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Background. Typhoid is known to be heterogenous in time and space, with documented spatiotemporal clustering and hotspots 
associated with environmental factors. This analysis evaluated spatial clustering of typhoid and modeled incidence rates of typhoid 
from active surveillance at 4 sites with child cohorts in India.

Methods. Among approximately 24 000 children aged 0.5–15 years followed for 2 years, typhoid was confirmed by blood culture 
in all children with fever >3 days. Local hotspots for incident typhoid cases were assessed using SaTScan spatial cluster detection. 
Incidence of typhoid was modeled with sociodemographic and water, sanitation, and hygiene–related factors in smaller grids using 
nonspatial and spatial regression analyses.

Results. Hotspot households for typhoid were identified at Vellore and Kolkata. There were 4 significant SaTScan clusters 
(P < .05) for typhoid in Vellore. Mean incidence of typhoid was 0.004 per child-year with the highest incidence (0.526 per child-
year) in Kolkata. Unsafe water and poor sanitation were positively associated with typhoid in Kolkata and Delhi, whereas drinking 
untreated water was significantly associated in Vellore (P = .0342) and Delhi (P = .0188).

Conclusions. Despite decades of efforts to improve water and sanitation by the Indian government, environmental factors con-
tinue to influence the incidence of typhoid. Hence, administration of the conjugate vaccine may be essential even as efforts to im-
prove water and sanitation continue.
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Typhoid fever, caused by Salmonella enterica serovar Typhi, is 
an important public health problem leading to substantial mor-
bidity and mortality. The disease burden varies between and 
within countries. The World Health Organization estimates 
that worldwide around 11–20 million people acquire the dis-
ease and >150 000 people die annually [1–3].

In India, a recent systematic review estimated prevalence of 
typhoid fever from various hospital-based studies at 7% (95% 
confidence interval [CI], 5.7%–16.0%) and was higher during 
local disease outbreaks. Information regarding the burden of ty-
phoid fever in community settings from India was limited. The 
pooled incidence of laboratory-confirmed typhoid fever across 
all studies was 377 (95% CI, 178–801) per 100 000 person-years 

and highest among children aged 2–4  years, with significant 
heterogeneity between different studies [4].

Several epidemiological studies have identified either water 
or foodborne routes as the primary mechanisms involved 
in transmission of typhoid fever. The disease is higher in   
population that lack access to safe water and adequate san-
itation. Economically poorer communities and vulnerable 
population subgroups, including children, are at highest risk. 
Household-level characteristics including larger household 
size, recent typhoid fever in the household, members not using 
soap for hand washing, sharing food, and absence of a toilet are 
documented independent risk factors for typhoid fever [2, 5–7].

Geographic information science has been used to study 
at-risk areas and spatial clustering of typhoid fever. Typhoid, 
as with other diarrheal diseases, often exhibits geographic pat-
terns due to its feco-oral mode of transmission, mainly through 
shared water supplies. Spatial and temporal clustering of ty-
phoid cases has been documented at subnational levels [8–11], 
with local hotspots within smaller geographic regions associ-
ated with environmental factors [12–14]. Studies on typhoid 
examining spatial patterns and relationships at still finer scale 
of local neighborhoods and living environments are limited.
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The multicentric Surveillance for Enteric Fever in India 
(SEFI) study was conducted to obtain reliable and high di-
mensional estimates of burden of typhoid fever using multiple 
strategies in both urban and rural settings across the country 
[15]. This paper mapped and evaluated spatial clustering of ty-
phoid fevers; detected hotspots; and modeled incidence rates 
of typhoid fever, evaluating relationships with family-level 
sociodemographic and water, sanitation, and hygiene (WASH) 
practices in the 4 cohorts of the SEFI study.

METHODS

Data Sources and Spatial Mapping

The multicentric SEFI study was initiated in October 2017 with 
the objectives of (1) estimating the incidence of typhoid fever in 
children between 6 months and 15 years of age across 4 sites—3 
urban (Vellore, Kolkata, and Delhi) and 1 rural (in Pune)—
though an active community-based cohort surveillance (tier 1); 
(2) estimating the incidence of severe typhoid fever in all ages 
using a hybrid approach combining hospitalization and health-
care utilization data; (3) monitoring patterns of antimicrobial 
use and antimicrobial resistance in patients with typhoid fever; 
and (4) estimating cost and consequences of typhoid fever in 
different healthcare settings (tiers 2 and 3) in India [15].

