
BMJ Open Diab Res Care 2022;10:e002653. doi:10.1136/bmjdrc-2021-002653

Open access�

1

Open access�

Temporal sequence of blood lipids and 
insulin resistance in perimenopausal 
women: the study of women’s health 
across the nation

Wenhao Yu,1 Guangshuai Zhou,2 Bingbing Fan,1 Chaonan Gao,1 Chunxia Li,1 
Mengke Wei,1 Jiali Lv,1 Li He,1 Guoshuang Feng,3 Tao Zhang  ‍ ‍ 1

For numbered affiliations see 
end of article.

Correspondence to
Dr Tao Zhang;  
​taozhang@​sdu.​edu.​cn and Dr 
Guoshuang Feng;  
​glxfgsh@​163.​com

To cite: Yu W, Zhou G, Fan B, 
et al. Temporal sequence 
of blood lipids and insulin 
resistance in perimenopausal 
women: the study of 
women’s health across the 
nation. BMJ Open Diab Res 
Care 2022;10:e002653. 
doi:10.1136/
bmjdrc-2021-002653

	► Additional supplemental 
material is published online 
only. To view, please visit the 
journal online (http://​dx.​doi.​
org/​10.​1136/​bmjdrc-​2021-​
002653).

WY and GZ contributed equally.

WY and GZ are joint first 
authors.

Received 19 October 2021
Accepted 13 March 2022

Original research

Metabolism

© Author(s) (or their 
employer(s)) 2022. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published 
by BMJ.

ABSTRACT
Introduction  To explore the temporal relationship 
between blood lipids and insulin resistance in 
perimenopausal women.
Research design and methods  The longitudinal 
cohort consisted of 1386 women (mean age 46.4 years 
at baseline) in the Study of Women’s Health Across the 
Nation. Exploratory factor analysis was used to identify 
appropriate latent factors of lipids (total cholesterol (TC); 
triglyceride (TG); high-density lipoprotein cholesterol 
(HDL-C); low-density lipoprotein cholesterol (LDL-C); 
lipoprotein A-I (LpA-I); apolipoprotein A-I (ApoA-I); 
apolipoprotein B (ApoB)). Cross-lagged path analysis was 
used to explore the temporal sequence of blood lipids 
and homeostasis model assessment of insulin resistance 
(HOMA-IR).
Results  Three latent lipid factors were defined as: the TG 
factor, the cholesterol transport factor (CT), including TC, 
LDL-C, and ApoB; the reverse cholesterol transport factor 
(RCT), including HDL-C, LpA-I, and ApoA-I. The cumulative 
variance contribution rate of the three factors was 86.3%. 
The synchronous correlations between baseline TG, RCT, 
CT, and baseline HOMA-IR were 0.284, −0.174, and 0.112 
(p<0.05 for all). After adjusting for age, race, smoking, 
drinking, body mass index, and follow-up years, the path 
coefficients of TG→HOMA-IR (0.073, p=0.004), and 
HOMA-IR→TG (0.057, p=0.006) suggested a bidirectional 
relationship between TG and HOMA-IR. The path 
coefficients of RCT→HOMA-IR (−0.091, P < 0.001) and 
HOMA-IR→RCT (−0.058, p=0.002) were also significant, 
but the path coefficients of CT→HOMA-IR (0.031, 
p=0.206) and HOMA-IR→CT (−0.028, p=0.113) were not. 
The sensitivity analyses showed consistent results.
Conclusions  These findings provide evidence that TG and 
the reverse cholesterol transport-related lipids are related 
with insulin resistance bidirectionally, while there is no 
temporal relationship between the cholesterol transport 
factor and insulin resistance.

