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Abstract

Introduction Bisphosphonates are mostly used in the treatment
of bone metastases. They have been shown to act
synergistically with other chemotherapeutic agents. It is not
known, however, whether similar synergistic effects exist with
radiation on breast cancer cells.

Methods Human MCF-7 breast cancer cells were treated with
up to 100 uM zoledronic acid, were irradiated with up to 800
cGy or were exposed to combinations of both treatments to
determine the antiproliferative effects of zoledronic acid and
radiation.

Results Zoledronic acid and radiation caused a dose-
dependent and time-dependent decrease in cell viability
(approximate 50% growth inhibition values were 48 uM and 20
puM for 24 hours and 72 hours, respectively, for zoledronic acid
and 500 cQGy for radiation). A synergistic cytotoxic effect of the
combination of zoledronic acid and radiation was confirmed by
isobologram analysis.

Conclusion These data constitute the first in vitro evidence for
synergistic effects between zoledronic acid and radiation. This
combination therapy might thus be expected to be more
effective than either treatment alone in patients with metastatic
breast carcinoma.

Introduction

Breast cancer metastases in bone account significantly for
morbidity and mortality, and can cause intractable pain, spinal
cord compression and hypercalcemia. The survival of women
who have solely bone metastases as the predominant, or only,
metastatic site may be measured in years, indicating the
important therapeutic need for an effective bone-specific pal-
liative treatment [1]. This also signifies that the malignant proc-
ess is incurable since, once tumor cells become lodged in the
skeleton, therapy can only be given with palliative intent. This
includes analgesics, radiation therapy and systemic treat-
ments such as bisphosphonates (BPs) or chemotherapy.

Metastases from most cancer types are predominantly osteo-
lytic, except for those from prostate cancer, which at least radi-
ographically appear as sclerotic secondary lesions. Osteolysis
is primarily a result of increased activity in osteoclasts, result-

ing in elevated calcium levels in blood. The BPs are pyrophos-
phate analogs used to treat osteoclast-mediated bone
diseases, including osteoporosis, Paget's disease, hypercal-
cemia of malignancy, bone metastases and bone disease
associated with multiple myeloma [2]. Current views suggest
that BPs may affect the differentiation and recruitment of oste-
oclast precursors or may alter the capability of mature osteo-
clasts to resorb bone by altering the permeability of the
osteoclast membranes to small ions [3]. The high concentra-
tions of BPs that accumulate in bone are taken up by osteo-
clasts, specifically inhibit ATP-dependent enzyme systems,
induce apoptosis of osteoclasts by inhibiting the mevalonic
acid pathway, and thus disrupt the biochemical process that
leads to bone destruction.

We recently demonstrated that zoledronic acid, one of the
most potent nitrogen-containing BPs, induces antiproliferative

BP = bisphosphonate; Cl = combination index; DMSO = dimethyl sulfoxide; IC5,= 50% growth inhibition; IC,5= 75% growth inhibition; MTT = 3-
(4,5-dimethyl-thiazoyl)-2,5-diphenyl-SH-tetrazolium bromide; PBS = phosphate-buffered saline.

Page 1 of 7

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16925824
http://breast-cancer-research.com/content/8/4/R52
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/

Breast Cancer Research Vol 8 No4 Ural et al.

and apoptotic effects on multiple myeloma cell lines in vitro, by
activating protein kinase C, and increases the extracellular cal-
cium concentration, these effects being augmented with dex-
amethasone and thalidomide [4]. Although several years ago
the molecular target of the potent nitrogen-containing BPs
was identified as farnesyl diphosphate synthase, an enzyme in
the mevalonate pathway, recent data have shed new light on
the precise mechanism of inhibition and have demonstrated
that the acute-phase reaction, an adverse effect of BPs, is also
caused by inhibition of this enzyme [5].

In another study, we demonstrated that zoledronic acid was
able to increase disease-free survival in pristane-induced plas-
macytoma, a model with no direct bone involvement, in BALB/
¢ mice [6]. In that study, zoledronic acid treatment markedly
impeded intraperitoneal plasmacytoma development. The
treatment also decreased the tumor burden and extramedul-
lary tumor growth in mice. Other studies have also suggested
that BPs can inhibit the adhesion of breast cancer cells to
bone matrices and can enhance the ability of antineoplastic
agents to inhibit breast cancer cell invasion [7,8].

