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Abstract

Background: In oviparous vertebrates, including fish, vitellogenesis consists of highly regulated pathways involving |7(3-
estradiol (E2). Previous studies focused on a relatively small number of hepatic expressed genes during vitellogenesis.
This study aims to identify hepatic genes involved in vitellogenesis and regulated by E2, by using zebrafish microarray gene
expression profiling, and to provide information on functional distinctive genes expressed in the liver of a vitellogenic
female, using zebrafish as a model fish.

Results: Genes associated with vitellogenesis were revealed by the following paired t-tests (SAM) comparisons: a) two-
month old vitellogenic (Vit2) females were compared with non-vitellogenic (NV) females, showing 825 differentially
expressed transcripts during early stages of vitellogenesis, b) four-month old vitellogenic (Vit4) females were compared
with NV females, showing 1,046 differentially expressed transcripts during vitellogenesis and c) E2-treated males were
compared with control males, showing 1,828 differentially expressed transcripts regulated by E2. A Venn diagram
revealed 822 common transcripts in the three groups, indicating that these transcripts were involved in vitellogenesis
and putatively regulated by E2. In addition, 431 transcripts were differentially expressed in Vit2 and Vit4 females but not
in E2-treated males, indicating that they were putatively not up-regulated by E2. Correspondence analysis showed high
similarity in expression profiles of Vit2 with Vit4 and of NV females with control males. The E2-treated males differed
from the other groups. The repertoire of genes putatively regulated by E2 in vitellogenic females included genes
associated with protein synthesis and reproduction. Genes associated with the immune system processes and biological
adhesion, were among the genes that were putatively not regulated by E2. E2-treated males expressed a large array of
transcripts that were not associated with vitellogenesis.

The study revealed several genes that were not reported before as being regulated by E2. Also, the hepatic expression
of several genes was reported here for the first time.

Conclusion: Gene expression profiling of liver samples revealed 1,046 differentially expressed transcripts during
vitellogenesis of which at least ~64% were regulated by E2. The results raise the question on the regulation pattern and
temporal pleiotropic expression of hepatic genes in vitellogenic females.
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Background

The accumulation of yolk in oocytes of oviparous animals
during oocyte development is essential for proper embry-
onic development after fertilization and is therefore, a key
process in successful reproduction. In fish, the egg yolk
protein precursors (vitellogenins) are synthesized in the
liver, secreted to the plasma and transported to the
oocytes for uptake in a process known as vitellogenesis.
Several metabolic changes occur during vitellogenesis in
the maturing female fish as reflected in the pronounced
increase in liver weight, RNA content, lipid deposition,
glycogen depletion, plasma proteins, calcium and magne-
sium and phosphoprotein content [1,3].

The most dominant trigger of vitellogenin (vtg) expression
is the ovarian steroid hormone 17-estradiol (E2) that is
synthesized under the regulation of the hypothalamic-
pituitary-gonad axis [reviewed in [4]]. Most data to-date
supports the premise that the action of estrogens is medi-
ated principally through specific nuclear Estrogen recep-
tors (ERs). In the "classical" or "genomic" mechanism of
E2 action, estrogens diffuse into the cell and bind to ERs,
which are located in the cytosol or the nucleus of target
cells. After ligand binding, the ERs form homo- or hetero
dimers that bind to specific palindromic estrogen
response elements (ERE) sequences [5] in the promoter
region of estrogen-responsive genes, resulting in recruit-
ment of coactivators or corepressors to the promoter. Sub-
sequently this leads to increased or decreased mRNA
levels and associated protein synthesis, resulting in the
physiological response [6]. Two main ERs (ERa and ERb)
were characterized in mammals, birds and fish. Three ER
subtypes were described so far for fish and include the
Estrogen receptor 1, Estrogen receptor 2b and Estrogen
receptor 2a [with the gene names of estrogen receptor 1
(esr1), estrogen receptor 2b (esr2b) and estrogen receptor 2a
(esr2a), respectively) [7,9]. Some of the effects of estro-
gens are so rapid that they cannot depend on RNA and
protein synthesis and are known as non-genomic actions.
They involve activating protein-kinase cascades, leading
eventually to regulation of gene expression through phos-
phorylation and activation of transcription factors (TFs)
within the nucleus [10,12].

Hepatic expression of vzg is tightly coupled to E2-depend-
ent up-regulation of esr1 expression [13,15]. Vtg is specific
to maturing females and therefore assessment of vig
expression or Vtg plasma levels is considered a useful
approach in evaluating female maturity related with
peripheral gonadal steroid changes [16]. This protein is
normally not detected in males or juveniles, but yolk pre-
cursor proteins can be detected in males or juveniles
exposed to estrogens. Hepatocytes synthesize yolk precur-
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sor proteins when stimulated with exogenous estrogens or
substances that mimic estrogens. Several changes in
hepatic morphology such as proliferation of the endoplas-
mic reticulum and the Golgi apparatus also accompany
estrogen stimulation. These aspects were investigated in
several oviparous species [4,17-23].

Vitg is a large (MW, 250-600 kDa) and complex calcium-
binding phospholipoglycoprotein and in order to reach
the end product found in the plasma, substantial post-
translational modification must occur within liver cells.
First, the protein backbone of Vtg is synthesized on mem-
brane-bound ribosomes and subsequently the Vtg mole-
cule is lipidated, glycosylated and phosphorylated
[Reviewed in [3]]. In addition, Vtg may carry additional
compounds such as retinal that are also transported to the
developing oocytes [24]. The genes involved in these proc-
esses have not been fully elucidated. In zebrafish, seven
vtg genes were previously identified [25] but recent pro-
teome profiling data from maturing ovarian follicles indi-
cates the occurrence of eight vtg's [26]. The proteins fall
into three main families represented by Vitellogenin 1 or
VtgAo1 (with five corresponding genes, vtg 1, 4, 5, 6 and
7), Vitellogenin 2 or VtgAo2 (with two vtg2 genes) and
Vitellogenin 3 or Vtg C (encoded by vtg3). Many more
genes appear in the genome of zebrafish and fourteen of
these genes were tightly linked to chromosome 22, while
the phosvitinless gene (vtg3) was located on chromosome
11[27].

In recent years, the study of hepatic expressed genes
involved in fish vitellogenesis focused on few genes such
as vtg, esrl, insulin-like growth factor 1 (igf1), zona pellucida
glycoproteins (zp's), choriogenin H, cytochrome p450, family
1, subfamily a (cyp1a; also known as cyplal) and peroxisome
proliferator-activated receptors (ppar's) [3,15,28-32] that are
known to be regulated by estrogen. It is also well known
that teleost apolipoproteins such as Apolipoprotein A-I
(Apoal), Apolipoprotein A-II (Apoa2) and Apolipopro-
tein E (Apoe) are regulated by E2 and presumably contrib-
ute to changes in the lipoprotein classes during
vitellogenesis in fish [33,35]. A high-throughput expres-
sion genomics approach would provide complementary
information to the single-gene approaches used so far.
Large-scale microarrays, available for model fish species
including zebrafish, provide the opportunity to simulta-
neously monitor the expression of thousands of genes in
different physiological stages during vitellogenesis. This
approach has already been used with success to elucidate
the zebrafish embryonic transcriptome [36,37], to under-
stand the molecular pathways defining gender specificity
in zebrafish [38,39] and to explore hepatic gene expres-
sion after exposure to different estrogens [40,44].

