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Species richness and beta 
diversity patterns of multiple 
taxa along an elevational 
gradient in pastured grasslands 
in the European Alps
Veronika Fontana1*, Elia Guariento1,2, Andreas Hilpold1, Georg Niedrist1, 
Michael Steinwandter1, Daniel Spitale3, Juri Nascimbene4, Ulrike Tappeiner1,2 & 
Julia Seeber1,2

To understand how diversity is distributed in space is a fundamental aim for optimizing future 
species and community conservation. We examined in parallel species richness and beta diversity 
components of nine taxonomic groups along a finite space, represented by pastured grasslands along 
an elevational gradient. Beta diversity, which is assumed to bridge local alpha diversity to regional 
gamma diversity was partitioned into the two components turnover and nestedness and analyzed 
at two levels: from the lowest elevation to all other elevations, and between neighboring elevations. 
Species richness of vascular plants, butterflies, beetles, spiders and earthworms showed a hump-
shaped relationship with increasing elevation, while it decreased linearly for grasshoppers and ants, 
but increased for lichens and bryophytes. For most of the groups, turnover increased with increasing 
elevational distance along the gradient while nestedness decreased. With regard to step-wise beta 
diversity, rates of turnover or nestedness did not change notably between neighboring steps for the 
majority of groups. Our results support the assumption that species communities occupying the same 
habitat significantly change along elevation, however transition seems to happen continuously and 
is not detectable between neighboring steps. Our findings, rather than delineating levels of major 
diversity losses, indicate that conservation actions targeting at a preventive protection for species and 
their environment in mountainous regions require the consideration of entire spatial settings.

Detecting and understanding dynamics and causes of biodiversity losses or gains have become a worldwide 
challenge in the field of nature conservation. However, in many regions on Earth not even the status quo of liv-
ing organisms is known, often hindering reliable evidence on imminent risks and threats1. Aside financial and 
political reasons, comprehensive biodiversity assessments are often hampered by more trivial reasons: many 
taxa are almost unknown to science, others are difficult to detect, requiring sophisticated methods and equip-
ment as well as high taxonomic expertise2. Thus, most studies focus on one or few taxonomic groups, inhibiting 
a holistic view on a coexisting community which usually strongly interacts within a given space3. Multi-taxon 
approaches looking at the main players in an ecosystem are rarely found but more and more required when try-
ing to understand spatial dynamics of diversity at a superordinate level4. Encouragingly, the number of recently 
established (long-term) monitoring programs and networks is increasing steadily, promising a proliferation of 
knowledge on presence, co-occurrence and abundance of living animals and plants on a species level over broad 
spatial and temporal scales5,6.
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Another difficulty in diversity research concerns the definitions of concepts and controversially discussed 
diversity measures, especially when referring to beta diversity7. Beta diversity is the linkage between local alpha 
diversity and regional gamma diversity and the first approach, proposed by Whittaker8,9 stated that beta results 
from the ratio of gamma to alpha. However, over the years, a series of more specific definitions and formulas 
have been developed [cf.10,11] and since the partitioning diversity forum in 201012, the need for a measure of beta, 
independent of alpha and gamma, has been raised. Thereupon, research advanced rapidly and went deeper into 
partitioning the components of beta diversity13–16, but again differently developed approaches are hampering a 
wider understanding and comparison of findings. For example, Legendre and Caceres16 decompose diversity into 
species and site contributions representing a non-directional approach which determines variation in community 
structure among a set of sample units. In contrast, Baselga and Orme17, Podani and Schmera15, and Carvalho 
et al.14 stick to a directional approach along a predefined gradient performing pair-wise comparisons. Of the lat-
ter, Baselga and Orme17, who distinguish between turnover (i.e. species replacement between a pair of samples) 
and nestedness (i.e. species gain or loss between a pair of samples) components, developed the currently most 
widely used approach18. Generally, turnover is supposed to be the result of environmental, abiotic impacts or 
dispersal processes, while nestedness may reflect colonization and extinction patterns18–20.