INTRODUCTION
Dyslipidemia and insulin resistance are 
common risk factors for cardiovascular 
diseases (CVD), and their prevalence has 
shown an increasing trend.1–3 Previous 
studies have found that 53.5% of patients with 

hypercholesterolemia have insulin resistance,4 
and 67.1% of patients with diabetes will also 
suffer from dyslipidemia.5 The coexistence 
of the dyslipidemia and diabetes significantly 
increases the risk of stroke.6 Epidemiologic 
studies have found that patients with insulin 
resistance and diabetes tended to have higher 
levels of total cholesterol (TC), triglyceride 
(TG), low-density lipoprotein cholesterol 
(LDL-C), and lower high-density lipopro-
tein cholesterol (HDL-C). Dyslipidemia is 

Significance of this study

What is already known about this subject?
	► Dyslipidemia and insulin resistance are common risk 
factors for cardiovascular diseases.

	► Numerous studies have explored the coexistence of 
dyslipidemia and insulin resistance, but the temporal 
relationship between them is not well elucidated.

What are the new findings?
	► We explored the temporal relationship between 
blood lipids and insulin resistance in a longitudi-
nal cohort of perimenopausal women using cross-
lagged path analysis.

	► There were bidirectional relationships between TG 
as well as the reverse cholesterol transport factor 
(high-density lipoprotein cholesterol (HDL-C), lipo-
protein A-I, apolipoprotein A-I) and insulin resistance 
in perimenopausal women.

	► There was no temporal relationship between the 
cholesterol transport factor (total cholesterol, low-
density lipoprotein cholesterol, apolipoprotein B) and 
insulin resistance.

How might these results change the focus of 
research or clinical practice?

	► The conclusions supported the rationality of tri-
glyceride and HDL as components of metabolic 
syndrome. These findings will provide a scientific 
recommendation for perimenopausal women to im-
prove the quality of life and prevent the occurrence 
of dyslipidemia and diabetes.
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one of recognized risk factors of insulin resistance and 
diabetes.7 However, clinical research studies found that 
the improvement of insulin resistance occurred before 
the change of blood lipids, suggesting that the insulin 
resistance might be the cause of dyslipidemia.8 Available 
data are inconsistent about the interplay between blood 
lipids and insulin resistance.

Nowadays, researchers have paid increasing attention 
to the impact of exposure on women’s health, espe-
cially those during menopause. The perimenopause, 
as a transitional period before menopause, is a critical 
window for women’s health management.9 Changes in 
hormones and endocrine system during menopause are 
closely associated with central body fat accumulation and 
weight gain.10 11 This abdominal obesity can contribute 
to the development of dyslipidemia and insulin resis-
tance.12 13 To date, studies focused on the relationship 
between blood lipids and insulin resistance in perimeno-
pausal women are limited. The Study of Women’s Health 
Across the Nation (SWAN) is a longitudinal cohort study 
that aims to explore the effects of environmental expo-
sures, physical and psychological changes on women’s 
health, before and after menopause.14 The cross-lagged 
path analysis is a form of path analysis that simultaneously 
examines reciprocal, longitudinal relationships among 
a set of intercorrelated variables.15 Using this model to 
explore the temporal relationship between blood lipids 
and insulin resistance in perimenopausal women would 
provide more insights for the prevention of CVD and 
type 2 diabetes in women.

In the longitudinal cohort of SWAN, the present study 
aims to examine the temporal relationship between blood 
lipids and insulin resistance in perimenopausal women.

RESEARCH DESIGN AND METHODS
Subjects
The Study of Women’s Health Across the Nation (SWAN) 
is a multicenter, multiethnic, longitudinal study of midlife 
women in the USA.16 The baseline examination started 
in 1996 and included 3302 premenopausal women aged 
42–52. Participants self-identified as African American 
(28%), Caucasian (47%), Chinese (8%), Hispanic (8%), 
or Japanese (9%), recruited from seven sites across the 
USA: Boston, Chicago, Detroit, Oakland, Los Angeles, 
Newark, and Pittsburgh.