Page 2 of 17

(page number not for citation purposes)



BMC Genomics 2009, 10:141

The present study aims to identify genes involved in vitel-
logenesis and putatively regulated by E2 in the liver of
zebrafish as a model fish, by using zebrafish oligonucle-
otide microarrays. Comparison of the hepatic expression
profiles of vitellogenic and non-vitellogenic females pro-
vides information on the genes associated with vitellogen-
esis. In order to reveal E2-regulated genes, E2 treatment
was administered to males for 48 hr at levels detected in
the plasma of vitellogenic female. Genes suggested to be
regulated by E2 were revealed by comparing the gene
expression profiles of E2-treated males with those of vitel-
logenic females. The results also provide comparative
information on the hepatic transcriptome profiles of 2-
and 4- month old vitellogenic and non-vitellogenic
females, E2-treated and control males and of the resem-
blance in gene expression profiles of these five groups.
Distinctive putative pathways for the liver of vitellogenic
females were found by analyses of the molecular func-
tions and biological processes of the different treatment
groups.

1 mm

Figure |
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Results

Oocyte developmental stages in ovaries of vitellogenic and
non-vitellogenic females

Microscopic examination of the ovaries collected from
non-vitellogenic (NV) females showed undeveloped,
small sized ovaries containing transparent stage I oocytes
(Fig. 1A, D). In comparison, ovaries collected from 2-
month old (Vit2) fish contained oocytes at the perinucle-
olar stage (stage II) and oocytes with cortical alveoli, yolk
bodies (stage III) and a conspicuous germinal vesicle (Fig.
1B, E). Ovaries from 4-month old females (Vit4) con-
tained stage I1I but also larger stage IV oocytes and oocytes
undergoing germinal vesicle breakdown (GVBD; Fig. 1C,
F), carrying yolk bodies with crystalline yolk accrue.

The association of E2 plasma levels with hepatic transcript
levels of esrl and vtg3 in the experimental groups

E2 levels increased in females according to their vitello-
genic stage (Fig 2). The levels of E2 in plasma of vitellogenic
females (Vit2 and Vit4) were similar to those of E2-treated

2 mm 2 mm

Ovaries from zebrafish (Danio rerio). The top panels show ovaries from non-vitellogenic females (A), 2-month old (B) and
4-month old (C) females and the corresponding histological sections are shown in lower panels (D, E and F, respectively). A) A
non-vitellogenic ovary containing transparent Stage | oocytes, shown at a higher magnification in the insert. B) A vitellogenic
ovary collected from a 2-month old female. C) A vitellogenic ovary collected from a 4-month old female. D) Histological sec-
tion of a non-vitellogenic ovary (l) and liver. E) A cross-section of an ovary from a 2-month old female showing oocytes at
Stages |, Il and Ill with cortical alveoli (CA). F) A cross-section of an ovary from a 4-month old female showing oocytes at
Stages Il and Ill and one oocyte possibly displaying germinal vesicle breakdown (GVBD). Cortical alveoli (CA) and the germinal
vesicle (GV) are clearly shown in stage lll oocytes.
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Figure 2

Plasma levels of E2 and expression ratios of esrl and
vtg3 tested by RT-PCR. Gene expression levels were nor-
malized to ef/a and expressed as Mean +SD (n = 3 pools).
The letters a and f indicate significant differences in the E2
levels. The letters A, B and a, b, ¢ denote significantly differ-
ent expression levels of esr/ and vtg3, respectively. E- E2-
treated males, Vit2 or Vit4- 2- or 4-month old vitellogenic
females, respectively, NV- Non-vitellogenic females, M- con-
trol males.

males (p > 0.05). The E2 plasma levels of NV and of control
males were significantly lower than those of vitellogenic
females (Vit2 and Vit4) or E2-treated males (p < 0.01) and
the plasma E2 levels of control males did not significantly
differ from those of NV females (p > 0.05). Similar expres-
sion levels of esr1 were found by real-time PCR (Fig 2) in
liver samples from Vit2 females, Vit4 females and E2-
treated males (P > 0.05). The expression level of esr1 in
these samples was significantly higher than those found in
liver samples from NV females or control males (p < 0.05).
The expression of esr1 was very low in the NV females and
undetectable in the group of control males. Transcripts of
vtg3 were detected only in vitellogenic females (Vit2 and
Vit4) and E2-treated males. Expression levels of vig3 were
three fold higher in Vit4 females and E2-treated males than
in Vit2 females (p < 0.01).

Transcriptome analysis revealing gene expression patterns
during vitellogenesis

Only 16,252 transcripts out of 16,399 were left for further
analyses after processing the intensity values of each spot
on the arrays and after normalization. SAM analysis
revealed 2,523 transcripts (see Additional file 1) differen-
tially expressed in livers of vitellogenic females (Vit4 and
Vit2), NV females, E2-treated males and control males.
The top 20 most differentially expressed transcripts (Table
1) included transcripts of vtg3 and esr1 that were used as
markers for vitellogenesis and E2 treatment, respectively.
The list also included transcripts of vtgl, nothepsin (nots),
ESTs similar to spectrin, nuclear envelope 1 (synel;
AWO019847), EST similar to follistatin-like 1 (fstll;
AlI884233), EST similar to nitric oxide synthase interacting
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protein (nosip; AI545274) and EST similar to glutamate
receptor, ionotropic, kainate 1 (grik1; BM071695), that were
reported previously to be regulated by E2. The transcript
of vtg3 (Table 1; see Additional file 1) was the most up-
regulated transcript in the livers of E2-treated males and
Vit2 or Vit4 females when compared with control males
or NV females, respectively. The abundance of vtgl tran-
scripts was much lower, but significantly higher in E2-
treated males than in vitellogenic females. A similar
higher expression pattern of transcripts in E2-treated
males vs. vitellogenic females (Table 1) was found for
nots, fstll and EST similar to lectin mannose- binding 1 pre-
cursor (Imanl; AW175541). Several transcripts were more
abundant in vitellogenic females (Vit2 or Vit4) than in E2-
treated males, including the gene ankyrin (ank), transcripts
of EST similar to ectonucleoside triphosphate diphosphohydro-
lase 4 (entpd4; AW344063) and an EST similar to family
with sequence similarity 20C (fam20c) (Table 1).

Correspondence analysis (COA) was performed to study
the associations between the 2,523 differentially
expressed transcripts in the five tested groups (Fig 3). The
results indicated close association and sharing of the same
expression pattern of Vit2 with Vit4, and of NV females
with control males. The group of E2-treated males did not
show any association with the other groups. Most of the
transcripts in the groups of E2-treated males and vitello-
genic females (Vit2 and Vit4) were up-regulated in com-
parison with NV and control males (Fig 3).