The detailed study protocol, including sample size calcu-
lations, has been published previously [15], and the study 
was registered with the Clinical Trial Registry of India 
(CTRI/2017/09/009719). Sociodemographic and geospatial data 
and information on occurrence of blood culture–confirmed ty-
phoid fevers among the study participants were obtained from 
the active surveillance (tier 1)  component of the SEFI study. 
Geocoordinates of residences of consenting study families were 
collected during enrollment and subsequent home visits during 
follow-up of acute febrile illnesses in the community using elec-
tronic survey instruments. Spatial mapping of the boundaries of 
the study area was performed by trained field research assistants 
using handheld global positioning devices. Study area polygons 
and study houses were mapped, and spatial analyses were per-
formed using ArcGIS Desktop 10.7.1 software [16].

SPATIAL ANALYSIS

Spatial Clustering and Hotspot Analyses

Local hotspots for incident cases of typhoid fever were assessed 
using the Optimized Hot Spot Analysis by Getis-Ord Gi* local 
statistic tool in ArcGIS 10.7 to detect statistically significant spa-
tial clusters of high values (hotspots) and low values (coldspots) 
across the 4 study sites. The statistic returns a z score for each 
feature in the dataset; the larger the z score, the more intense the 
clustering of high values (hotspots) [17–22].

SaTScan software version 9.7, developed by Kulldorff, was 
used to detect and evaluate spatial clusters of typhoid fever at 
the sites using a purely spatial Poisson-based scanning model 
running a circular scanning window. SaTScan scans across time 

and/or space were used to identify possible clusters by com-
paring the number of observed events and expected events in-
side the window at each location. Clusters with significant levels 
with cutoff values such as .05, .01, and .001 after repeated Monte 
Carlo simulations were reported. The cluster with the max-
imum log likelihood ratio was taken as the most likely cluster 
(least likely to be due to chance). Secondary clusters in the re-
gions were also identified, and only nonoverlapping significant 
spatial clusters with high rates are presented [11, 23–28].

Incidence of Typhoid Fever and Spatial Autocorrelation Analysis

Since the rural cohort in Vadu, Pune had sparse cases of typhoid 
fever during the entire study duration, this site was excluded 
from further spatial analyses.

Polygon feature classes of tessellated regular hexagonal grids 
were created for each of the study sites with an approximately 
2500 m2 area (50 m × 50 m) using geoprocessing tools in 
ArcGIS 10.7 [29, 30]. Incident cases of typhoid were aggregated 
for these grids and incidence rates for the study duration were 
estimated for the grids. The zero inflated incidence data was 
normalized using the double arcsine Freeman–Tukey transfor-
mation technique [31–33]. The formula for the Freeman–Tukey 
double-arcsine transformation was

f (r, n) = arcsin

Å…
r

n + 1

ã
+ arcsin

Ç…
r + 1

n + 1

å

where r = number of events and n = person-time of follow-up.
To assess the degree of clustering and spatial patterns at each 

of the 3 sites (Vellore, Kolkata, and Delhi), local spatial auto-
correlation was assessed using local indicators of spatial asso-
ciation, estimated using the Anselin local Moran I statistic for 
transformed typhoid incidence rates (per child-year [CY]) in 
the hexagonal grids using the Cluster and Outlier analysis tool 
in ArcGIS 10.7. A positive value for the statistic I indicated that 
a grid had neighboring grids with similar high or low incidence 
rates and was a part of a cluster. A negative value for I indicated 
that the grid had neighbors with dissimilar values. Spatial auto-
correlation classified the features into “hotspots” (high values 
surrounded by high [HH]) or “coldspots” (low values next to 
low [LL]) and outlier clusters such as HL (high among low 
neighbors) or LL (low among low neighbors); those grids with P 
values <.05 were considered statistically significant [21, 34–38].