The demonstration that these BPs can induce apoptosis in
cells other than osteoclasts, and that the treatment of cancer
patients with BPs may improve survival, therefore raises the
intriguing possibility that BPs may also have direct antitumor
effects in breast cancer cells. Zoledronic acid is approved in
the United States and in Europe for the treatment of bone
metastases associated with breast cancer, prostate cancer,
lung cancer and renal cancer [9]. Zoledronic acid was also
found to be superior to pamidronate for the treatment of bone
metastases in breast carcinoma patients with at least one
osteolytic lesion [10].

Another well-established treatment modality for the local treat-
ment of bone metastases is radiotherapy. Although the treat-
ment effects of radiation for this application are primarily the
result of the direct destruction of tumor cells, it has recently
been shown that the effectiveness of radiotherapy could par-
tially be explained by the inhibition of osteoclastic activity [11].
BPs have been shown to act synergistically with other chem-
otherapeutic agents in breast cancer cells [12], which further
supports the notion that combined use of radiotherapy and BP
might be even more effective than either treatment alone. To
investigate this possibility we have now examined the cytotoxic
effects of zoledronic acid and radiation on MCF-7 breast can-
cer cells, both alone and in combination.

Materials and methods
The local ethics committee of Gulhane School of Medicine
approved the study.

Cell line and culture conditions
The human MCF-7 breast cancer cell line was generously sup-
plied by the Molecular Pharmacology and Therapeutics
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Department, Memorial Sloan-Kettering Cancer Center, New
York, USA. MCF-7 cells were maintained in RPMI 1640
medium supplemented with 10% heat-inactivated fetal calf
serum, and with 2 mM L-glutamine, 100 ug/ml streptomycin
and 100 U/ml penicillin in a 37°C incubator with a humidified
air and 5% CO, atmosphere. The culture medium was
changed twice a week. Cells were removed from the flasks by
treatment with trypsin—ethylenediamine tetraacetic acid.

Reagents

Zoledronic acid was kindly supplied as the hydrated disodium
salt by Novartis, Pharma AG (Basel, Switzerland). Zoledronic
acid was dissolved in <0.1% dimethyl sulfoxide (DMSO) and
diluted in culture medium (0.1-100 pM) immediately before
use. The DMSO concentration in the assay did not exceed
0.1%. For control of possible adverse effects of the DMSO
vehicle, medium alone also was used as a negative control in
all experiments. In all studies, DMSO and media-alone cultures
were equivalent. All other reagents were purchased from
Sigma (St Louis, MO, USA).

Measurement of cell number and percentage viability
MCF-7 breast cancer cells were resuspended in medium at 1
x 105 cells/ml, and 100 pl of 105 cells/ml cell suspension were
distributed into each well of 96-well plates (Costar, Cam-
bridge, MA, USA) and allowed to adhere for 24 hours. Cells
were thereafter incubated with increasing concentrations of
zoledronic acid (0.1-100 uM) and were treated for 24 and 72
hours to determine a 50% growth inhibition (IC;,) value for
zoledronic acid. In additional experiments, MCF-7 cells were
irradiated with doses of 200, 400, 600, and 800 cGy with a
Theratron 780 Cobalt 60 Teletherapy Unit (AECL Medical,
Ontario, Canada), with or without incubating the cells, with the
stated concentrations of zoledronic acid for 24 and 72 hours
to determine an ICg, value for radiation and to construct the
isobologram analyses. After irradiation, all plates were incu-
bated at 37°C in a 5% CO, atmosphere for an additional 24
hours. No medium changes were performed.

In some studies, target cells were plated at a density of 5 x
104 per well in 24-well plates with replicates of four wells per
treatment, and were allowed to adhere for 24 hours. Cells
were then incubated with fresh media containing 20 uM
zoledronic acid (ICg, value for 72 hours) for 96 hours to deter-
mine the time dependence of zoledronic acid toxicity. In each
separate experiment, following incubation, cells were har-
vested and suspended in PBS, and the cell number was deter-
mined using a haemocytometer (Bright-line; Hausser
Scientific, Horseam, PA, USA). Each experiment was repeated
on three occasions.