Coupled Two-Way Clustering of the 2,523 differentially
expressed transcripts was performed to reveal similarity in
the expression patterns in the five tested groups. Three
main clusters were revealed (Fig 4): 1) A small cluster of
34 transcripts with high expression in Vit4 females and
low expression in other samples; 2) A cluster of 985 tran-
scripts (Fig 4; subdivided into 2a, 2b, 2c and 2d) showing
high expression patterns in control males and NV females,
lower expression in the two groups of vitellogenic females
(Vit2 and Vit4) and the lowest expression level in E2-
treated males; and, 3) A cluster of 1,504 transcripts (Fig 4;
subdivided into 33, 3b and 3c) with high expression levels
in E2-treated males, low expression levels in control males
and NV females and interim expression levels in Vit2 and
Vit4 females. Closer examination revealed that in some
sub-clusters the expression pattern of Vit2 females was
similar to that of NV females, while in others it was similar
to Vit4 females. The expression patterns of Vit2 females
were at an intermediate stage between those of the older
vitellogenic females (Vit4 females) and NV females. This
pattern corresponds with the expression levels of vtg3 in
these groups mentioned previously (Fig 2).
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Table I: A list of 20 most regulated annotated genes during vitellogenesis and after E2 treatment of males.

Description Symbol  GeneBank  Vit4/NV Vit2/NV E/M  Function according to http://www.ncbi.nlm.nih.gov/
sites/entrez gene
I Vitellogenin 3, phosvitinless vtg3 AF254638 103.3 945 125.7 Egg yolk precursor, phosvitinless.
2 Similar to reticulon | renl BI1983061 755 88.5 79.3 Associates with the endoplasmic reticulum.
3 Nothepsin, cathepsin e nots AJ278269 76.6 76.8 86.8 Eukaryotic aspartyl (acid) protease.
4 Similar to low density lipoprotein IdIr BF717943 283 282 136.3 Plays a central role in cholesterol metabolism.
receptor
5 Moderately similar to spectrin synel  AWO019847 16.1 21.2 147 Involved in cytoskeletal structure.
repeat containing, nuclear
envelope |
6  Similar to ectonucleoside entpd4  AW344063 97 70.2  25.5 Cleaving nucleotide tri- and diphosphates.
triphosphate diphosphohydrolase
4
7 Similar to follistatin-like | fstll Al884233 NS NS 3.2 Play an important role in tissue specific regulation.
8  Similar to human Prefoldin subunit pfdné  BI891290 1.5 NS 3.7 Binds and stabilizes newly synthesized
6 polypeptides.
9  Lagl homolog, ceramide synthase lass2  AWI171063 1.8 NS 4.5 May play a role in the regulation of cell growth.
10 Ankyrin repeat domain 6 ank AF395113 12.3 10.3 4.3 Ankyrin repeats mediate protein-protein
interactions.
I'l " Similar to nitric oxide synthase nosip  Al545274 8.1 74 11.6 Promotes translocation of eNOS from the plasma
interacting protein membrane to intracellular sites.
12 Similar to heterogeneous nuclear  hnrnphl Al497414 1.7 NS 2.8 RNA recognition/binding motif.
ribonucleoprotein hl
13 Similar to family with sequence fam46c  AlI959558 4.5 4.7 14 The function of this gene is unknown.
similarity 46 c
14 Vitellogenin | vtgl AF406784 7 6.3 28.6 Eggyolk precursor.
I5  Similar to human guanylate binding gbpl BM181499 8.5 82 2.7 Specifically bind guanine nucleotides (GMP, GDP,
protein| and GTP).
16 Similar to human protein fam20c fam20c BF717944 332 352 20.8 Has a crucial role in normal bone development.
precursor?
17  Similar to glutamate receptor, grikl BMO071695 NS NS -16.4 Ligand-gated ion channel.
ionotropic, kainate |
18  Similar to lectin, mannose-binding, Imanl  AWI175541| 4.8 4 6.6 Mannose-specific lectin, a member of a Mannose-
| precursor specific lectin, a member of a the secretory
pathway of animal cells.
19 Similar to rna polymerase ii rpapl  BMI57210 NS NS 2.4 The function of this gene is unknown.
associated protein |
20 Estrogen receptor | esrl AF349412 16 15.5 17 A ligand-activated transcription factor.

Regulation during vitellogenesis is indicated as the ratio between Vit4/NV and Vit2/NV.
Regulation by E2 is indicated by the ratio E/M. A weak similarity is indicated by a question mark (?). For the complete list of the regulated genes see

Additional file 1.

Genes suggested to be regulated by E2 during vitellogenesis

Additional analyses of the 2,523 transcripts mentioned
above, were performed to identify genes with significantly
different expression levels between vitellogenic and non-
vitellogenic females and regulated by E2. The following
paired t-tests (SAM) comparisons were performed (Fig 5):
a) Vit2 females were compared with NV females showing
825 differentially expressed transcripts; b) Vit4 females
were compared with NV females showing 1,046 differen-
tially expressed transcripts; and, c) E2-treated males were
compared with control males showing 1,828 differen-
tially expressed transcripts. A Venn diagram revealed 822
common transcripts in the three groups that were sug-
gested to be regulated by E2 (Fig 5; colored blue), 431
transcripts that were putatively not regulated by E2 (Fig 5;

colored green) and 1,006 transcripts that were unique for
males (Fig 5; colored white).

In order to reveal genes associated with vitellogenesis,
vitellogenic females (Vit2 or Vit4) were compared with
NV females by paired t-test analysis (SAM) (Fig 6; see
Additional file 2). In general, the number of E2 regulated
transcripts was higher in Vit4 (672 transcripts) than Vit2
(562 transcripts), when compared with NV females. Rela-
tively more transcripts were E2 up-regulated than down-
regulated (Fig 6A).

Genes putatively not directly regulated by E2 during vitellogenesis
Paired t-test analysis (SAM) comparing Vit2 or Vit4
females with NV females revealed 263 or 374, respectively
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transcripts that were not regulated by E2 (Fig 6B; see Addi-
tional file 2). The proportion of the down-regulated tran-
scripts was higher (60.0% and 56.4% for Vit2 and Vit4
females, respectively) than the up-regulated transcripts
indicating a slightly reverse trend from the E2 regulated
genes.

Comparison between E2-treated males, control males and females
E2-treated males were compared with control males,
showing 1,828 differentially expressed transcripts (Fig 5¢)
and most of them were up-regulated (Fig 7; see Additional
file 2). A smaller number of expressed transcripts differen-
tiate E2-treated males from Vit4 than Vit2 females, indi-
cating a higher similarity between E2-treated males and
Vit4 females. Most of these transcripts were down regu-
lated in vitellogenic females. Moreover, higher resem-
blance of NV females to control males was revealed by the
relatively small number of differentially expressed tran-
scripts in NV (Fig 7; see Additional file 2). Only 33 tran-
scripts differ in their expression levels between Vit4 and
Vit2 females.

