p
, α = arccos(g). The analytical form for the reaching success rate PR(t),

which is the probability that the agent reaches the range of [xg(t) − θ, xg(t) + θ] is computed by

hPRðtÞi ¼ PRðtÞ ¼
Z sðtÞþy

sðtÞ� y

Pðx; tÞdx ¼
1

2
erf

yþ B
ffiffiffiffiffiffi
2D
p

� �

þ erf
y � B
ffiffiffiffiffiffi
2D
p

� �� �

; ð5Þ

where s(t) = A cos(ft), A is the effective amplitude of xg, and is �0/(λ + K), B = �c − gcα, c = cos

(ft), � = �0 K(λ + K), cα = cos(ft + α). Note that the analytical form of the ensemble average of

PR(t) is identical to PR(t), that is, hPR(t)i = PR(t), where hzi denotes the ensemble average of z.

The peak PR(t) is calculated using D = Re(θB/log(±Q)), where Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð� y � BÞ=ðy � BÞ

p
,

and Re() denotes taking the real part. This indicates that the optimal noise intensity needed to

maximize reaching probability is dependent on the interplay between the geometrical size of

the end-effector and the drive frequency.

The probability hPRi = hPR(t = 1/f)i exhibits two distinct modes based on the balance

between θ and B, as shown in Fig 1(F). Surprisingly, limD!0hPRi is limited to either 1 or 0, as

lim
D!0
hPRi ¼

(
0; y � B;

1; y > B
ð6Þ

Fig 1. Theoretical analysis of RSRI. (A) Schematic model of a feedback-controlled Brownian particle agent. The agent has an end-effector of size θ used to

reach a target moving along the pre-designed path xg(t). For simplicity, we assume that xg(t) is periodic. (B,C,D) Plot of theoretical hPRi with contour lines

versus the moving target frequency f and the agent motion noise intensity D computed using Eq (5) with θ = 0.01 (B), θ = 0.1 (C), and θ = 1 (D). (E) B with

respect to f and A = 0.1, 1, 2, 3 with � = 1. Note that with t = 1/f, limf!1 B = A cos(1). (F) hPRi with respect to D × 10 and θ = 0.2, 0.4, 0.5, 0.55, 0.65, 0.8, 1 with

A = 0.1.

https://doi.org/10.1371/journal.pone.0188298.g001
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The condition θ� B corresponds to an unreachable regime, where the agent cannot reach the

target position without the help of noise, and hPRi is maximized by the optimal noise intensity,

as shown in Fig 1(B), 1(C) and 1(F). In contrast, θ> B corresponds to a reachable regime and

hPRi = 1 by D = 0, as shown in Fig 1(D) and 1(F). It may be counterintuitive that hPRi increases

following increases in f (i.e., a higher frequency leads to a more reachable condition) (Fig 1(B)

and 1(C)). This is because an increase in f results in a decrease in B, as shown in Fig 1(E), and θ
� B leads to hPRi> 0.

Design of simulated neurophysical agent

As an applicative and more general experimental framework for RSRI via GSR, we consider a

two-dimensional particle system driven by a nonlinear feedback controller consisting of two

arrays of FitzHugh-Nagumo neurons. The motion dynamics of the particle system are

described as

_v ¼ � gv þ f ðtÞ þ DmξmðtÞ; ð7Þ

where v is the velocity vector of the agent, f is the force generated by a neural motion control-

ler, γ is the friction coefficient and γ = 0.6 throughout this article, ξm(t) is a Gaussian noise vec-

tor of unit intensity, and Dm is the motion-noise intensity.