MTT assay

The 3-(4,5-dimethyl-thiazoyl)-2,5-diphenyl-SH-tetrazolium bro-
mide (MTT) assay was performed as previously described [4].
Target cells were resuspended in medium at 1 x 105 cells/ml,



and 100 pl of 105 cells/ml cell suspension were distributed
into each well of 96-well plates (Costar) and allowed to adhere
for 24 hours. Wells containing 200 pl medium alone without
cells and reagents were used as the negative controls.

After treatment for the stated incubation doses of zoledronic
acid and radiation, and for the stated times, 20 ul MTT solution
(5 mg/ml) was added to each well, and the microplates were
further incubated at 37°C for 4 hours. The unreactive superna-
tants in the well were discarded, and 100 pl acidified isopro-
panol (0.04 N HCI in isopropanol) was added to the cultures
and mixed thoroughly to dissolve the dark-blue crystals of for-
mazan. The absorbance values of each well were determined
with a microplate enzyme-linked immunoassay reader
equipped with a 570 nm filter. The negative control well was
used for the baseline zero absorbance.

The results are presented as the percentage viability, deter-
mined as (1 - absorbance of the experimental well/absorbance
of the positive control well) x 100. Each experiment was
repeated on three occasions.

Isobologram analysis

The isobologram method of analysis was used to assess
whether synergistic or additive effects were seen when
zoledronic acid and radiation were combined, as described
previously [13]. Dose-response curves were plotted for the
effects of zoledronic acid and for the effects of radiation on
MCEF-7 cell viability. From these curves, the combined drug
ICs,and 75% growth inhibition (IC,5) values (e.g. 75% of max-
imum effect, 25% remaining) were determined for each curve.
The ratio of the combined drug IC5,and IC,g values to the sep-
arate ICg, and IC, values for each drug alone were calculated
and plotted as an isobologram.

The combination index (Cl) was then calculated by the for-
mula: Cl = (d1/D,1) + (d2/D,2), where D1 is the dose of
agent 1 (radiation) required to produce x percentage effect
alone, and d1 is the dose of agent 1 required to produce the
same x percentage effect in combination with d2. D,2 is simi-
larly the dose of agent 2 (zoledronic acid) required to produce
x percentage effect alone, and d2 is the dose of agent 2
required to produce the same x percentage effect in combina-
tion with d1. The Cl values were interpreted as follows: <1.0,
synergism; 1.0, additive; and >1.0, antagonism. Each experi-
ment was repeated on three occasions.

Statistical analysis

Data are reported as the mean * standard deviation. Statistical
analysis was carried out using SPSS software (version 11;
SPSS Inc., Chicago, lllinois, USA). The two-tailed Student ¢
test was used to determine statistical significance of detected
differences. P < 0.05 was considered statistically significant.

Available online http://breast-cancer-research.com/content/8/4/R52

Results
Effects of zoledronic acid and radiation on breast cancer

cell growth

Treatment of MCF-7 cells with increasing concentrations of
zoledronic acid for 24 and 72 hours caused a dose-dependent
and time-dependent decrease in cell viability (Figure 1a).
Zoledronic acid (0.1-1 pM) had little effect on the viability of
MCEF-7 cells at 72 hours incubation. In contrast, zoledronic
acid at concentrations higher than 10 uM caused a reduction
in the viability of MCF-7 cells compared with controls (10%
reduction at 10 uM and 63% reduction at 100 uM, P> 0.05
and P < 0.01, respectively, for 24 hours incubation; and
47.5% reduction at 10 uM and 73% reduction at 100 uM, P
< 0.05 and P< 0.01, respectively, for 72 hours incubation).

The approximate 1Cg, values for zoledronic acid were 48 pM
and 20 pM for 24 hours and 72 hours, respectively. Treatment
of breast cancer cells with 20 uM zoledronic acid for increas-
ing periods of time resulted in a 86.5% reduction in MCF-7
cell growth at 72 hours and in a 93.3% reduction of control at
96 hours (P < 0.01 in each case) (Figure 1b). Radiation also
caused a dose-dependent decrease in cell viability. The calcu-
lated 1Cg, value for radiation on MCF-7 cells was around 500
cGy. Figure 2a shows that higher radiation doses result in suc-
cessively lower cancer cell survival.