Spatial Regression Analysis

To better understand the influence of sociodemographic and 
WASH-related factors behind observed disease incidence 
rates in the local tessellated grids, initially, a global regression 
method—the ordinary least squares regression (OLS) analysis 
[39, 40]—was performed individually across 3 sites (Vellore, 
Kolkata, and Delhi) using the spatial statistics tools in ArcGIS 
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10.7. The number of study families, proportions of families in 
the lower socioeconomic strata, overcrowding, unsafe water 
and sanitation, untreated drinking water, purchasing ready-to-
use food from local small vendors, and children eating locally 
sold ice candy from street vendors in the grids were included 
as explanatory variables while the transformed typhoid inci-
dence rates at the hexagonal grid was the outcome variable. 
Variation inflation factors, corrected Akaike information cri-
terion (AICc) estimates, and R2 values that explain the varia-
bility in the dependent variable were considered to determine 
the best-fitting model at the sites [39].

Spatial autocorrelation of variables and spatial variations 
(nonstationary nature) of explanatory variables pose a chal-
lenge in meeting the requirements of a nonspatial statistical 
analysis like the OLS regression. Geographically weighted re-
gression (GWR) is a local regression analysis that can examine 
relationships at every feature level (grids in this case) and cal-
ibrate using nearby features assuming spatial nonstationarity, 
indicating that the correlations between the outcome and pre-
dictor variables are not the same for every feature [38, 41–45]. 
A  grid-level GWR was performed using the explanatory and 
outcome variables as in the OLS regression. Coefficients for dif-
ferent predictor variables were assessed and the standard resid-
uals from the model were mapped for the 3 sites. The larger the 
coefficient of a predictor variable, the stronger is its relation-
ship to the incidence of typhoid fever. Over/underestimation of 
typhoid incidence in the grids was assessed and spatial auto-
correlation of the standard residuals was performed using the 
global Moran I statistical tool to examine whether the obtained 
patterns were either clustered, random, or dispersed. While the 
z scores and P values indicate statistical significance, a positive 
Moran I index value indicates tendency toward clustering and 
a negative value indicates tendency toward dispersion [46, 47].

RESULTS

A total of 24  062 children were enrolled across 4 sites, with 
21  470 (89.2%) completing 24  months of follow-up. Of the 4 
sites, Vellore, Kolkata, and Delhi represented urban commu-
nities with geographic areas of 2.20, 4.15, and 0.42 km2, re-
spectively, while the site in Vadu, Pune with an area of 79 km2 
represented the only rural community in the tier 1 component 
of the SEFI study. During the study period, 299 incident cases 
of blood culture–confirmed typhoid fever were documented 
across the 4 sites; the highest number of cases was 146 from 
Vellore and there were only 4 cases from Vadu, Pune. Cases of 
typhoid fever were distributed across the study sites except in 
Vadu, where all 4 cases were observed in 1 locality (Figure 1).

Spatiotemporal Distribution of Typhoid Fevers

Of the 299 typhoid cases, 30 (10%) were documented during 
the last quarter of 2017 from Vellore. A  total of 91 and 176 
cases were recorded from all 4 sites for the years 2018 and 

2019, respectively. Cases of typhoid occurred in almost all 
months in Vellore and Kolkata. In Vellore, peak cases (56%) oc-
curred during the second quarter (April to June) of 2018 and 
2019, while 72% (58/81) and 64% (42/66) of cases were in the 
last 2 quarters in Kolkata and Delhi, respectively. Cases were 
densely distributed across 2 geographical localities in Vellore 
and Kolkata during the peak seasons, but no specific spatial 
pattern was seen in the denser Delhi cohort. Seasonality of in-
cident typhoid cases and their spatial distribution are presented 
in Figure 2 and Supplementary Figures 1 and 2.

Spatial Clustering and Hotspots of Typhoid Fever

Aggregating spatial data on incident cases of typhoid fevers and 
correcting for both multiple testing and spatial dependence, a 
total of 856 cohort households were identified as significant 
hotspots for typhoid at the 4 sites using the optimized Getis-
Ord Gi* statistic. Vellore with 146 typhoid cases had 365 hotspot 
cohort households whereas Kolkata, Delhi, and Pune had 131, 
175, and 186 households identified as potential hotspots during 
the study period (Figure 3).

A purely spatial SaTScan scanning for clusters with high in-
cident cases of typhoid fever using a discrete Poisson model 
revealed 4 statistically significant clusters (P < .05) for typhoid 
fever in urban communities of Vellore with the relative risks 
and radii being 5.4 and 0.5 km; 5.0 and 0.11 km; 4.0 and 0.13 
km; and 3.6 and 0.12 km, respectively. Even though 2 spatial 
clusters were detected in Kolkata and Delhi sites, these were not 
statistically significant (Figure 3).