Both components have been recognized to adequately detect spatial diversity patterns18 due to the underlying 
dissimilarity measures which compare species compositions between two sample units.

An ideal predefined space to study mechanisms which determine spatial variation of species assemblage is 
represented by elevational gradients along mountain slopes21. In advantage to latitudinal gradients, they encom-
pass short geographical distances, attenuate biotic responses caused by historical or biogeographical reasons22 
and facilitate the delimitation of changes in community structure due to environmental drivers23.

The main aim of our study is to uncover the spatial scaling of species communities of nine taxa along an 
elevational gradient and to detect parallelisms or dissimilarities between the taxonomic groups. We recorded 
presence and, where possible, abundance, of nine organism groups including lichen, bryophytes, vascular plants, 
ants, beetles, spiders, butterflies, grasshoppers, and earthworms occurring in alpine pastured grassland along 
a complete elevational gradient spanning 1,500 m. First, we compared species richness for all groups along the 
gradient and then applied the most widely used approach to partition beta diversity18, developed by Baselga in 
201013. We considered the two components turnover and nestedness at two levels: from the lowest elevation to 
all other elevations (along elevation), and between neighboring elevations (step-wise).

On the basis of previous literature [e.g.24–26], we expect that species richness decreases with elevation or peaks 
at intermediate elevations. An inverse relationship might be assumed for lichens and bryophytes, for which 
in forests richness has been shown to increase with elevation27,28. Our interest focuses on possible differences 
between taxonomic groups living in the same environment, as detected by Peters et al.29 in a big multi-taxon 
elevational study in the Afro-tropics who claimed for replication.

With regard to beta diversity, we hypothesize that, when increasing the elevational distance and looking at 
comparisons always starting from sample units at lowest elevation to all other elevations (along elevation diver-
sity), turnover will increase due to a diversification of communities, as already found by Bishop et al.30 for ants. 
Accordingly, we assume the antagonistic component, along elevation nestedness, to decrease with elevation, since 
communities living on higher elevations usually are not subsets of low-land communities20.

We secondly hypothesize that neighboring elevational steps (e.g. comparison of sites between 2,000 and 
2,500 m, i.e. step-wise diversity) show lower turnover when comparing sites of higher located steps, due to a more 
specific community formed by harsher abiotic environment20,31 and a generally lower species pool, producing 
more similar local communities32,33 Consequently, we assume step-wise nestedness to behave contrarily, being 
higher when comparing pairs of sites on higher located steps, due to a more similar, adapted community and 
the subsequent higher probability of species subsets.

To our knowledge, our work disentangles for the first time beta-diversity components turnover and nested-
ness on multiple levels along an elevational gradient for nine taxonomic groups. We aim at identifying common 
patterns for organisms sharing the same habitat, which is pastured grassland, and at best, our findings will be 
useful in delineating zones or belts mattering most for biodiversity conservation along an elevational gradient.

Methods
Study area.  All species were sampled in 2016 within the LT(S)ER site Val Mazia/Matschertal (LTER_EU_
IT_097, N 46.6840°, E 10.5860°, https​://deims​.org/11696​de6-0ab9-4c94-a06b-7ce40​f56c9​64), located in the 
Central Eastern Alps, in the northernmost part of Italy (Autonomous Province of Bolzano—South Tyrol). The 
continental climate results in approximately 525 mm mean annual precipitation and an average air temperature 
of 5.6 °C (1,925–2,005, at 1,580 m a.s.l., Hydrographic Office of the Province Bolzano, South Tyrol).

Along a SW exposed, complete elevational gradient spanning from the lower montane zone (valley bottom) 
to the alpine zone (highest peak), we selected three replicate sites at four elevations each (1,000 m, 1,500, 2,000, 
2,500, n total = 12, Fig. 1, site coordinates in Supplementary Table S1) within a horizontal distance of 2 km beeline.