The motion controller is designed to receive a feedback signal s(t) and outputs the force f(t)
based on the neuronal firing rate of two ensembles of FitzHugh-Nagumo (FHN) neurons, one

for each dimension, as

f ðtÞ ¼ KðRðtÞ � R0Þ; ð8Þ

where K is the feedback gain, R0 is a offset variable, and R(t) is the firing rate of the neuron

ensemble. The dynamics of the ith FHN neuron of the jth ensemble is expressed as

�
_Vj

i ¼ Vj
i ðV

j
i � 1=2Þð1 � Vj

i Þ � Wj
i þ bþ sjðtÞ þ Dbxb;j; ð9Þ

_Wj
i ¼ Vj

i � Wj
i þ

ffiffiffiffiffiffiffi
2Ds

p
x

j
iðtÞ; ð10Þ

where � = 0.005, b is the bias signal, ξb is a Gaussian noise of unit intensity, Db is the bias vari-

ability and Db = 0 unless otherwise stated, sj(t) is the input feedback signal to the jth neuron

ensemble, V is the fast variable, and W is the slow recovery variable. Independently of the

motion additive noise Dmξm(t), a neuron ensemble receives additive noise Dsξ(t) where ξ(t) is

the Gaussian noise of the unit standard deviation and Ds is the noise intensity. The firing event

Rj
iðtÞ of a neuron is computed by

Rj
iðtÞ ¼

(
1; Vj

i > 0:5;

0; Vj
i � 0:5;

ð11Þ

The mean firing rate of the jth ensemble is computed as RjðtÞ ¼ 1=N
PN

i¼1
Rj

iðtÞ (N = 500

unless otherwise stated). The ensemble is in an excitable regime for b� 0.274, and is in an

oscillatory regime (i.e., neurons spontaneously fire without any signal input) for 0.274<

b< 0.3.
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The input signal s(t) encapsulates the computation performed by the neuron ensemble,

namely that of a positional PI (proportional-integral) feedback controller, as

sðtÞ ¼ g eðtÞ þ KI

Z t

0

eðt0Þdt0
� �

; ð12Þ

eðtÞ ¼ xgðtÞ � x; ð13Þ

where KI is gain for the error-integral control and g is the input gain. Furthermore, x(t) and

xg(t) are the current and desired agent positions, respectively. Note that xg(t) is predesigned in

the path-tracking experiment in Fig 2(A), and is dynamically updated at every simulation

time-step in the capturing experiment shown in Fig 2(B).

Numerical simulation of static reaching task

We consider two different kinds of tasks. First, we consider a static goal-reaching task. This

task consists of static path planning and path tracking. A static reaching task is the standard

motion control task for a biological system, e.g., arm-reaching or eye movement [20–22], and

for robot navigation. In this standard goal-reaching task, we assume that the target is fixed.

Agent motion fluctuations are influenced by the two noise sources, (1) the motion additive

noise Dmξm(t), and (2) the neural additive noise Dsξ(t).
In the numerical simulation shown in Fig 2(A), the agent is controlled to visit the four goal

positions (Xi, Yi) = (cos(1/4π + π/2i), sin(1/4π + π/2i)) (where i = 0, 1, . . ., 3) sequentially,

switching to a new goal every T [s] ((i = 0, 1, . . ., 3)). When the agent goal is switched to the

next one, the line from the agent’s current position x(t = kT) to the next goal position t =

(k + 1)T is equally partitioned into T/Δt sub-goals xg. The agent is controlled to track this pre-

Fig 2. Neurophysical agent design and task setup. (A, B) Two different numerical simulation setups for studying behavioral NIO. In setup (A), we study the

NIO when a neurophysical agent tracks along a static predesigned path. In setup (B), we study the NIO that occurs when the agent captures randomly moving

(i.e., noisy) targets. In the second paradigm, we consider not only the additive neural and force noises internal to the subject agent, but also the motion noise

of the moving target.

https://doi.org/10.1371/journal.pone.0188298.g002
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designed path xg(t). The offset R0 is computed as the time-average of R of the initial 100s in

every task simulation and this initial period is excluded from the performance analysis.