Focal Incidence of Typhoid Fever in the Study Cohorts

There were 2421 hexagonal grids with at least 1 study house-
hold across the 4 study sites. The mean numbers of people and 
children aged <15 years per grid were 30.1 (standard deviation 
[SD], 0.4) and 11.7 (SD, 16.9) respectively. Mean incidence of 
typhoid fever in the grids was 0.004 (SD, 0.022) per CY and the 
highest incidence was 0.526 per CY. The Vellore and Kolkata 
sites had a few pockets with incidence rates >0.15 per CY 
(Figure 4).

Local Spatial Autocorrelation Analysis

Of the 1503 tessellated grids with study households across 
Vellore, Kolkata, and Delhi, 132 (8.7%) were high-high (HH) 
clusters for typhoid fever. Vellore had 11.4% (80/704) HH clus-
ters concentrated in 2 local neighborhoods toward the middle 
and south of the study area. In Kolkata, the HH clusters (48/624 
[7.7%]) were located toward the western part of the study area; 
the Delhi site, with only 2.3% of grids being HH clusters, did 
not demonstrate any geographic pattern (Figure 5).

Sociodemographic Predictors of Typhoid Fever Incidence

Exploratory regression analysis using the multivariate OLS re-
gression to model incidence of typhoid and its relationship to 
collected family-level sociodemographic and WASH practices 

http://academic.oup.com/jid/article-lookup/doi/10.1093/infdis/jiab379#supplementary-data
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Figure 1. Location of the 4 cohort sites in the Surveillance for Enteric Fever in India (SEFI) study. The 3 urban sites included Vellore, Kolkata, and Delhi. The only rural site 
was in Vadu, Pune.
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Figure 2. Seasonality in occurrence of typhoid cases across the 4 Surveillance for Enteric Fever in India (SEFI) cohort sites. This graph presents the occurrence of incident 
typhoid cases during different months across the 4 cohorts. Enrollment in Vellore started in late 2017, whereas the other sites started in 2018.
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Figure 3. Spatial hotspots and clustering of typhoid cases in the Surveillance for Enteric Fever in India (SEFI) study cohorts. Hotspot households for typhoid were present 
in all 4 sites, whereas significant SaTScan clustering was detected only in Vellore.
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at the grid level revealed that not all variables were consistently 
associated with burden of typhoid across the 3 locations.

The number of study families in the grids consistently showed 
a significantly negative association across all 3 locations, while 

the proportion of overcrowded families was positively associated 
with disease incidence in the Delhi site. Unsafe water and poor 
sanitation were positively associated, although not statistically 
significant, in Kolkata and Delhi. The proportion of families 

Vellore Kolkata

0 0.375 0.75 km 0 0.5 1 km

Not significant
Clusters from Anselin local Moran I analysis

High-high cluster

Low-low cluster

High-low outlier
Low-high outlier 0 0.175 0.35 km

Delhi

N

S

EW

Figure 5. Spatial patterns and clustering of typhoid disease in neighborhoods across 3 Surveillance for Enteric Fever in India study cohort sites. High-high clusters for ty-
phoid disease incidence were detected in Vellore and Kolkata and demonstrated specific spatial patterns.
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Focal incidence rates of  typhoid fever
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Figure 4. Focal incidence of typhoid fever across 3 Surveillance for Enteric Fever in India cohort study locations. Local neighborhoods with high typhoid incidence rates 
were present in Vellore and Kolkata and appeared to be randomly distributed.
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drinking untreated drinking water was significantly associated 
with typhoid incidence in both the Vellore (P = .034) and Delhi 
(P  =  .018) cohorts whereas in Kolkata, a nonsignificant posi-
tive association was detected. The proportion of families buying 
ready-to-use cooked food from local vendors associated with 
typhoid, was significantly higher in Kolkata (P  =  .0004). The 
proportion of variance (adjusted R2) in the incidence of typhoid 
fever in these cohorts as explained by the modeled predictor 
variables ranged from 15% to 21.7%. A summary of the multi-
variate OLS with model diagnostics is provided in Table 1.

A locally linear, nonparametric estimation using the GWR 
was used to deal with the nonstationary nature of the OLS re-
gression. Even though GWR did not improve the model fits 
from the OLS model according to the AICc values, the adjusted 
R2 values increased from 0.15 to 0.32; 0.18 to 0.27; and 0.21 to 
0.22 across the 3 cohorts (Table 1).