The SWAN cohort has been followed up 16 times to 
date, the baseline and the first 10 visits have been made 
public. The inclusion criteria of this study included the 
following: (1) at least two follow-up records during peri-
menopausal period; (2) no missing value in the main 
variables such as blood lipids, insulin, blood glucose, age, 
race, body mass index (BMI), smoking, drinking, and so 
on. Meanwhile, we excluded participants with cancer, 
AIDS, and systemic lupus erythematosus, which could 
affect the function of the endocrine system, at baseline 
and follow-up; records with ambiguous menopausal status 
due to hormone replacement therapy or hysterectomy; 

records of taking hypolipidemic, hypoglycemic agents, 
and undergoing uterine or ovarian resection. According 
to the criteria mentioned above, we selected baseline, 
Visit 1, 3, 5, and 7 data from the cohort. A total of 1386 
women (mean age 46.35 years at baseline) were included 
in the current study. The mean follow-up time was 3.5 
(range=1.0–7.8) years. All subjects included were in the 
early or late perimenopausal period.

Study protocols were approved by the Institutional 
Review Board at each site, and all participants provided 
written informed consent at each study visit. More details 
of the SWAN protocol have been published.14

Measurements
Common protocols were standardized and used by 
trained examiners across the seven sites. Information 
obtained by questionnaires included demographics (age, 
ethnicity, level of education and so on), female physi-
ology, medical history, and behavioral lifestyles. Smokers 
were defined as current smoking. Drinkers were defined 
as drinking at least once a week.

Anthropometric and laboratory data were collected 
by clinical technicians. Standing height and weight were 
measured in light clothing without shoes. BMI was calcu-
lated as weight in kilograms divided by height in meters 
squared. All participants were required to collect venous 
blood in the morning after a fasting period of no less 
than 10 hours. Serum and plasma samples centrifuged 
were stored at −80°C and sent to specified laboratory 
for measurement. Laboratory indexes include fasting 
plasma glucose (FPG, mmol/L), insulin (uIU/ml), TC 
(mmol/L), TG (mmol/L), HDL-C (mmol/L), LDL-C 
(mmol/L), lipoprotein A-I (LpA-I, mg/dL), apolipopro-
tein A-I (ApoA-I, mg/dL), and apolipoprotein B (ApoB, 
mg/dL). FPG was measured within 2 hours. Insulin resis-
tance was estimated by homeostasis model assessment of 
insulin resistance (HOMA-IR) with the HOMA2 calcu-
lator provided by the University of Oxford (https://www.​
dtu.ox.ac.uk/).

Statistical analysis
Characteristics of study variables of baseline and follow-up 
investigations were compared using generalized linear 
models for continuous variables and χ² statistics for cate-
gorical variables. TG and HOMA-IR were log-transformed 
for normal distribution. The cross-lagged path analysis, 
a specific form of path analysis, is a typical statistical 
approach that simultaneously explores the temporal 
sequences of intercorrelated variables in the longitudinal 
study.15 A conceptual version of the model is depicted in 
online supplemental figure S1. The path coefficient ρ1 
describes the effect of baseline Y1 on the follow-up Xt, ρ2 
describes the effect of baseline X1 on the follow-up Yt in 
turn. The significance of path coefficient ρ1 or ρ2 indicates 
a clear temporal relationship. If ρ1 and ρ2 are both signif-
icant, it suggests a bidirectional relationship between X 
and Y. Before the cross-lagged path analysis, the values 
of indexes at baseline and follow-up were adjusted for 

https://www.dtu.ox.ac.uk/
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age, race, smoking, drinking, BMI, and follow-up years in 
regression residual analyses and then were standardized 
by Z-transformation (mean=0, SD=1). The cross-lagged 
path coefficients (ρ1 and ρ2) were calculated based on 
the correlation matrix, using the structural equation 
modeling with the R package Lavaan. The validity of 
model fitting was assessed by root mean square residual 
(RMR) and comparative fit index (CFI).17 RMR<0.05 and 
CFI>0.90 suggests a relatively good fit to the observed 
data. The difference between ρ1 and ρ2 was tested using 
Fisher’s Z-test as described in previous studies.18