Performance measures of motion accuracy

Because the agent is scheduled to reach the kth goal at t = kT [s], we compute the distance de of

the agent position from the kth goal every T [s], and use de as a linear measure for the static

goal-reaching task. The ensemble average of de over different simulation trials, hdei is com-

puted as

hdei ¼

�
1

M

XM

k¼1

ððxðkTÞ � xgðkTÞÞ2 þ ðyðkTÞ � ygðkTÞÞ2Þ1=2

�

: ð14Þ

Furthermore, we use the average motion error hemi as another linear sensorimotor perfor-

mance index.

hemi ¼

�
1

Te

Z Te

0

dtðxðtÞ � xgðtÞÞ
2
þ ðyðtÞ � ygðtÞÞ

2

� �1=2�

; ð15Þ

where Te is a sufficiently long time. That is, hemi is computed by averaging the error across all

simulation time steps.

A nonlinear performance measure: Goal-reaching success rate

In addition to the measures de and em, we use a measure that is obtained by applying a nonlin-

ear function to de. A straightforward example of such a nonlinear measure involving using a

threshold function to digitize the distance de is

SRðdeÞ ¼

(
1; de < y;

0; de � y
ð16Þ

where de is the distance of the agent from the goal position. Note that the measure SR(de) is

applicable to many biological tasks, such as capturing prey, and to reaching tasks, where a sys-

tem’s physical body is required to be within a certain range of an object within a certain time

period. We use the ensemble average of the goal-reaching success rate hPRi as a task evaluation

measure. Sk
RðdeÞ is calculated every at t = kT [s], and the ensemble average of PR, hPRi is com-

puted as

hPRi ¼

�
1

M

XM

k¼1

Sk
RðdeÞ

�

: ð17Þ

Numerical simulation of dynamic capturing task

In the numerical simulation shown in Fig 2(B), we consider a dynamic reaching task where

the goal position (i.e., the position of the target objects) moves. In this setup, we use Brownian

particles as target objects. Therefore, the motion of the target object provides an additional

source of agent motion fluctuation. Note that in the framework (B), there is no pre-designed

path to track and the agent goal position is updated at every time step based on the movement

of the target object.

In the simulation environment, Np moving target objects are located randomly within

range [−L, L] (we use Np = 100 and L = 7.5 in this paper), as shown in Fig 2. The ith target
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object moves randomly based on the dynamics

mg;i _vg;i ¼ � gvg;i þ Dpζ iðtÞ þ Fw; ð18Þ

where mg = 0.1, vg,i is the velocity, zi(t) is the Gaussian noise of unit variance, and Dp is the

noise intensity. The target object is subjected to a force Fw from a virtual wall when it moves

beyond the region [−L, L].

The agent is controlled to pursue the position of a moving target. That is, xg(t) = xp(t)+vp(t)
Δt, where xp(t) and vp(t) are the position and the velocity of the current moving target, respec-

tively. When the distance dp between the agent and the target satisfies dp < θ, the moving target

is “captured” and is removed from the simulation. After the agent captures a certain target, the

target is switched to the nearest moving object. The offset R0 is computed as the time-average

of R of the initial 300s in every task simulation and this initial period is excluded from the per-

formance analysis.

The capturing rate per unit time is Cr, which provides a nonlinear measure of the agent’s

sensorimotor performance on this task. This is computed as

Cr ¼
1

T

Z T

0

Yðy � dpÞdt; ð19Þ

where Θ(z) is the Heaviside step function.

Results

Benefits of noise in the behavior of a neurophysical agent

For Ds = 0 and Dm = 0, the system exhibits fully deterministic behavior, although it may exhibit

jittering due to the overshooting characteristics of a simple feedback controller. In this deter-

ministic regime, the neural system exhibits a totally synchronized firing pattern across differ-

ent initial neuronal conditions (see Fig 3 for both the motion-control signal [S1, S2] and the

neural firing-rate time series [R1, R2]). Clearly, in this regime, neural spike frequency encodes

the motion control signal. The agent-movement and motion-control signals become stochastic

and aperiodic with either Dm > 0 or Ds > 0. For relatively large Ds values, the neuronal firing

rate also becomes asynchronous. Note that the combination Dm > 0 and Ds = 0 can generate

an aperiodic motion-control signal, but it cannot generate an asynchronous neuronal firing

rate.