Combination of zoledronic acid and radiation

Breast cancer cell viability was inhibited by either zoledronic
acid or radiation over the 1-100 uM and 200-800 cGy
ranges, respectively. A combination of radiation with
zoledronic acid caused a greater reduction in cell viability than
did either treatment on its own (Figure 2b). Treatment of
breast cancer cells with radiation alone induced a 75% growth
inhibition (IC,5 value) from approximately 600 cGy to 800 cGy
doses. The IC,5 concentration for zoledronic acid alone was in
the range of 100 uM for 24 and 48 hours incubation. Com-
pared with the single agent, the IC,5 values for the dose pairs
(radiation and zoledronic acid together for both time expo-
sures) fall below 1.0, indicating that the combination is syner-
gistic (Figure 3).

Discussion

Our study demonstrates a dose-dependent and time-depend-
ent cytotoxic effect of zoledronic acid on breast cancer cells in
vitro. These results are consistent with earlier reports that
zoledronic acid can inhibit breast cancer cell proliferation and
invasion, and can induce apoptosis [14-16]. These studies
reported cell growth inhibition levels closer to our results,
between 50 and 100 pM.

Current trends in the treatment of human tumors are with drug
combination. This approach results in improved responses as
well as the ability to use lower, less toxic concentrations of the
drugs. In clinical practice, metastatic breast cancer patients
would rarely be treated with BPs alone, and may instead be
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Effect of zoledronic acid treatment on MCF-7 cell viability. (a) MCF-7
cells treated with increasing concentrations of zoledronic acid (0.1-
100 puM) for 24 and 72 hours to determine a 50% growth inhibition
(ICsp) value. (b) MCF-7 cells treated with 20 uM zoledronic acid for
increasing time of incubation to determine the time dependence of
zoledronic acid (ZOL) toxicity. Results are expressed as the percentage
of control or absolute cell numbers. *Statistically significant values com-
pared with control. Ctl, control.

given drug combinations such as anthracyclines and taxoids.
The antitumor effect of BPs can therefore also be enhanced by
coadministration of chemotherapeutic agents. We recently
showed that zoledronic acid inhibits cell growth and synergis-
tically induces apoptosis with dexamethasone and thalidomide
on multiple myeloma cells [4]. In another study, combined
treatment with alendronate and paclitaxel showed a greater
effect on bone metastatic and nonbone metastatic develop-

Page 4 of 7

(page number not for citation purposes)

Radiation dose effect on MCF-7 cells. (@) MCF 7 cells treated with
radiation alone. (b) The cytotoxic effect of radiation on MCF-7 cells
increased steadily after incubating the cells with higher zoledronic acid
concentrations. Ctl, control.

ment than treatment with each agent alone [17], while a syn-
ergistic effect on apoptosis was reported after
coadministration of ibandronate or zoledronic acid with chem-
otherapeutic agents on breast cancer cells in vitro [12,16]. A
most exciting recent observation is that sequential treatment
of two drugs is even better than simultaneous treatment [18].
This notion, the synergistic antitumor effect of zoledronic acid
with other chemotherapeutic agents, further supports the
combined use of BPs and radiotherapy. We have shown that
using the combination of zoledronic acid and radiation always
synergistically enhanced growth inhibition on breast cancer
cells compared with each agent alone.



Figure 3
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The combination index (CI) for the cell treatments with zoledronic acid (ZOL) and radiation (RT) for 24 and 72 hours. Cl < 1.0 clearly points to a syn-

ergistic effect.

The results for the combination of zoledronic acid and radia-
tion are novel and intriguing because they immediately sug-
gest the clinical utility of using zoledronic acid combined with
radiation especially in patients with metastatic breast cancer.
The combination proved to be true synergism rather than a
simple additive effect, as shown clearly by the calculated ClI
(<1.0) (Figure 3). Algur and colleagues showed previously
that increasing the incubation time with zoledronic acid to yield
the optimal BP concentration during irradiation enhanced the
synergistic effect of zoledronic acid and radiation on prostate
and myeloma cell lines [19]. The synergistic effect might there-
fore be greater if the concentration and kinetics of the drugs
are further optimized.