We identified appropriate latent lipid factors based 
on exploratory factor analysis and medical knowledge, 
due to the high correlation between blood lipids. Three 
common latent lipid factors were determined according 
to the Kaiser-Harris criterion and Cattell scree test, as 
shown in online supplemental figure S2. Examination 
by principal factor extraction found that the eigenvalues 
of the three factors were all >1. The cumulative variance 
contribution rate of the three factors was 86.3% (15.8% 
for factor 1, 32.3% for factor 2, 38.2% for factor 3, respec-
tively), as shown in online supplemental table S1. Cross-
lagged path models of these latent lipid factors and 
HOMA-IR were constructed, with adjustment for age, 
race, smoking, drinking, BMI, and follow-up years. The 
pattern of the model with latent variable is depicted in 
figure 1. Additionally, we implemented power analysis of 
cross-lagged path models between latent lipid factors and 
HOMA-IR, using the R package WebPower.

As sensitivity analysis, three-wave cross-lagged path 
models were built. Participants with three or more peri-
menopausal follow-ups were selected from the dataset, 

and we used their first and last two follow-up records 
to construct the three-wave cross-lagged path model. In 
addition, because there was no information about phys-
ical activity in visit 7, we used data from baseline, visit 1, 
3, and 5 to further adjust physical activity and estrogen in 
the two-wave model.

RESULTS
Table  1 summarizes the characteristics of 1386 peri-
menopausal women at baseline and follow-up. There 
were 663 (47.84%) whites, 338 (24.39%) blacks, 150 
(10.82%) Chinese, 169 (12.19%) Japanese, and 66 
(4.76%) Hispanics. BMI, insulin, HOMA-IR, TC, TG, 
HDL-C, LDL-C, LpA-I, ApoA-I, ApoB, and the proportion 
of drinking were significantly different between baseline 
and follow-up.

Table 2 shows the cross-lagged path analysis of single 
blood lipid and HOMA-IR, with adjustment for age, race, 
smoking, drinking, BMI, and follow-up years. The path 
coefficients of two directions between HDL-C, LpA-I, 
ApoA-I, and HOMA-IR were −0.093 to −0.050 (p<0.05 
for all), while the path coefficients of TC and HOMA-IR, 
LDL-C, and HOMA-IR were −0.035 to 0.008 (p>0.05 for 
all). The synchronous correlation between baseline TG 
and baseline HOMA-IR was 0.284 (p<0.001). The path 
coefficients of TG→HOMA-IR was 0.073 (p=0.004) and 
HOMA-IR→TG was 0.057 (p=0.006), and the difference 

Figure 1  Cross-lagged path model between RCT and 
HOMA-IR, adjusted for age, race, smoking, drinking, BMI, 
and follow-up years. ρ1 and ρ2 are cross-lagged path 
coefficients; r1 is synchronous correlation; β1 and β2 are 
tracking correlations; *p<0.05. ApoA-I, apolipoprotein A-I; 
BMI, body mass index; HDL-C, high-density lipoprotein 
cholesterol; HOMA-IR, homeostasis model assessment 
of insulin resistance; LpA-I, lipoprotein A-I; RCT, reverse 
cholesterol transport factor.