Motion accuracy improvement by SR in a neural motion controller. Fig 4 shows that

the best motion accuracy, i.e., the minimum hdei or the minimum hemi, is realized when there

is nonzero neural noise Ds [Fig 4(A)–4(C)]. Interestingly, the peak positions for hdei and hemi

are very different (i.e., the minimum hdei is calculated using Ds� 0.01, and the minimum hemi

is calculated using Ds� 0.06).

The measure hemi has a strong dependency on the neural performance measures ρ, the cor-

relation coefficient of the input control signal and the neuronal firing rate, and No, the time-

averaged product of the s(t) norm and R(t) norm. Here, ρ and No are computed as r ¼

1=Te

R Te
0
ðsðtÞ � RðtÞÞdt=No and No ¼ 1=Te

R Te
0
ðk sðtÞ kk RðtÞ kÞ dt.

We can see that there exist two kinds of SR-based motion accuracy improvements: a sub-

threshold SR corresponding to a small input gain g [Fig 4(E)], and a suprathreshold SR corre-

sponding to a large input gain g [Fig 4(F)]. With the small input gain g * 0, the agent motion

tends to overshoot the desired path due to the poor information transmission to the motion

controller [Fig 4(E), bold gray line for Ds = 0 and solid red line with Ds = 0.06]. In contrast,

with the large input gain g� 0, the agent motion tends to oscillate around the desired path
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due to the hard synchronization of neuronal firing [Fig 4(F), bold gray line for Ds = 0]. This

synchronized neuronal firing is due to the poor pooling ability of the motor controlling neu-

rons (the panel (F) is obtained using Db = 0.1). The large bias variability Db� 0 can improve

the pooling ability in the noiseless neural controller Ds = 0. However, it must be noted that Db

� 0 obscures the SR effect for Ds > 0. Furthermore, the motion accuracy provided by SR is

higher than the motion accuracy realized using noiseless pooling with Db� 0 and Ds = 0, as

shown in panel (G). Note that g� 0 is exactly the case wherein SR growth [18] occurs. Fur-

thermore, we could not find any motion accuracy improvements due to the presence of force

noise (Fig 5).

Improvement in static reaching success rate

The distance de, which was used in the previous study, represents the “linear” difference

between the agent and the position of the goal. Because this difference is linear, de exhibits a

monotonic increase in response to the intensity of the additive force noises. This implies that if

we use a certain measure with a nonlinear dependence on the agent and goal positions, we

may observe benefits of motion noise in the sensorimotor task. In fact, as expected from the

theory of GSR, we observe the benefits of the noise when we use reaching success rate as a mea-

sure, as shown in Fig 6.

Fig 6 shows the goal-reaching success rate as a function of the neural and motion additive

noises Ds and Dm in the experimental setup shown in Fig 2(A). With the parameter sets shown

in Fig 6(A), 6(B), 6(D) and 6(E), the agent cannot achieve a good reaching success rate using

the default deterministic feedback control because force feedback gain K is not sufficient. In

this “deterministically unreachable” parameter region, the combination of nonzero neural

noise and nonzero motion noise leads to an improvement in the goal-reaching success rate.