The mapped coefficients for proportion of families drinking 
untreated water and standard residuals of the GWR across 3 
cohort locations are presented in Figure 6.

The proportion of families consuming untreated water in 
the hexagonal grids was a strong predictor in the northern and 
southeastern parts of the Vellore catchment area, whereas it 
was more in the centrally distributed families in Kolkata and in 
the western neighborhood in the Delhi catchment area (Figure 
6A). Mapping of standard residuals of the GWR revealed ab-
sence of overestimation (blue grids) and a random distribution 
of underestimation (red grids) of typhoid incidence across the 
3 regions as indicated by the Moran indices for standard resid-
uals (Figure 6B). Moran I values for Vellore, Kolkata, and Delhi 

were 0.0121 (P = .51), 0.0161 (P = .28), and –0.0676 (P = .26), 
respectively.

DISCUSSION

The 4 locations included in the study varied in terms of catch-
ment area, with the urban area in Delhi spanning 0.42 km2 and 
the only rural site in Pune distributed over 79 km2. Typhoid 
disease incidence rates varied across the sites: lowest in the rural 
location (35 per 100 000 CY) and the highest in periurban com-
munities of Vellore (1173 per 100 000 CY) (John et al, unpub-
lished data), indicating wide heterogeneity in disease burden 
among children in the study cohorts.

In Vellore, typhoid cases were documented consistently 
during the study period except during the months of May–July 
in the year 2019 when the highest number of cases occurred 
coinciding with the relaying of a sewage network in these urban 
neighborhoods as part of the Smart City campaign, which could 
have resulted in a local outbreak of typhoid fever. In Kolkata 
and Delhi, higher numbers of cases were seen during the last 2 
quarters, which normally are the monsoon and postmonsoon 
seasons. During the peaks, cases of typhoid were spatially lo-
cated in certain localities of the study areas in Vellore and 
Kolkata, indicating limited geographic spread in these cohorts. 
In Pune, of the 4 cases, 2 were in the same locality but during 
different time points.

In Vellore, houses within close proximity (within a radius of 
150 m) of a typhoid case were at significantly higher risk of ty-
phoid, indicating pockets of focal transmission around the case 
houses, likely due to environmental exposure to contaminated 

Table 1. Multivariate Ordinary Least Squares Regression and Geographic Weighted Regression Models Using Transformed Incidence of Typhoid Fever at 
the Vellore, Kolkata, and Delhi Sites of the Surveillance for Enteric Fever in India Study

Variable

Best-Fitting OLS Models at 3 Sites

Vellore Kolkata Delhi

β SE P Value β SE P Value β SE P Value

Intercept .377277 0.029752 <.0001a .366093 0.039275 <.0001a .171992 0.080425 .0339a

No. of study families in the grid –.006046 0.000557 <.0001a –.00685 0.000644 <.0001a –.00441 0.00077 <.0001a

Proportion of families belonging to lower socioeco-
nomic status

–.010989 0.020173 .5861 –.01277 0.024091 .5963 .058593 0.050533 .2479

Proportion of overcrowded families –.013031 0.026886 .6280 –.0019 0.037766 .9599 .033664 0.073906 .6493

Proportion of families with access to unsafe water –.033016 0.07819 .6729 .023812 0.042469 .5752 .073252 0.218459 .7378

Proportion of families not treating drinking water 
before use

.036626 0.017264 .0342a .013631 0.024785 .5825 .081211 0.03423 .0188a

Proportion of families with unsafe sanitation –.019394 0.017466 .2672 .026532 0.025532 .2991 .020172 0.087223 .8173

Proportion of families buying ready-to-use food from 
local shops

–.011993 0.01705 .4820 .081287 0.022987 .0004a .039254 0.044708 .3812

Proportion of families with children consuming locally 
sold ice candy

.034116 0.02349 .1468 .033133 0.026364 .2093 .044577 0.033017 .1788

AICc –615.08 –396.05 –266.79

Adjusted R2 0.157 0.187 .218

AICc (GWR) –726.94 –445.95 –268.62

Adjusted R2 (GWR) 0.323 0.271 .226

Abbreviations: AICc, corrected Akaike information criterion; GWR, geographic weighted regression; OWS, ordinary least squares; SE, standard error.
aP < .05 is considered statistically significant.
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water or food. Although similar hotspot households were de-
tected in the Kolkata study site, there was no significant spatial 
clustering of cases. Since spatiotemporal analyses was not per-
formed, we could not assess whether these hotspots or clusters 
varied with both time and space at the study sites.