Table 1  Characteristics of the study cohort at baseline and 
follow-up

Variables Baseline Follow-up P value*

Age (years) 46.3 (2.63) 49.8 (2.69) <0.001

Smoker, n (%) 184 (13.3) 165 (11.9) 0.303

Drinker, n (%) 266 (19.2) 355 (25.6) <0.001

BMI (kg/m2) 27.3 (6.68) 28.1 (6.82) 0.003

FPG (mmol/L) 5.09 (0.61) 5.04 (0.70) 0.062

Insulin (uIU/mL) 10.1 (6.91) 10.9 (7.14) 0.002

HOMA-IR 2.36 (1.91) 2.54 (1.99) 0.015

TC (mmol/L) 4.97 (0.82) 5.20 (0.91) <0.001

TG (mmol/L) 1.17 (0.59) 1.28 (0.67) <0.001

HDL-C (mmol/L) 1.51 (0.36) 1.56 (0.39) 0.001

LDL-C (mmol/L) 2.92 (0.76) 3.05 (0.81) <0.001

LpA-I (mg/dL) 49.3 (12.3) 53.9 (14.9) <0.001

ApoA-I (mg/dL) 153.7 (25.3) 164.2 (27.7) <0.001

ApoB (mg/dL) 106.0 (25.7) 109.9 (27.6) <0.001

The number of subjects, N=1386.
Study variables are presented as mean (SD) or n (%).
*P value for the difference of variables between baseline and 
follow-up.
ApoA-I, apolipoprotein A-I; ApoB, apolipoprotein B; BMI, body 
mass index; FPG, fasting plasma glucose; HDL-C, high-density 
lipoprotein cholesterol; HOMA-IR, homeostasis model assessment 
of insulin resistance; LDL-C, low-density lipoprotein cholesterol; 
LpA-I, lipoprotein A-I; TC, total cholesterol; TG, triglyceride.

https://dx.doi.org/10.1136/bmjdrc-2021-002653
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between the two path coefficients was not significant 
(p=0.673). The significant path coefficients suggested 
a bidirectional relationship between these blood lipids 
and HOMA-IR. The path coefficient of baseline ApoB→−
follow-up HOMA-IR (ρ1=0.051, p<0.05) was significant, 
while baseline HOMA-IR→follow-up ApoB (ρ2<0.001, 
p=0.985) was not significant, indicating a unidirectional 
temporal sequence of ApoB and HOMA-IR.

Online supplemental figure S2 and online supple-
mental table S1 present the information about explor-
atory factor analysis. Three latent lipid factors (TG factor, 
reverse cholesterol transport factor and cholesterol trans-
port factor) were determined, and the cumulative vari-
ance contribution rate of the three factors was 86.3%. 
TG was the main loading of a single factor, we named 
it TG factor. The cross-lagged path analysis of TG factor 
was same as the model of TG and HOMA-IR showed in 
table 2. The factor loadings of HDL-C, LpA-I, and ApoA-I 
were highest of the reverse cholesterol transport factor 
(RCT). These three lipids were involved in the proce-
dure of transporting cholesterol from peripheral tissues 
to liver. Cholesterol transport factor (CT) was loaded with 
TC, LDL-C, and ApoB. In the human body, these blood 
lipids were involved in the procedure of transporting 
cholesterol to peripheral tissues, which is contrary to 
RCT.

Figure  1 illustrates the cross-lagged path analysis 
between RCT and HOMA-IR, with adjustment for age, 
race, smoking, drinking, BMI, and follow-up years. 
The synchronous correlation between baseline RCT 
and baseline HOMA-IR was −0.174 (p<0.05). The path 
coefficients of baseline RCT→follow-up HOMA-IR 
(ρ1=−0.091, p<0.001) and baseline HOMA-IR→follow-up 
RCT (ρ2=−0.058, p=0.002) were all significant. The differ-
ence between the two path coefficients was not signifi-
cant (p=0.383). The tracking correlation coefficients 
of RCT and HOMA-IR between different panels in the 
model were 0.748 and 0.443 (p<0.05 for both). Model 

fitting parameters RMR and CFI were 0.028 and 0.985, 
respectively. Figure  2 illustrates the cross-lagged path 
analysis between CT and HOMA-IR. The synchronous 
correlation between baseline CT and baseline HOMA-IR 
was 0.112 (p<0.05). The path coefficients of baseline 
CT→follow-up HOMA-IR (ρ1=0.031, p=0.206) and base-
line HOMA-IR→follow-up CT (ρ2=−0.028, p=0.113) were 
not significant. The tracking correlation coefficients of 
CT and HOMA-IR between different panels were 0.766 
and 0.455 (p<0.05 for both). RMR and CFI were 0.044 
and 0.982, suggesting a good fit to the data. Online 
supplemental table S4 presents the cross-lagged path 

Table 2  The cross-lagged path coefficients between blood lipids and HOMA-IR

Synchronous
correlations (r1)