The biochemical mechanism of action of the BPs is now well
documented, with nitrogen-containing BPs such as zoledronic
acid affecting cellular behavior through inhibition of the meval-
onate pathway [2]. In addition, the identification of BP analogs
that inhibit different enzymes in the mevalonate pathway could
lead to the development of novel inhibitors of bone resorption
with potential applications in the treatment of metastatic bone
disease [5].

The goal of radiotherapy is to eradicate malignant cells without
damaging surrounding normal cells. Radiotherapy is usually
delivered only to the immediate lesion area, to spare bone mar-
row and normal soft tissue as far as possible. In bone metas-
tases, the endpoint of clinical success is pain palliation and
enhancement of bone strength. The synergistic mechanism of
zoledronic acid and radiation, however, is currently unknown.
We recently showed by flow cytometric analysis of zoledronic
acid-treated MM cells an increase in the proportion of cells in
the S-phase, possibly due to a slower progression through the
S-phase or a block between the S-phase and G,M-phase in

the cell cycle [4]. Using small-cell lung cancer cell lines, Mat-
sumoto and colleagues reported that cell growth inhibition
may involve not only induction of apoptosis, but also prolonga-
tion of cell cycle progression by zoledronic acid alone or com-
bined with anticancer agents [20]. This ability of zoledronic
acid to arrest cells in the G,M phase or to prolong cell cycle
progression raises the possibility of zoledronic acid as a
potential cell cycle radiosensitizer because G, and M cells are
more sensitive than cells within other cell cycle phases [21].

Human cancers are often characterized by Ras mutations that
lead to the constitutive activation of the Ras signaling pathway.
Effective Ras signaling requires the attachment of Ras pro-
teins to the plasma membrane, a process initiated by the
enzyme farnesyl protein transferase. The blockade of Ras
binding to the plasma membrane may therefore be a good
therapeutic target for the treatment of malignancies [22].
Third-generation BPs deplete the cellular pool of both geran-
ylgeranyl pyrophosphate and farnesyl pyrophosphate, and
thereby inhibit both geranylgeranylation and farnesylation [23].
Salomo and colleagues reported that BP-resistant cells had
increased farnesyl pyrophosphate synthase activity, although
this was not due to upregulation of its gene transcription. Sen-
sitivity differences to BPs may therefore result, at least in part,
from increased activity of farnesyl pyrophosphate synthase
[24].

It has been shown that overexpression or transformation of
rodent or human cells by Ras results in cell lines that are sub-
stantially more resistant to radiation than are the parental cells
[25]. Conversely, inhibition of Ras activation resulted in radio-
sensitization both in rodent cells transfected with Ras and in
human tumor cells bearing endogenous mutations in Ras [26].
The radiosensitizing effect of BPs could therefore also be
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attributable to Ras signaling blockade by depleting the cellular
pools of both geranylgeranyl pyrophosphate and farnesyl
pyrophosphate.

Both prolonged G,M accumulation concomitant with an
increase in susceptibility to induction of apoptosis and Ras
signaling blockade may be associated with the cellular
mechanisms of radiosensitization produced by BPs in tumor
cells. In patients presenting with widespread bone metas-
tases, retreatment of the same bone lesion is a factor that
diminishes the quality of life. Adding zoledronic acid treatment
to standard palliative radiotherapy might improve the latter's
effectiveness. The outcome could be monitored in terms of
mineralization, which represents healing of a particular
metastasis. For breast carcinoma, combining standard radia-
tion treatment with zoledronic acid might produce the same
effect with a lower radiation dose, thus producing fewer side
effects, lower fraction doses or lower total doses.

Conclusion

The present study substantiates the synergistic cytotoxic
effect of zoledronic acid combined with radiation on breast
cancer cells. This in vitro finding is consistent with previous
studies showing a synergistic effect of zoledronic acid with
various chemotherapeutic agents. Turning to the clinical situa-
tion, the combination of zoledronic acid and radiotherapy
might allow a reduction in radiation fraction doses or fraction
numbers while maintaining the therapeutic effect in metastatic
breast carcinoma patients.
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