Putative processes associated with vitellogenesis using
Gene Ontology terms

Analyses of the molecular functions and biological proc-
esses were performed for all 2,523 transcripts correspond-

Figure 3

Correspondence analysis showing the association in
the expression patterns of the five studied groups.
Correspondence analysis (COA) for the 2, 523 differentially
expressed transcripts found by SAM analysis presenting the
association between the expression patterns and the five
tested groups: Vit2 and Vit4- 2- or 4-month old vitellogenic
females, NV- non-vitellogenic females, E- E2-treated males,
M- control males. Only the middle part of the resulted graph
is shown (four genes are missing).
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ing to the differentially expressed transcripts. Only 607
genes were found as annotated among the 1,255 tran-
scripts that were regulated in vitellogenic females (Vit2
and Vit4). In general, similar molecular functions and
similar relative abundance (in percent) were found
among the putatively E2 regulated genes and genes not
regulated by E2 (Fig 8A, B). An exception includes genes
associated with translational regulatory activity that were
found only in the group putatively regulated by E2, indi-
cating the prominent position of proteins synthesis dur-
ing vitellogenesis. Analysis of the biological processes
shows the occurrence of processes associated with repro-
duction only in the E2 regulated group and of immune
system processes and biological adhesion only in the
group of genes not regulated by E2 (Fig 8C, D). Other bio-
logical processes were similar among the putatively E2
regulated genes and those not regulated by E2. Some more
detailed information on the number of transcripts and
their descriptors that were associated with some selected
functions, are shown in Table 2 and in Additional file 3,
respectively.

Validation of microarray results

Validation of the microarray results was performed by
testing the relative expression of 16 genes (see Additional
file 4) in the same RNA samples that were used for the

E Vit4 Vit2 NV M

Figure 4

Coupled Two Way Clustering Analysis of the five
tested groups. Coupled Two Way Clustering representing
2, 523 transcipts with significantly altered expression, found
by SAM analysis (0.1% FDR) for all five tested groups: Vit4
and Vit 2- 4-or 2-month old vitellogenic females, NV- non-
vitellogenic females, E- E2-treated males, M- control males.
Genes and groups are clustered for similar expression pro-
files and colors show the expression levels in each specific
group, with red representing the highest expression level and
blue the lowest expression level (according to the right hand
scale). Three main clusters are marked by numbers | to 3
and their sub-clusters are separated by black lines and indi-
cated by letters.
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a) Different between Vit2 and NV b) Different between Vit4 and NV
(825) (1,046)

A
(X2

¢) Different between E2-treated males
and control males (1,828)

Figure 5

Number of transcripts putatively associated with
vitellogenesis or E2 treatment of males. A Venn dia-
gram showing the number of transcripts differing significantly
between vitellogenic and non-vitellogenic females and puta-
tively associated with E2 regulation: a) Transcripts of genes
significantly different between two-month old vitellogenic
females (Vit2) and non-vitellogenic females (NV). b) Tran-
scripts of genes significantly different between four-month
old vitellogenic females (Vit4) and NV, and c) Transcripts of
genes significantly different between E2-treated males and
control males. Combination of these three comparisons by
Venn diagram illustrates the number of genes differing during
vitellogenesis and putatively regulated by E2 (colored pale
blue), genes differ during vitellogenesis putatively not directly
regulated by E2 (colored light green) and genes unique to
males (colored white).

chip hybridization, by real-time PCR. The 16 tested tran-
scripts were: 1) genes highly expressed in vitellogenic
females and known to be induced by E2 treatment [esr1,
vtgl, vtg3, nots and cytochrome p450 2k6 (cyp2k6)], 2) genes
that were highly expressed in males and known to be
down-regulated by E2 (cyplal and igf1), and 3) genes that
showed significantly different expression levels in the
tested groups [retinoic acid receptor alpha a (raraa), alcohol
dehydrogenase 5 (adh5), alcohol dehydrogenase 8b (adh8b),
igf1 and retinol dehydrogenase 10 (rdh10), retinol dehydroge-
nase 14 (rdhi4), dehydrogenase/reductase (SDR family)
member 10 (dhrs10), stearoyl-desaturase (sCd), fatty acid
desaturase 2 (fads2) and steroidogenic acute regulatory protein
(star)]. A very high correlation was found between the
microarray and real-time PCR results, with regression
coefficients (R? values) ranging from 0.9102 to 0.9340
(see Additional file 5).

Discussion

This study aims at identifying and characterizing genes
associated with vitellogenesis and defining the role of E2
in their regulation by using five physiological groups:
non-vitellogenic females, vitellogenic females (2- and 4-
month old), E2-treated males and control males. The
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Figure 6

The number of up- or down-regulated trancripts that
were putatively regulated by E2 during vitellogenesis.
The number of transcripts of vitellogenic females (Vit2 or
Vit4) differing from non- vitellogenic females (NV). A)
Number of transcripts putatively regulated by E2. B) Number
of transcripts putatively not regulated by E2. The lists of
genes for each comparison are shown in detail in Additional
file 2, according to the group numbers.Vit2 and Vit4 females
are 2- and 4- month old females, respectively. The number of
up-regulated or down regulated transcripts for each group is
shown on the top of the columns.

expression levels of esr1 and vtg3 corresponding with the
E2 plasma levels of females and E2 treated males, con-
firmed the efficacy of the E2 treatment. They also depicted
the physiological state of the vitellogenic females, indicat-
ing that Vit2 females were at an interim stage between NV
and Vit4 females.
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Figure 7

The number of up- or down-regulated transcripts
revealed by paired t-test (SAM) comparisons of the
studied groups. Paired t-test comparisons, showing the
number of transcripts differing significantly between: i) two
vitellogenic female groups (Vit2 and Vit4), ii) between E2-
treated males (E) and vitellogenic females (Vit2 and Vit4), iii)
between control males (M) and non-vitellogenic females
(NV), and iv) between E2-treated males and control males.
Vit2 and Vit4 females are 2- and 4-months old females,
respectively. The lists of genes for each comparison are
shown in detail in Additional file 2, according to the group
numbers. The number of up-regulated or down regulated
transcripts for each group is shown on the top of the col-
umns.
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Figure 8

Molecular functions and biological processes of genes putatively regulated by E2 or not regulated by E2. Ontol-
ogy pies created by the Blast2GO program, according to the genes ontology (GO) of the annotated genes (level 2 terms).
Putative molecular functions are shown in pies A and B, and biological processes are shown in pies C and D. The pies repre-
sents comparison between transcripts regulated by E2 (pies A and C) or those not regulated by E2 (pies B and D).

Table 2: The number of genes regulated or not-regulated by E2 in selected GO functions.