Path coefficients
Autocorrelation
coefficients

Goodness of
model fit

ρ1 (Lipid→HOMA-IR) ρ2 (HOMA-IR→Lipid) Lipid HOMA-IR RMR CFI

TG 0.284* 0.073* 0.057* 0.649 0.415 0.054 0.930

HDL-C −0.195* −0.057* −0.066* 0.765 0.425 0.017 0.993

LpA-I −0.095* −0.058* −0.093* 0.539 0.431 0.014 0.995

ApoA-I −0.077* −0.050* −0.066* 0.549 0.432 0.000 1.000

TC 0.093* 0.008 −0.035 0.733 0.435 0.028 0.979

LDL-C 0.092* 0.007 −0.021 0.753 0.436 0.021 0.989

ApoB 0.176* 0.051* <0.001 0.735 0.427 0.035 0.969

The number of subjects, N=1386.
*P<0.05.
ApoA-I, apolipoprotein A-I; ApoB, apolipoprotein B; CFI, comparative fit index; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, 
homeostasis model assessment of insulin resistance; LDL-C, low-density lipoprotein cholesterol; LpA-I, lipoprotein A-I; RMR, root mean 
square residual; TG, triglyceride.

Figure 2  Cross-lagged path model between CT and 
HOMA-IR, adjusted for age, race, smoking, drinking, BMI, 
and follow-up years. ρ1 and ρ2 are cross-lagged path 
coefficients; r1 is synchronous correlation; β1 and β2 are 
tracking correlations; *p<0.05. ApoB, apolipoprotein B; BMI, 
body mass index; CT, cholesterol transport factor; HOMA-IR, 
homeostasis model assessment of insulin resistance; LDL-C, 
low-density lipoprotein cholesterol; TC, total cholesterol.

https://dx.doi.org/10.1136/bmjdrc-2021-002653
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coefficients between latent lipid factors and HOMA-IR in 
different races, and the results were basically consistent.

In sensitivity analysis, we constructed three-wave cross-
lagged path models with latent variables to explore the 
impact of changes in the follow-up interval. A total of 
722 women with three or more follow-ups were included. 
The characteristics of these participants at baseline and 
last two follow-ups are described in online supplemental 
table S2. The mean age at baseline was 45.71 years. The 
mean follow-up year of T2, T3 was 2.51 and 4.76 years, 
respectively.

Figure 3 shows the three-wave cross-lagged path model 
of RCT and HOMA-IR, with adjustment for the same 
covariates mentioned above. The path coefficients of 
RCTT1→HOMA-IRT2 (ρ1=−0.117, p=0.001), HOMA-
IRT1→RCTT2 (ρ2=−0.055, p=0.033), RCTT2→HOMA-
IRT3 (ρ3=−0.078, p=0.030), and HOMA-IRT2→RCTT3 
(ρ4=−0.055, p=0.025) were all significant. These path 
coefficients suggest that there were bidirectional 
temporal relationships between RCT and HOMA-IR in 
T1→T2 and T2→T3, consistent with the two-wave model 
in figure 1. The differences between ρ1 and ρ2 (p=0.236) 
as well as ρ3 and ρ4 (p=0.661) were not significant.

Online supplemental figure S3 shows the three-wave 
cross-lagged path model of CT and HOMA-IR. The path 
coefficients between CT and HOMA-IR were not signifi-
cant in neither T1→T2 or T2→T3. These findings were 
same as the model in figure  2. Online supplemental 
figure S4 shows the three-wave cross-lagged path model 
of TG and HOMA-IR. The path coefficients between TG 
and HOMA-IR within T1→T2 were all significant, while 
T2→T3 were not all significant. The tracking correla-
tion coefficients between different panels in three-wave 
models were all significant, and the model parameters 
were presented in online supplemental table S3. Online 
supplemental table S5 presents the power analysis of 

cross-lagged path models between latent lipid factors 
and HOMA-IR, and the powers of these models were 
all acceptable. Online supplemental table S6 shows the 
two-wave cross-lagged path models between latent lipid 
factors and HOMA-IR with further adjustment for phys-
ical activity and estrogen, and the results were basically 
consistent.