Since incident typhoid cases demonstrated specific spa-
tial patterns in these cohorts, disease burden and relationship 
with predictors were assessed at grid level. Three pockets with 
highest typhoid incidence (>0.25 per CY) were detected at the 
Kolkata site while 1 pocket each in Vellore and Delhi had in-
cidence rates of 0.21 and 0.08 per CY, respectively. The loca-
tions of significant clusters with higher typhoid incidence (HH 
clusters) did not spatially overlap with the clusters of typhoid 
cases as anticipated since incidence was estimated for all the 
households within the grid at grid level and is a function of 
person-time of follow-up.

Studies have documented that in addition to sociodemo-
graphic factors and WASH-related behaviors, typhoid occur-
rence is influenced by neighboring regions [7, 14, 48–50].

Modeling grid level–transformed typhoid incidence with 
sociodemographic and WASH predictors in this analysis by 
OLS regression found a negative relationship between number 
of study families and disease burden at the grid level, which 
was contrary to expectations. Similarly, we did not detect a 
positive relationship between proportion of lower socioeco-
nomic status families and disease in both Vellore and Kolkata 
whereas in Delhi, a nonsignificant positive relationship was 
seen. Higher population densities and a homogenous distribu-
tion of families with similar sociodemographic characteristics 
across these urban settings may have influenced our findings. 
The proportion of families that did not practice point-of-use 
water disinfection was strongly associated with disease burden 
in the microenvironments studied. These findings suggest that 
the prevalent community-level water treatment practices were 
inadequate and do not offer sufficient protection against gas-
trointestinal diseases. At one of the sites, the practice of pur-
chasing ready-to-use foods by the families was positively 
associated with typhoid, highlighting the importance of better 
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Figure 6. Mapping coefficients (A) and standard residuals (B) of the geographically weighted regression analysis. Coefficients for proportion of families consuming untreated 
water exhibited distinct spatial patterns, and there was no overestimation with a randomly distributed underestimation of typhoid incidence in the grids. Abbreviations: GWR, 
geographically weighted regression; SD, standard deviation.
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food hygiene and WASH practices, not only in the families but 
also in the neighborhoods.

Spatial modeling using the GWR adjusting for immediate 
neighborhoods and spatial nonstationarity confirmed that 
there was no overestimation of disease burden at the local grids 
and any underestimation was a random process in addition to 
strengthening the findings from the nonspatial regression anal-
ysis. Not accounting for meteorological predictors of typhoid 
disease is one of the limitations in this study.

CONCLUSIONS

The burden of typhoid disease was heterogeneous between 
urban and rural cohorts in the SEFI study. Local spatial clus-
ters and hotspots among households were present within the 
urban cohorts. Within each urban cohort, marked variations 
were noted in the disease incidence rates at local neigh-
borhood resolutions; presence of cases of typhoid in close 
proximities rendered the group of neighboring households at 
higher risk of acquiring the disease. Distribution of typhoid 
risk factors was uneven across the study cohorts. Not prac-
ticing point-of-use water treatment and consuming ready-
to-use food available in the neighborhoods were significantly 
associated with disease burden. Despite decades of efforts to 
improve water and sanitation by the Indian government, en-
vironmental factors continue to influence the incidence of 
typhoid. Hence, administration of the conjugate vaccine may 
be essential even as efforts to improve water and sanitation 
continue.

Supplementary Data

Supplementary materials are available at The Journal of Infectious 
Diseases online. Consisting of data provided by the authors to 
benefit the reader, the posted materials are not copyedited and 
are the sole responsibility of the authors, so questions or com-
ments should be addressed to the corresponding author.

Supplementary Figure 1. Spatial distribution of incident ty-
phoid cases for the year 2018. In the year 2018, higher numbers 
of typhoid cases were noted in the second quarter in Vellore and 
in the second and third quarters in Kolkata.

Supplementary Figure 2. Spatial distribution of incident ty-
phoid cases for the year 2019. In the year 2019, higher numbers 
of typhoid cases were noted in the second quarter in Vellore 
and in the third and fourth quarters in the Kolkata and Delhi 
cohorts.
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