GO No Description E2-regulated Not regulated by E2
GO:0042562 Hormone binding 3 2
GO:0015485 Cholesterol binding 2 |
GO:0006629 Lipid metabolic process 15 8
GO:0008289 Lipid binding 8 |
GO:0006955 Immune response 4 3
GO:0002376 Immune system process 0 7
GO:0007155 Cell adhesion 0 10
GO:0003700 Transcription factor activity 22 7

Number of genes putatively regulated or not-regulated by E2, found in selected GO functions. The list of genes matching each function is shown in
Additional file 3.
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The results provided a novel insight into the number and
scope of hepatically regulated genes during vitellogenesis
and indicated that most genes were regulated during the
early stages of the process as young vitellogenic females
(Vit2) differed by only 33 transcripts from older females
(Vit4). Moreover, only ~64% of the transcripts regulated
during vitellogenesis were suggested to be also regulated
by E2. The resemblance in the gene expression pattern
between non-vitellogenic females and males, stresses the
specific change in pattern taking place during vitellogene-
sis in females. This change cannot be simply attributed to
E2 as E2 treatment of males at physiological concentra-
tions, resulted in a 1.8 fold higher number of genes than
those regulated during vitellogenesis. These results also
emphasize that the wide effects of xenobiotics with estro-
gen activity [45,47] are not confined to genes associated
with oocyte development. The following discussion sec-
tions highlight selected specific genes and putative path-
ways that were regulated during vitellogenesis and E2
treatment of males. Some of these putative pathways,
were previously shown to be regulated in E2- treated
males [41].

A list of 20 most differentially expressed hepatic
transcripts reveals genes regulated by E2 and novel hepatic
transcripts

The list of the 20 most differentially expressed hepatic
transcripts includes genes known to be regulated by E2,
genes that were not recorded previously as regulated by E2
or genes that were not previously reported to be expressed
in the liver. Eight of the 20 most differentially expressed
genes (Table 1), were previously reported to be regulated
by E2, including: vtgl and vtg3 [25,48-50], nots [42,51],
synel [52], fst1 [53], nosip [54], grik1 [55] and esr1 [15,49].
Transcripts that were not associated previously with E2
regulation include reticulon1 (rtnl), entpd4 and Imanl. A
few transcripts (synel, fstll and the fam20c) were not
reported previously in hepatic cells. Proteins associated
with cytoskeleton formation (synel and ank) showed
higher up-regulation in vitellogenic females than after E2
treatment of males, supporting a putative role in the
growth of the liver [56] and of the dramatic increase in
protein synthesis and secretion by the endoplasmic retic-
ulum [3] during vitellogenesis.

Zebrafish display eight different variant gene sequences
[25,27] for vtg genes but the array used here included
probes only for vtg3 and wvtgl. Since vigl shows high
sequence similarity with vtg4, vtg5, vtg6 and vtg7 (all cod-
ing for VtgAo1l), transcript levels for vtgl may also reflect
the expression of these genes. The higher expression levels
of vtg3 compared with vtg1, may suggest their differential
regulation by E2 stems from differences in the estrogen
response elements (ERE's) in the promoter regions [42].
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Putative molecular functions and biological processes
regulated during vitellogenesis and by E2 treatment
Numerous prominent and putatively regulated functions
were revealed in this study to take place during vitellogen-
esis and include lipid metabolism and lipid binding, hor-
mone and cholesterol binding, transcription factor
activity, immune response, immune system processes and
cell adhesion (Table 2 and see Additional file 3). The task
of allocating processes and functional significance to
genes that were putatively regulated by E2 and also to
those that were putatively not regulated by E2, was faced
with a general difficulty for zebrafish. Linking specific
pathways or modes of function with genes by the general
descriptors provided by Gene Ontology (GO) for
zebrafish is problematic due to the incomplete annota-
tion of the zebrafish genome and a deficiency in func-
tional studies. Consequently, several GO terms rely on
homology of putative functions described in higher verte-
brate species.

Lipid metabolism associated with vitellogenesis and E2-treatment of
males

Several genes with a role in lipid metabolism were
reported to be regulated by E2 [57,58]. Genes associated
with lipid metabolic processes putatively regulated in
vitellogenic females or putatively regulated by E2, were
also identified in the present study. Transcripts indicating
a change in plasma lipoproteins were identified here, sup-
porting previous published results on higher levels of
plasma lipoproteins during vitellogenesis in fish [34,35].
Plasma lipoproteins associated with transport of lipids are
mainly synthesized in the liver and intestine [59]. The
protein components of lipoproteins, the apolipoproteins,
form distinct complexes and two gene clusters, one con-
sisting of apoal, apoad4 and apoc3 and the other of apoe
(apoeb for zebrafish), apoc, apoc2 and apoa4. These apoli-
poproteins are known from mammals and some were also
characterized in fish [60]. In the current study, there were
no significant changes in apoal gene expression, in con-
trast with previous studies reporting on the downregula-
tion of apoal gene expression after E2 and EE2 treatment
[34,42,43]. Interestingly, Apoal was also found to serve as
an antimicrobial protein and to be associated with the
immune response system in fish [61]. However, the
expression of apoa4 and apoeb was down-regulated in
vitellogenic females in comparison to NV females or after
E2 treatment of males (see Additional file 1 and Addi-
tional file 3).

Several genes in the lipid metabolic processes are associ-
ated with the PPARs signaling pathway [62,63] and some
of them were found to be regulated in this study. The
Ppars are ligand-inducible TFs belonging to the nuclear
hormone receptor superfamily and are important regula-
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tors of lipid and energy homeostasis. Three isotypes have
been identified in mammals, birds and amphibians,
termed Ppar alpha (Ppara), Ppar beta (Pparb) (also
known as Ppar delta) and Ppar gamma (Pparg) and each
isotype is a product of one gene and shows distinct tissue
distribution [63]. Ppara functions in regulating reversible
induction of B-oxidation in specific tissues but mainly the
liver [62]. Unexpectedly, there was no significant change
in the expression of ppara in the liver of vitellogenic
females or E2-treated males. The Pparb presumably func-
tions in global control of lipid homeostasis and cellular
proliferation and differentiation in mammals, is
expressed in the liver and is moderately activated by a
range of unsaturated fatty acids. Multiple/isoforms genes
were found for pparb in several fish species, with two genes
for pparb in zebrafish [64,67]. The pparb1 was up-regulated
in Vit4 females and control males while pparb2 was down-
regulated in Vit4 and Vit2 females and by E2 treatment. In
mammals, Pparg is associated with fat accumulation, par-
ticularly in adipocytes and in lipid accumulation in mac-
rophages [62]. Here, the pparg coactivator related 1
(pparger1) was up-regulated in Vit4 females and after E2
treatment (see Additional file 1).

A large array of transcripts putatively associated with lipid
metabolism, was found to be regulated during vitellogen-
esis and by E2 treatment (see Additional file 3). Among
them were genes coding for enzymes associated with fatty
acid elongation and metabolism, and bile acid metabo-
lism. Also, several transcripts of putative members of the
cytochrome 450 superfamily were found to be regulated
during vitellogenesis. This group of monooxygenases cat-
alyzes several reactions involved in xenobiotic and drugs
metabolism, synthesis of cholesterol, steroids and lipids.