DISCUSSION
Despite the strong intercorrelation between blood lipids 
and insulin resistance has been well documented,19–21 the 
temporal relationship between them is not elucidated 
completely. The current study explored the temporal 
relationship between blood lipids and insulin resistance 
in a longitudinal cohort of perimenopausal women using 
cross-lagged path analysis. There was a bidirectional rela-
tionship between reverse cholesterol transport factor 
(HDL-C, LpA-1, ApoA-1) and HOMA-IR. TG was also 
associated with HOMA-IR bidirectionally. In contrast, 
there was no temporal relationship between cholesterol 
transport factor (TC, LDL-C, ApoB) and HOMA-IR. 
Compared with the cholesterol transport process, the 
reverse process correlated to the regulation of glucose 
more closely.

In order to avoid the collinearity among blood lipids, 
three latent lipid factors (TG, RCT, CT) were identified 
based on the exploratory factor analysis. TG, as the most 
abundant lipid in human’s body, was examined as an 
independent factor in the current analysis. There was a 
bidirectional relationship between TG and HOMA-IR. 
The increase of TG or HOMA-IR will increase the level 
of each other. TG was widely used to predict the risk of 
insulin resistance and diabetes.22 23 Previous studies have 
shown that for 1-SD increase of TG, the insulin resistance 
in hepatic increased by 24%.24 Mendelian randomiza-
tion analysis confirmed the causal effect of TG on insulin 
resistance.19 Elevated TG are frequently accompanied by 
elevated free fat acid (FFA), then the elevated FFA will 
affect insulin resistance through the glucose-fatty acid 
cycle.25 Glucose-fatty acid cycle, also called Randle cycle, 
refers to the significant reduction in the uptake and utili-
zation of glucose that occurs in muscle when fatty acid 
oxidation is intense, accordingly, the insulin resistance 
may increase.25 26 Meanwhile, the effect of insulin resis-
tance on TG has also been reported. An analysis of clin-
ical intervention trials showed that metformin combined 
with lifestyle intervention could alleviate insulin resis-
tance and reduce the level of TG in patients, and the 
effect to improve islet function appeared earlier than 
the effect to improve dyslipidemia.8 As the increase of 
insulin, the activity of lipoprotein lipase, which could 
decompose very low-density lipoprotein with plentiful 
TG, would decrease.27 In the three-wave cross-lagged 
path model, TG was associated with HOMA-IR unidi-
rectionally between T2 and T3. This may be due to the 
small sample size, and the fact that the last two panels 
are closer to menopause, so the physical condition and 

Figure 3  Cross-lagged path model between RCT and 
HOMA-IR in three panels, adjusted for age, race, smoking, 
drinking, BMI, and follow-up years. ρ1, ρ2, ρ3, and ρ4 are 
cross-lagged path coefficients; r1 is synchronous correlation; 
β1, β2, β3, and β4 are tracking correlations; *p<0.05. ApoA-I, 
apolipoprotein A-I; BMI, body mass index; HDL-C, high-
density lipoprotein cholesterol; HOMA-IR, homeostasis 
model assessment of insulin resistance; LpA-I, lipoprotein 
A-I; RCT, reverse cholesterol transport factor.
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hormone regulation have changed. The deeper causes of 
this phenomenon need further research.

For reverse cholesterol transport factor, the present 
study identified it was bidirectionally linked to HOMA-
IR. The increase in blood lipids of RCT can lead to a 
decrease in HOMA-IR, which is consistent with the find-
ings of recent research studies.28 29 Studies showed that 
lower HDL-C was a risk factor for insulin resistance and 
diabetes. The risk of diabetes for people with low HDL-C 
was 2.2 times than that of normal individuals.28 Animal 
experiments reported alleviated insulin resistance after 
the injection of ApoA-I in pregnant rats.29 Physiological 
studies have shown that HDL-C could reduce the activity 
of gluconeogenic enzymes in the liver, accelerate the 
absorption of glucose, and alleviate the insulin resistance. 
Additionally, HDL-C could decrease the damage of IL-1, 
TNF-α, and other inflammatory factors on pancreatic β 
cells.30