All 12 sites have comparable slope (5–15°), are non-intensively grazed by cattle (0.5–1.5 livestock units per 
ha), are without additional fertilization or irrigation and were not subjected to substantial land-use-changes over 
the last 160 years34. The sites at the two lower elevation steps belong to an area which is protected by the Habitats 
Directive of the EU (code 6,240*)35.

Field sampling.  We recorded species presence and where possible abundance for nine taxonomic groups 
with standardized methods. For animal groups, we carefully met basic sampling conditions [cf.36] and always 
looked for exhaustiveness of species recording. A central point was established for each site wherefrom each 
group was sampled according to taxon-specific methods.

https://deims.org/11696de6-0ab9-4c94-a06b-7ce40f56c964
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•	 Vascular plants were recorded from five random subplots (3 × 3 m) according to Elzinga et al.37 within an 
area of 531 m2 (radius from central point = 13 m). Species occurrence was recorded for each subplot.

•	 Bryophytes and lichens were recorded from five random subplots (50 × 40 cm) according to Elzinga et al.37 
within an area of 531 m2. Species occurrence was recorded for each subplot. Specimens of species which were 
difficult to identify in the field were collected and identified in the laboratory.

•	 Grasshoppers including crickets and locusts were surveyed three times during summer period to ensure 
that all individuals were adult. They were caught by hand and with a sweep net for 20 min within 500 m238,39, 
identified and released. Additionally, vocals were used to identify species.

•	 Butterflies and burnets were caught three times during summer period with a sweep net (45 min per site) 
within 500 m238,39, identified and released.

•	 Earthworms were heat extracted from three soil core samples (20 × 20 cm, 15 cm deep, taken randomly within 
a 100 m2 area) with a modified Kempson apparatus40 according to Steinwandter et al.33. After extraction 
animals were identified to species level using a dissecting microscope.

•	 Beetles were taken from soil core samples (cf. earthworms) and caught with two pitfall traps (plastic cups with 
8.5 cm diameter filled with 150 ml of propylene glycol) installed on opposing sides within a 5 m distance from 
the central point for two weeks [cf.41]. Individuals from pitfall traps and soil core samples were transferred 
to 75% ethanol and only adult specimens were identified to species level using a dissecting microscope.

•	 Spiders were collected by visual search, within soil core samples and pitfall traps (cf. beetles42). Individuals 
were transferred to 75% ethanol and only adult specimens were identified to species level using a dissecting 
microscope.

•	 Ants were recorded by counting nests within 4 m2 subplots and additionally collected within pitfall traps 
(cf. beetles) according to Schlick-Steiner et al.43. Individuals were collected and identified using a dissecting 
microscope.

Data analyses.  We first verified our sampling completeness by estimating sampling coverage (Table 1) with 
the function iNEXT within the R package inext44. Datatype was set to “incidence_freq” for bryophytes, lichen 
and vascular plants (due to data structure) and to “abundance” for all other taxa. In the case of incidence data, 
sample size refers to the number of sampling units, whereas for abundance data sample size equals the number 
of individuals in a sample45. Only a consistent and high sampling coverage estimation allows a compositional 
comparison of different taxonomic groups46.

Species richness was calculated by computing the cumulative number of species per site (n = 12) for each 
taxon separately. By applying the function spline.plot within the R package drsmooth47, we plotted a spline-
estimated dose–response function on the actual richness data along the elevational gradient with its upper and 
lower 95 percent confidence bounds.

In order to have the same data base for all taxa, beta diversity was calculated using species occurrence data 
(not including abundance), which was then partitioned into turnover and nestedness components by apply-
ing the function beta.pair within the R package betapart17. This results in three matrices based on pair-wise 
comparisons of each site: the Sørensen dissimilarity index (βsor) expresses the total compositional variation with 
values ranging between 0 and 1, the Simpson dissimilarity index matrix (βsim) compositional changes due to 
species turnover, and βsor minus βsim is the resultant nestedness component βsne.