Biosynthesis and catabolism of steroids

Numerous genes involved in biosynthesis and inactiva-
tion of steroids were regulated during vitellogenesis
(Table 2, see Additional file 1 and Additional file 3), sug-
gesting that biosynthesis and catabolism of steroids takes
place in the liver. Endocrine regulation of this pathway in
the zebrafish liver was reported previously after EE2 treat-
ment [43]. Transcripts previously identified with a role in
E2 and 11-KT synthesis, were found to be regulated during
vitellogenesis and by E2, as shown in Fig 9. In this path-
way, the first and rate limiting step in steroid synthesis is
the transport of cholesterol to the inner mitochondrial
membrane by star [68,70]. Subsequently, through a series
of enzyme reactions (Fig. 9), cholesterol is converted into
testosterone (T) and forms either E2 or 11-KT, as it occurs
in fish gonads [71]. The hepatic expression of star was pre-
viously reported only for human liver [72] and E2 was
involved in down regulating its expression in other tissues
[73,74]. Here we show the expression of star in the
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Figure 9

The steroid synthesis pathway showing genes regu-
lated in this study. The pathways of steroid synthesis
showing the expression patterns of transcripts associated
with the different biosynthesis steps. Through a series of
enzyme reactions, cholesterol is converted into testosterone
(T), which is subsequently converted either to E2 or to | |-
ketotestosterone (| I1-KT). For a detailed explanation see the
text. hsd3b7 - hydroxyl-delta- 5 steroid 3 beta and steroid delta-
isomerase7, hsd17b3 - hydroxysteroid | 7b dehydrogenase,

hsd |l Ib2 - hydroxysteroid | Ib dehydrogenase 2, star - steroidog-
enic acute regulatory protein, cyp | 9ala - cytochrome p450 19a,
and cyp ! Ib - || beta hydroxylase.

zebrafish liver (see Additional file 5) and surprisingly it
was highly expressed in NV females and putatively not
regulated by E2 (see Additional file 3). The expression pat-
terns of two additional genes coding for enzymes involved
in steroid metabolism were also significantly higher in NV
females (Fig. 9). These include an EST similar to hydroxyl-
delta-5 steroid 3 beta and steroid delta-isomerase7 [(hsd3b7;
AW133873, AW116229), see Additional file 3] and an
EST similar to hydroxysteroid (17-beta) dehydrogenase 3
[(hsd17b3; AW595044), see Additional file 1]. The
enzyme Hsd3b7, catalyzing the conversion of pregne-
nolone to progesterone (Fig. 9) was found to accept in
zebrafish several androgens as substrates, including
androstenedione, epiandrosterone and dehydroepian-
drosterone [75]. The synthesis of 11- KT from testoster-
one, a potent androgen in male teleosts [76] probably
involved the upregulation of hydroxysteroid 11-beta dehy-
drogenase 2 (hsd11b2) in males (see Additional file 1).
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One of the explanations for the higher transcript levels of
star, hsd3b7 and hsd17b3 in NV females, could be related
to the variable levels of steroid hormones in the plasma of
females during onset of vitellogenesis [77,78].

Hormone binding and TFs

The process of vitellogenesis is known to be regulated by
E2 through the induction of esr1, as mentioned before. A
similar putative expression pattern for genes coding for
two additional hormone binding receptors was suggested
to take place during vitellogenesis and regulated by E2
(Table 2, see Additional file 3). These include the proges-
terone receptor membrane component 2 (pgmrc) and the
kappa opioid receptor 1 (oprkl) as shown by the regulation
of their respective ESTs; an EST similar to pgmrc2
(AW153364) and an EST similar to oprkl (BG883146).
Transcripts of pgmrc genes were found in livers of mam-
mals and oviparous vertebrates including zebrafish but
their functions remain unknown [79,80]. The gene pgmrc2
is known to be involved in progestin signaling in several
vertebrate reproductive tissues and in the brain (reviewed
in [79]) and Pgmrc1 (closely related to Pgmrc2) was sug-
gested to have a role in the regulation of oocyte matura-
tion in trout ovarian follicles [80]. Since PGMRC1 was
suggested to be regulated by testosterone in porcine hepa-
tocytes [81], the high transcript levels of pgmrc2 found in
vitellogenic females could be linked with the elevated tes-
tosterone levels associated with higher E2 plasma levels
[77,78]. The opioid receptors have multiple effects on
reproductive, endocrine and immune functions. Tran-
scripts of oprk were found to be widely expressed in rat tis-
sues including in the liver, yet their function in the liver
remained unknown [82].

A cross-talk between the signaling pathways of two TFs,
the Esrl and the Aryl hydrocarbon receptor (Ahr), was
suggested to occur during vitellogenesis based on the
expression patterns of genes involved in these pathways,
implying a possible regulation of Vtg synthesis (Fig. 10).
AhR is a ligand activated TF involved in xenobiotic and
drug metabolism in the liver [83]. A cross-talk between
AhR and ER1 signaling [84] was shown to be regulated
through the nuclear receptor COUP-TF by inhibiting E2-
induced genes and regulating AhR activated transcription
[85,86]. Also, ligand activated Ahr inhibited Esrl from
initiating vtg transcription and blocked the auto-regula-
tory loop of the esr1 gene expression, in primary cultures
of hepatocytes [31,46,87]. Furthermore, the effectiveness
of the different Ahr-ligands of inhibiting Vtg synthesis,
was directly related to their ability of inducing higher
Cypla protein levels and consequently its enzymatic
activity [31,46,87]. So far, the effects of activation of pis-
cine AhR on the hepatic expression of esr1 and vig were
studied after exposure to environmental pollutants and
different estrogens [31,46,87-91]. Unexpectedly, in the
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Figure 10

A suggested cross-talk between Aryl hydrocarbon
receptor (Ahr) and Erl signaling pathways. A cross
talk is suggested by the expression of the following genes:
esrl, vtgl and vtg3, nuclear receptor subfamily 2fl (nr2fl; simi-
lar to human COUP-TF), ahr-nuclear translocator2 (arnt2),
¢yplal and ahr2. The Nuclear receptor 2fl (Nr2fl) inhibits
E2-induced reporter gene and regulates transcription acti-
vated by the Ahr. Upon binding of the ligand, Ahr is translo-
cated into the nucleus where it dimerized with the Ahr
nuclear translocator (Arnt). The Ahr/Arnt complex binds
with high affinity to specific xenobiotic response elements
(XREs) and activates the transcription of enzymes such as
Cyplal (Cytochrome p450 lal), involved in the metabolism
of many drugs and xenobiotics. A negative correlation was
found between the expression patterns of the genes esr/
(estrogen receptor 1), vtgl and vtg3 (vitellogenin| and
vitellogenin3, respectively) and the genes nr2fl, arnt2, cyplal
and ahr2. The following expression patterns were found: i)
esrl, vtgl and vtg3 were highly expressed in vitellogenic
females and E2-treated males; i) ahr2 and arnt2 were highly
expressed in control males and showed higher (though not
significantly different) expression levels in non-vitellogenic
females than vitellogenic females; iii) cyplal was highly
expressed in non-vitellogenic females and control males and
significantly down-regulated by E2 treatment, and iv) nr2fl|
was highly expressed in non-vitellogenic females and showed
higher expression levels (though the difference was not sig-
nificant) in control males than E2-treated males.