The current analysis suggested that insulin resistance 
also had a negative effect on reverse cholesterol transport-
related lipids. People with diabetes were often accompa-
nied by lower levels of HDL-C and ApoA-I.20 31 Wang et al 
found that HDL-C decreased gradually as insulin resis-
tance aggravated.32 Population-based study showed that, 
in the early stage of insulin resistance, the decomposi-
tion of ApoA-I increased by about 50%, compared with 
the control group.33 According to biochemical research, 
insulin resistance could result in increased TG and 
decreased HDL-C. Irregular metabolism of glucose might 
inhibit the synthesis of ApoA-I and reduce the activity of 
lecithin cholesterol acetyltransferase, which in turn led to 
a prolonged maturation of HDL-C.34

Previous studies have shown that cholesterol transport-
related blood lipids were closely related to insulin resis-
tance. Epidemiological evidence showed that elevated 
TC level was a risk factor for prediabetes and diabetes, 
and the risk of dyslipidemia in patients with insulin resis-
tance was also increased significantly.7 35 36 Different from 
researches mentioned above, the current study found 
that there was no temporal relationship between the 
cholesterol transport factor and HOMA-IR. Addition-
ally, TC and LDL-C were also independent with HOMA-
IR. Though the significant path coefficient of baseline 
ApoB→follow-up HOMA-IR was relatively larger than 
that of TC and LDL-C but it did not influence the model 
of CT and HOMA-IR. The reasons for the inconsistency 
may be as follows. First, the levels of blood lipid and 
glucose in the population included in this study were 
lower than the patients with dyslipidemia or diabetes 
included in other studies. The difference in disease 
status may affect the relationship between blood lipids 
and HOMA-IR. Second, the present study that focused 
on perimenopausal women, gender difference and 
severe hormonal fluctuations during this period could 
be another explanation.

There is a lot of evidence to support our conclusion. 
A cross-sectional study showed that LDL-C was indepen-
dent with insulin sensitivity.37 Prospective studies based 

on the Chinese population found that TC and LDL-C 
may not be risk factors for diabetes.38 American prospec-
tive analysis claimed that elevated insulin levels were not 
associated with the risk of hyperlipidemia.39 However, the 
mechanism between TC, LDL-C, ApoB, and HOMA-IR 
is not clear so far. Whether there is a causal relationship 
between cholesterol transport-related lipids and insulin 
resistance remains to be further studied.

Strengths and limitations
The current study has some important strengths. The 
analysis was based on the cross-lagged path model, a 
powerful method for dissecting the temporal sequences 
between intercorrelated variables, which could provide 
evidence for causal inference. Meanwhile, we included 
a lot of blood lipids and constructed models with latent 
variables. Integrating multiple information by latent vari-
ables could reduce the influence of strong correlations 
between variables. On the other hand, some limitations 
of the present study should be stated. The generalization 
of our conclusions is restricted because subjects included 
were perimenopausal women in this study. We could not 
ascertain the effect of menopause limited by the small 
sample size of menopausal participants. Though the 
covariates were adjusted, unknown confounders were not 
considered. Additionally, body fat distribution such as 
ectopic fat and visceral fat will change with the hormonal 
alterations of menopause;40 though we have adjusted 
BMI in the models, the effect of body fat is also worthy 
of further evaluation. However, there was no informa-
tion about body fat in public dataset of SWAN. Studies 
with more information about body fat distributions are 
needed in the future to further examine these findings.

CONCLUSION
In conclusion, the current study demonstrated that TG 
and the reverse cholesterol transport-related lipids are 
related with insulin resistance bidirectionally, while there 
was no temporal relationship between the cholesterol 
transport factor (TC, LDL-C, ApoB) and insulin resis-
tance. These findings supported the rationality of TG 
and HDL as components of metabolic syndrome and will 
provide recommendations for perimenopausal women 
to improve the quality of life and prevent the occurrence 
of dyslipidemia and diabetes. Further research focused 
on the interplay between dyslipidemia and diabetes 
should pay more attention to TG and lipids related with 
the reverse cholesterol transport process.
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