Figure 1.   Study design with visualization of along and step-wise elevation beta diversity approach. Beta 
diversity components turnover and nestedness were calculated for all possible pairs and further distinguished 
between (i) along elevation beta diversity accounting for pairs starting from the lowest elevation to all other 
elevations (1,000–1,500, 1,000–2,000, 1,000–2,500 m a.s.l.), and (ii) step-wise beta diversity including pairs 
from one elevation to the next neighboring one (1,000–1,500, 1,500–2,000, 2,000–2,500 m). Each elevation was 
surveyed with three replicate sites (n total = 12).
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Table 1.   Results of mixed effect models testing the effect of elevational distance for overall beta (ß Sorensen) 
diversity and the components turnover and nestedness performed separately for along elevation and step-
wise diversity for each taxonomic group. AIC Null Model = is the AIC (Akaike information criterion) of 
the model without elevational distance as fixed factor, AIC = is the AIC of the model including elevational 
distance, Delta AIC is the difference of the applied model to the Null-Model. R2 m… marginal, R2 
c… conditional. Significance levels: *...0.01–0.05, **...0.001–0.01, ***...0–0.001

Along elevation diversity

Index Taxon AIC null model AIC Delta AIC R2 m m P value

ß Sorensen

Lichens − 78.822 − 77.181 − 1.641 0.009 0.304 0.549

Bryophytes − 34.596 − 43.130 8.534 0.212 0.566 0.001**

Vascular plants − 13.805 − 51.308 37.503 0.730 0.797  < 0.0001***

Ants 10.912 − 8.088 18.999 0.531 0.531  < 0.0001***

Spiders − 17.266 − 34.348 17.082 0.463 0.564  < 0.0001***

Grasshoppers − 14.412 − 48.326 33.914 0.690 0.770  < 0.0001***

Butterflies − 16.009 − 29.811 13.802 0.404 0.513  < 0.0001***

Beetles − 42.217 − 55.775 13.558 0.373 0.535  < 0.0001***

Turnover

Lichens − 36.598 − 36.790 0.192 0.049 0.423 0.139

Bryophytes 6.428 2.467 3.961 0.177 0.296 0.015*

Vascular plants − 6.157 − 51.460 45.303 0.789 0.851  < 0.0001***

Ants 11.461 − 9.031 20.492 0.556 0.556  < 0.0001***

Spiders 4.405 − 9.809 14.214 0.341 0.597  < 0.0001***

Grasshoppers − 11.324 − 27.416 16.092 0.459 0.534  < 0.0001***

Butterflies 5.122 − 12.575 17.697 0.476 0.580  < 0.0001***

Beetles − 31.561 − 48.266 16.705 0.482 0.522  < 0.0001***

Nestedness

Lichens − 61.545 − 63.189 1.644 0.084 0.427 0.056

Bryophytes − 18.893 − 19.511 0.618 0.089 0.089 0.106

Vascular plants − 99.366 − 131.235 31.869 0.652 0.764  < 0.0001***

Ants − 144.290 − 147.810 3.520 0.179 0.179 0.0188*

Spiders − 44.919 − 48.912 3.993 0.117 0.532 0.0144*

Grasshoppers − 69.308 − 70.304 0.996 0.081 0.305 0.083

Butterflies − 40.931 − 52.181 11.250 0.378 0.385 0.0003***

Beetles − 96.174 − 108.200 12.030 0.321 0.543 0.0002***

Stepwise diversity

Index Taxon AIC null model AIC Delta AIC R2 m R2 c P value

ß Sorensen

Lichens − 39.076 − 45.154 6.078 0.498 0.883 0.004**

Bryophytes − 6.970 − 10.837 3.867 0.255 0.396 0.015*

Vascular plants − 47.905 − 45.994 − 1.911 0.004 0.186 0.765

Ants 3.638 − 1.357 4.995 0.344 0.559 0.008**

Spiders − 23.641 − 26.587 2.946 0.166 0.166 0.026*

Grasshoppers − 31.276 − 30.971 − 0.305 0.106 0.610 0.193

Butterflies − 31.647 − 32.699 1.052 0.136 0.330 0.081

Beetles − 49.135 − 48.248 − 0.887 0.044 0.193 0.292

Turnover

Lichens − 15.138 − 22.681 7.543 0.587 0.959 0.002**