current study, expression patterns for genes in this path-
way were associated with gender and the occurrence of
vitellogenesis in females and not specifically with E2 treat-
ment. The crosstalk between the ER alpha and AHR sign-
aling pathways (Fig 10) was suggested by the expression
patterns found for the following genes: esr1, vigl and vtg3,
nuclear receptor subfamily 2f1 (nr2f1; similar to human
COUP-TF), ahr-nuclear translocator2 (arnt2) (all in see
Additional file 3), cyplal and ahr2 (see Additional file 1).
Presumably, this crosstalk may be one of the mechanisms
preventing Vtg synthesis in males and non-vitellogenic
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females. Accordingly, it could be speculated that an Ahr-
ligand should be found in the plasma of males and non-
vitellogenic females. If activated, the Ahr pathway will
inhibit esr1 transcription and consequently Vtg synthesis,
but with the onset of vitellogenesis in females, the effect
of this pathway will be reduced and permit the synthesis
of Vtg.

Immune system processes and immune response

Surprisingly, all transcripts related to immune system
processes in this study, were down-regulated in vitello-
genic females and putatively not regulated by E2 (Fig 8).
Three of these transcripts are also related to the immune
response GO term (Table 2, see Additional file 3). The
other transcripts related to the immune response term
were all up-regulated by E2 treatment and some were also
up-regulated during vitellogenesis (Table 2, see Addi-
tional file 3). This is in contrast to previous studies where
E2 treatment repressed the expression of immune system
and immune response related transcripts [92,93]. Down-
regulation in transcript levels in vitellogenic females (but
not regulated by E2), was observed for genes coding for a
class of intracellular molecules that play a role in coupling
T-cell antigen receptor stimulation to the activation of
integrins, major histocompatibility complex class genes
(mhc's), proteases mediating programmed cell death or
apoptosis [caspase 8 (casp8)] and a gene coding for an
adherens junction protein [catenin beta 1 (ctnnb1)], func-
tioning in communication and adhesion between cells,
and anchoring the actin cytoskeleton. The genes showing
high transcript levels in vitellogenic females and E2
treated males include an interferon activated gene, a TF
that regulates mhc class II genes and the oprkl previously
described to be affected by steroid hormones, including
E2 [94,95].

Conclusion

Microarray profiling of liver samples revealed expression
patterns characteristic of vitellogenic females of which
only ~64% were found to be putatively regulated by E2.
The repertoire of regulated genes implicates a wide range
of functions especially those associated with protein syn-
thesis, lipid metabolism, steroid biosynthesis, hormone
binding and TF. Genes associated with the immune sys-
tem and biological adhesion were among the genes that
were up-regulated in vitellogenic females but not in E2-
treated males, indicating that they were putatively not reg-
ulated by E2. E2-treated males expressed a large array of
genes that were not associated with vitellogenesis. The
study revealed several genes (rtnl, entpd4, lmanl) that
were not reported before as being regulated by E2. Also,
the hepatic expression of several genes (e.g., synel, fstil,
fam20c, star) is reported here for the first time for fish
liver. In general, these results raise the question on the
identity of the factors that regulate the pleiotropic expres-
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sion of hepatic genes in vitellogenic females, in addition
to E2.

Methods

Animals

Zebrafish were purchased from a local fish supplier (A&H
Holdings, Israel LTD). All fish were maintained in 5-liter
aquaria with UV treated, recycled and dechlorinated water
and at ambient temperature of 25 + 2°C with a light/dark
cycle of 14/10 hr. The fish were fed twice a day, with
shrimp nauplii (PGT, Eilat, Israel) in the morning and fish
eggs in the afternoon. Non-vitellogenic females were kept
under a light/dark cycle of 6/18 hr and fed twice a day
with dry pellet food to avoid access to steroid compounds
that maybe found in live food. For histological analysis
the fish body or ovaries were fixed in Bouin's. Fixation,
sectioning, and histological examination were performed
according to [96]. Paraffin sections of 4-7 pm were
stained with hematoxylin and eosin. The terminology
used by [97] for the zebrafish was adopted for this study.
All fish were anaesthetized with Tricaine (Sigma-Aldrich,
USA) before experimental procedures [98] and treatment
of fish adhered with institutional regulations.

Samples collection and 17 -estradiol treatment

Two experiments were performed, one for evaluating the
effect of E2 exposure in males and a second experiment
for comparing gene expression in the liver of non-vitello-
genic females with that of vitellogenic females. The exper-
iments designs were as follows: 1) Four months old
zebrafish were divided into three groups consisting of 8
fish in each group: i) adult spermeating males weighing
2.45 +0.207 g (N = 8) were exposed to E2 (Sigma-Aldrich,
USA) by immersion for 48 hr (group E2-treated males).
The concentration used was 5 pg/L (18 nM), as 3-4 ng/ml
was determined to be the E2 natural concentration in the
plasma of adult vitellogenic female ZF [99]. A period of 48
hr of exposure was chosen as the highest expression level
of esr1 was reached after 12 hr [100] and the expression of
vtg stabilized after 48 hr of exposure to E2 and lasted for
17 days [50]. The hepatosomatic index (HIS) of E2-treated
males was 5.6 + 0.6 after treatment. ii) control males
weighing 2.26 + 0.246 g (N = 8;) and a HIS of 3.2 + 0.4;
iii) vitellogenic females weighing 3.95 + 0.303 g (N = 8)
and showing a HIS of 5.9 + 0.4 (group Vit4). Four repli-
cate samples were prepared for each group and each repli-
cate consisted of a pooled sample from livers of two fish.
The samples were pooled after RNA extraction (see
below). The fish in this experiment were kept with a light/
dark cycle of 14/10 hr. The fish were fed twice a day, with
shrimp nauplii (PGT, Eilat, Israel) in the morning and fish
eggs in the afternoon. 2) In order to reveal the differences
between vitellogenic and non-vitellogenic females, a sec-
ond experiment was designed. One month old zebrafish
were divided into two groups consisting of 32 fish in each
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group. Due to the small size of the liver, pooled samples
from eight fish were prepared for each of the four repli-
cates in the expression studies. The pooling of samples
was done after total RNA extraction (see below). The
groups consisted of: i) fish that were kept under a light/
dark cycle of 14/10 hr for 5 weeks weighing 2.56 + 0.426
g (N =32) and a HIS of 5.6 + 0.4, with ovaries in vitello-
genic stage (group Vit2). Fish were kept at 25 + 2°C and
fed twice a day, with shrimp nauplii (PGT, Eilat, Israel) in
the morning and with fish eggs in the afternoon. ii) fish
that were kept under a light/dark cycle of 6/18 hr for the
same time period and weighing 1.44 + 0.391 g (N = 32)
and showing a HIS of 4.6 + 0.3, with non-vitellogenic ova-
ries (group NV). This group was fed only with dry pelleted
food. In order to show the reversibility of this condition,
some of the non-vitellogenic females were placed in tanks
under the regular 10 hr light/14 hr dark photoperiod
cycle. Fish were kept at 25 + 2°C and were fed twice a day,
with shrimp nauplii (PGT, Eilat, Israel) in the morning
and with fish eggs in the afternoon. Ovaries collected after
three weeks from these females were in the vitellogenic
stage.