This realization of RSRI can be interpreted as a result of the interplay between the motion

noise and the neural noise: motion noise generates an aperiodic input signal in the neural sys-

tem, as shown in Fig 3(S1), 3(R1), 3(S2) and 3(R2), and neural noise generates an aperiodic

neural SR [16–18]. Note: in the deterministically reachable region in Fig 6(C) and 6(F) (i.e., PR

Fig 3. Emergent aperiodic control signal and asynchronous neural firing. (S1, R1) The input signal to the motion actuator (S1) and the corresponding

neural firing rate R(t) −R0(R1), with Ds = 0 and Dm = 0. Note that the input signal to the actuator is totally deterministic, although it exhibits jittering. In addition,

the corresponding neural spikes are synchronized (the even vertical lines represent bursts of spikes, not individual spikes.) (S2, R2) An aperiodic and

stochastic control signal emerges with either Dm > 0 or Ds > 0 (S2). The corresponding firing rate becomes asynchronous if Ds > 0 (R2).

https://doi.org/10.1371/journal.pone.0188298.g003
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> 0 for Ds = 0 and Dm = 0), the PR improvement effect due to motion noise is in principle

unobservable (because PR = 1 by default).

Improvement in the capturing rate due to environment-agent noise

balancing

In the dynamic reaching experiment, we consider a task where the agent is controlled to cap-

ture moving prey. Furthermore, we investigate how the capture number per unit of time

depends on the motion fluctuations of the agent and those of the moving targets.

Fig 4. Motion change due to the presence of neural and force noises. (A, B) hdei and hemi with the parameters T = 10, K = 10, g = 0.02. (C) hdei with Dm

= 0.01 and hemi, with Dm = 0.05 as a function of Ds. (D) hρi and hNoi as a function of Ds. (E, F) The change in motion trajectory due to the presence of neural

and motion noises, with T = 10, K = 10, and g� 1 [(E)] and g� 0 [(F)]. The inset is an enlargement of the respective areas inside the rectangles. Note that

the bias variability Db� 0 leads to high pooling ability and reduces the oscillatory motion, but obscures the neuronal SR effect. Furthermore, the motion

accuracy achieved due to neuronal SR (with Db * 0 and Ds > 0) is higher than it is in the noiseless system with high motor pooling ability (with Db� 0 and Ds

= 0) (G). Numerical hdei, hemi, hρi, and hNoi are computed from 500 trials of a 500 s numerical simulation.

https://doi.org/10.1371/journal.pone.0188298.g004
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The dependence of capture rate hCri on Dm and Dp is shown in Fig 7(A) and 7(B), with

K = 0.5 and θ = 1. Clearly, hCri is improved with the presence of motion additive noise Dm.

Interestingly, hCri is also improved with the presence of Dp, which indicates the prey’s motion

noise. Furthermore, hCri is a function of Dp, Dm, and Ds. These interesting results imply that

the ability to capture is a function not only of agent motion and neural noise, but also of the

prey’s motion noise. From the point of view of the capturing agent, the neural and motion

noises must be adjusted to match the intensity of the prey’s motion noise. On the other hand,

for the prey to avoid being captured, it must adjust the intensity of its motion noise away from

that of the agents. This experimental result implies that biological systems in the context of sur-

vival competition will control their neural and motion noise intensities based on their environ-

mental noise levels.

The improvement in the capturing rate hCri due to Dm is dependent on the size of the geo-

metric threshold θ, as shown in Fig 8. It may be reasonable to presume that a larger biological

agent can more efficiently exploit the GSR that is induced by motion fluctuations when captur-

ing small targets.

Ref. [4–6] report that the feeding rate of paddlefish (capturing rate of planktons per minute)

is improved in the presence of electrical sensory noise. Conventionally, this feeding behavior

improvement has been thought to be the result of sensitivity improvement due to the presence

of electrical sensory noise. Our results may imply that, in addition, the electrical signal noise

induces motion fluctuations in the capturing agent, which then help to improve the capture

rate.

The effect of motion noise on the capturing task is summarized as follows: motion noise

enables reaching that is not obtainable deterministically, and the optimal motion noise inten-

sity is determined by a balance with the target motion noise.

Dynamic capturing rate improvement using a simple PI feedback

controller

To determine whether our results have general applicability, we obtained experimental data

using a simple PI motion controller that did not have any neurons. The force output of this

Fig 5. Motion error with respect to Ds. hemi with g = 0.02, Db = 0.1, and Ds = 0.05 for (A), and g = 0.5, Db = 0.1, and Ds = 0.005 for (B). The error bars

indicate standard deviations. Note that we could not find any significant improvements due to the presence of force noise Dm. Numerical hemi is computed

from 500 trials of a 500 s numerical simulation, and the error bars correspond to the standard error.

https://doi.org/10.1371/journal.pone.0188298.g005
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simple PI motion controller is described as

f ðtÞ ¼ K eðtÞ þ KI

Z t

0

eðt0Þdt0
� �

; ð20Þ

where e(t) = xg(t) − x.

Although several parameter adjustments are required, it is possible to reproduce the results

of Figs 7 and 8. Fig 9(A) shows the improvement in reaching success rate, and Fig 9(B1)–9(B3)

Fig 6. The goal-reaching success rate hPRi as a function of motion noise Dm and neural noise Ds. The task parameters are T = 10, K = 0.5 − 1.5 in

panels (A–C), and T = 5, K = 2 − 5 in panels (D–F). Additive motion noise improves reaching success rate when K is not sufficient to produce a 100% goal-

reaching success rate (this is shown in panels (A), (B), (D), and (E)). As shown in panels (C) and (F), if K is large enough to realize a 100% success rate, the

PR monotonically decreases with Dm. Numerical hPRi are computed from 100 trials of a 500 s numerical simulation with θ = 0.1 and N = 100, and the error bars

correspond to the standard error.

https://doi.org/10.1371/journal.pone.0188298.g006
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show the improvement in the capture rate. These results support the idea that behavioral SR in

reaching and capturing tasks is a general property of feedback-controlled physical agents.

Discussion

We investigated NIO in the context of sensorimotor coordination in a neurophysical 2D parti-

cle agent. The motion controller of the agent consisted of an FHN neuron ensemble. The addi-

tion of neural noise to the controller led to an improvement in the agent’s motion accuracy, as

shown in Fig 4(A)–4(C). The motion accuracy improvement by the addition of neural noise

would be primarily a consequence of the neural SR that optimizes the controller feedback out-

put, i.e., the maximization of ρ as shown in Fig 4(D). It must be noted that the addition of neu-

ral noise decreases the variance of a neural output [i.e., hNoi shown in Fig 4(D) decreases by

the addition of neural noise]. Because the addition of force noise to the agent body

Fig 7. Improvement in capture rate hCri due to motion noise Dm and the noise of the targets motion Dp. The ensemble average of the capture rate hCri

as a function of Dp and Dm with internal neural noise Ds = 1 × 10−3 (A) and Ds = 5 × 10−3 (B). The other parameters are K = 5, g = 10−2, b = 0.24, N = 100, and

θ = 1. The peak hCri is distributed roughly along the line Dp + Dm = 0.4 in (A) and Dp + Dm = 0.3 in (B). It is clear that the maximization of hCri requires a

balance among Dm, Ds, and Dp. Numerical hCri are computed from 400 trials of a numerical simulation.

https://doi.org/10.1371/journal.pone.0188298.g007

Fig 8. Capture rate modification by threshold size θ. The parameters are Ds = 1 × 10−3, K = 5, b = 0.24,

N = 100, and g = 0.01. The rate of improvement in capture rate is dependent on the size of the geometric

threshold θ. Numerical hCri are computed from 100 trials of a 500 s numerical simulation, and error bars

indicate standard errors and are within the symbols.

https://doi.org/10.1371/journal.pone.0188298.g008
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monotonically degraded motion accuracy, as shown in Fig 5, motion accuracy improvement

by the addition of neural noise would be a secondary consequence of the decrease in the neural

output variance.