Determination of sex and of developmental stages of ova-
ries, were done by microscopic examination of the
gonads. Oocyte stages were determined according to [97].
The livers collected from all five groups were frozen
instantly in liquid nitrogen and stored in -80°C until fur-
ther use.

Measurements of E2 concentration in plasma was per-
formed in similar designed separate experiments. Blood
samples were collected using Micro-Hematocrit Tubes
with Heparin (VWR, USA) from all tested groups and
stored at -80°C. E2 concentrations were measured using
Estradiol EIA Kit (Cayman, USA) according to the manu-
facture's protocol.

RNA extraction

Total RNA was extracted from whole livers of zebrafish
using Trizol reagent (GIBCO, USA) according to the man-
ufacture's protocol followed by a clean-up and DNase
treatement using RNeasy MiniElut Kit (Qiagene, Ger-
many). After clean-up, 3 pl of the RNA samples were sep-
arated on 1.2% agarose gel to evaluate their quality and
concentration. According to the gel picture, pooled sam-
ples from the livers of two fish were prepared for each
group in Experiment 1 and of livers from eight fish for
each group in the second experiment. Each RNA pool was
quantified (A,q,) and assessed for purity (A,qy:A,5, Iatio)
using Gene Quant (Amersham, UK) and by visual inspec-
tion of the 3 pg RNA separated on a denaturing gel.

Zebrafish Oligonucleotide Microarray
Zebrafish microarrays were prepared by the Kimmel Can-
cer Center at Thomas Jefferson University (TJU), Philadel-

http://www.biomedcentral.com/1471-2164/10/141

phia, USA. The microarray is a single color system based
on zebrafish oligonucleotide library from Compugen/
Sigma Genosys and consists of 16,399 oligonucleotide
probes (65 nt), representing 16,288 unique gene clusters.
In order to minimize non-specific binding, CodeLink
slides with a special coating were used. Also B-actin inter-
nal controls were used to monitor the labeling and
hybridization quality.

Data Acquisition

Processed chips were scanned by using a Perkin Elmer
ScanArray® XL 5000 Scanner, software version 3.1. Images
were quantified by PerkinElmer (USA) Quant Array® Soft-
ware 3.0. Quantization used the fixed circle method and
outputs were total intensities. Microarray data were nor-
malized across all arrays using quantile normalization of
data in log base 2 scale [101]. This method corrects back-
ground noise and non-specific hybridization.

Statistical analysis

Statistical analysis was performed using Significant Analy-
sis of Microarray (SAM) software [102]. For the multiclass
analysis a false discovery rate (FDR) of 0.1% was used. For
paired t-test comparisons between the different groups a
FDR of 0.03% was used. Correspondence Analysis (COA)
was performed using MultiExperiment Viewer (MeV) ver-
sion 4.1. Clustering analysis was performed using Cou-
pled Two Way Clustering (CTWC) algorithm [103,105].

cDNA synthesis and Real-Time PCR

Real-time PCR was performed using the same RNA sam-
ples used for microarray hybridization (n = 16). For cDNA
synthesis, 4 pg of total RNA were mixed with 0.1 pg of
oligo-d(T) (Promega, USA), 4 pl of Bio-RT 5x buffer, 2 uM
dNTP mix (Promega, USA), 200 U of Bio-RT (Bio-lab,
Israel) and H,O to reach a final volume of 20pl. After an
incubation of 1 h at 37°C, 80 pl of H,O were added to the
reaction. The PCR mixture consisted of 0.5 ul of cDNA
sample, 70 nM of each primer (see Additional file 4) and
12.5 pl of SYBR Green master mix (ABgene, UK), in a final
volume of 25 pl.

Amplification was carried out in a GenAmp 5700 thermo-
cycler (PE Applied Biosystems, USA) and according to the
manufacture's protocol. Amplification was performed in
triplicates and the results were analyzed with REST-384
version 2 [106]. The relative expression of the 16 tested
genes (see Additional file 4) was calculated using
zebrafish elongation factor 1 alpha (efla) as a reference
gene. The gene efla was recently shown to be a suitable
reference gene for tissue analysis, developmental and E2
exposure studies of zebrafish [41,107].

Data mining
The microarray annotations were updated using BlastX
program against nr database of the GeneBank. Blast2GO
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software [108] was used for achieving GO annotations for
the 2,523 differentially expressed genes found by SAM
analysis (see Additional file 1 and Additional file 3).
Combinations of gene lists were performed using Gene

List Venn Diagrams software [109] (Fig. 5).
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Additional file 5

Validation of microarray results by real-time PCR.

Validation of microarray results by real-time PCR. The graphs in the
figure indicate the correlation between the microarray results and real-
time PCR results of 16 selected genes, represented by the R2 value in each
graph. The expression levels of the following 16 genes genes were normal-
ized to efla: 1) retinoic acid receptor alpha a (raraa); 2) estrogen
receptor alpha gene (esr1); 3) retinol dehydrogenase 10 (rdh10); 4)
retinol dehydrogenase 14 (rdh14); 5) dehydrogenase/reductase
(SDR family) member 10 (dhrs10); 6) stearoyl-desaturase (sCd); 7)
fatty acid desaturase 2 (fads2); 8) alcohol dehydrogenase 5 (adh5);
9) vitellogenin 1 (vtgl); 10) vitellognin 3 (vtg3); 11) insulin-like

Additional file 1

Significantly different transcripts among the five tested groups.
Significantly different transcripts among the five tested groups. List of
2, 523 genes corresponding to the significantly different transcripts found
by SAM analysis.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-141-S1.xls]

Additional file 2

Detailed lists of genes that were found to be regulated in this
study.

Detailed lists of genes that were found to be regulated in this study.
Detailed lists of gene accession numbers and gene names in groups 1-9 as
they appear in Figures 6 and 7.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-141-S2 xls]

Additional file 3

Genes in selected GO terms.

Genes in selected GO terms. This table represents SAM values and E2
regulation of genes in selected functions for the five tested groups.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-141-S3.pdf]

Additional file 4

Primers used for chip validation.

Primers used for chip validation. List of primers used in real-time PCR
for microarray validation.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-141-S4.pdf]

growth factor 1 (igf1); 12) nothepsin (nots); 13) alcohol dehydro-
genase 8b (adh8b); 14) cytochrome p450, family 1, subfamily al
(cyplal); 15) cytochrome P450, family 2, subfamily K, polypeptide
6 (cyp2k6) and 16) steroidogenic acute regulatory protein (star).
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-141-S5.pdf]
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