Although motion fluctuations per se degrade motion accuracy, we found that a nonlinear
performance measure such as goal-reaching success rate can exhibit the emergence of an NIO

induced by the the motion fluctuations. Particularly, we found that motion fluctuations

improved the goal-reaching success rate hPRi, as shown in Figs 6–9.

Interestingly, for a neurophysical agent hPRi was a function of force additive noise intensity

Dm and neural additive noise Ds as shown in Fig 6. Furthermore, in a capturing task where not

only the neurophysical agent but also the prey’s motion was noisy, the capturing success rate

hCri was a function of agent force noise intensity Dm, neural noise intensity Ds, and prey’s

motion noise intensity Dp as shown in Figs 7 and 9. These results imply that biological systems

may handle the balancing of motion and neural noise dependently on the environmental

noise.

Fig 9. Behavioral SR of an agent driven by a simple non-neural PI controller. (A) Improvement in the goal-reaching success rate due to additive motion

noise. Numerical hPRi are computed from 40 trials of a 500 s numerical simulation with KI = 0.01 and θ = 0.1. Error bars in (A) indicate standard deviations.

(B1–B3) Capture-rate improvement due to motion additive noise. Numerical hCri are computed from 1,000 trials. The parameters for (B1–B3) are KI =

0.02 × 10−2 and θ = 2.

https://doi.org/10.1371/journal.pone.0188298.g009
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Task success ratio as a marker of NIO

It should be noted that we did not find any benefit of motion fluctuation based on measures of

the relationship between predesigned paths and the actual motion trajectories. Likewise, we

could not find SR-like benefits using measures of the distances among the goal positions and

the final agent positions. Only when using measures of the discretized state probability, such

as goal-reaching success rate and capturing rate, did we observe SR phenomena induced by

motion fluctuation.

It is worth noting that most of the conventional systems for studying SR require a discre-

tized dynamical representation or a digitized output. These systems include traditional dou-

ble-well potential systems, threshold systems, the spiking neuron, and two-state dynamical

systems (e.g., the FitzHugh-Nagumo neuron). These systems are capable of digitizing the

input signals or generating digitized output (for reviews of the conventional SR-capable sys-

tems and frameworks, see Refs. [11, 23–26]).

Furthermore, the conventional framework for detecting a weak signal requires a discretized

measure (i.e., detection or no-detection). In behavioral frameworks, responding to weak and

subtle sensory signals also requires a digitized response (i.e., response or no-response). A

recent concept for studying SR, called entropic SR [27] and GSR [28, 29], posits that Brownian

particles move between two rooms connected by a narrow aperture. In this case, the setup of

the two rooms provides the state digitization. (Note that the mechanism of GSR described in

Eq (5) would be very different from the conventional mechanism of GSR reported in Refs. [28,

29], although both studies share the common characteristic that the interaction of noise and

geometric constraints induce NIO). In this manner, a digitized measure, or digitizing dynam-

ics, may be implicit requisites for observation of the SR. At present, this idea is only an infer-

ence from analogy and requires theoretical analysis.

Measures of discretized-state probabilities, such as the goal-reaching success rate and cap-

turing rate can be generalized as task success ratios. It should be noted that the measure “task

success ratio” is a highly nonlinear function of a variety of arguments, such as the appropriate-

ness of feedback gain, neural noise intensity, neuron size, input signal gain, input-output infor-

mation, and the distance from the goal position. Therefore, the task success rate may be able to

implicitly represent the extent to which calculations of these arguments are improved by some

intervention.

Conclusion

In this paper, we investigated the prospective benefits of the bodily motion fluctuations of an

embodied physical agent. We considered a static path-tracking task and a dynamic capturing

task for moving prey agents. We found that motion fluctuations degrade motion accuracy, but

improve the reaching success rate and capturing rate. These results imply that a biological

agent may exploit bodily motion fluctuation in several behavioral tasks, such as reaching, cap-

turing, and navigation, by adjusting the intensity of the motion noise.
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