Bryophytes 22.296 15.737 6.559 0.272 0.272 0.003**

Vascular plants − 45.773 − 45.991 0.218 0.080 0.155 0.136

Ants 5.239 1.265 3.974 0.307 0.566 0.015*

Spiders 3.753 5.305 − 1.552 0.016 0.059 0.503

Grasshoppers − 21.112 − 19.113 − 1.999 0.000 0.297 0.975

Butterflies − 10.993 − 9.788 − 1.204 0.050 0.569 0.372

Beetles − 21.388 − 19.401 − 1.987 0.000 0.000 0.909

Nestedness

Lichens − 19.882 − 23.313 3.431 0.377 0.911 0.020*

Bryophytes 0.697 0.702 − 0.005 0.090 0.312 0.158

Vascular plants − 115.490 − 122.950 7.460 0.461 0.652 0.002**

Ants − 144.290 − 147.890 3.600 0.182 0.182 0.018*

Spiders − 19.100 − 18.053 − 1.047 0.033 0.079 0.329

Grasshoppers − 64.643 − 67.487 2.844 0.296 0.716 0.028*

Butterflies − 35.734 − 33.734 − 2.000 0.000 0.774 0.990

Beetles − 41.188 − 40.529 − 0.659 0.047 0.047 0.247
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We further processed beta diversity data (βsor, βsim, βsne) to distinguish between (i) along elevation beta 
diversity (Fig. 1) accounting for pairs starting from the lowest elevation to all other elevations (1,000–1,500, 
1,000–2,000, 1,000–2,500 m), and (ii) step-wise beta diversity (Fig. 1) including pairs from one elevation to the 
next neighboring one (1,000–1,500, 1,500–2,000, 2,000–2,500 m).

The effect of elevation on both step-wise and along beta diversity was tested with a linear mixed effects model 
using the R package lme448. As fixed effects, we tested the elevational distance, as random effects we included the 
elevational replicate sites. We also tested for geographical autocorrelations in our dataset. To do so, we decom-
posed the total Euclidian distance between two sites into elevational distance (the variable to be tested) and the 
remaining distance (considered as potential spatial autocorrelation). We calculated this remaining distance by 
applying the Pythagorean theorem with elevation as one leg of a hypothetical triangle and the total distance as 
the hypothenuse49, and used it as fixed factor in the above explained model. Visual inspection of residual plots 
did not reveal any obvious deviations from homoscedasticity or normality. Significance of fixed factors was 
confirmed if Akaike Information Criterion50 was lowered by at least 2 points (AIC < 2) in comparison to the 
null model. Further, the R2 partitioned into marginal and conditional R2 was computed following Nakagawa 
and Schielzeth51. All analyses were conducted, and corresponding figures were produced using the open-source 
statistical programming language R (version 3.6.2, R Core Team52 in R Studio, version 1.1.383, RStudio Team53).

Results
Overall diversity and sampling coverage analyses.  In total we detected 407 species comprising 42 
lichens, 23 bryophytes, 166 vascular plants, 17 grasshoppers, 14 ants, 26 butterflies, 4 earthworms, 69 beetles, 
and 46 spiders (species list in Supplementary Table S2). Estimation of sampling coverage SC [cf.46] was very high 
for all elevations and taxa with a mean SC value of 0.95 (SD = 0.07). In few cases and only for singular elevations, 
sample-size-based R/E sampling curves, which compute diversity estimates for rarefied and extrapolated sam-
ples and plot the diversity estimates with respect to sample size44,45, did not flatten completely.

Species richness.  A hump-shaped relationship between elevation and species richness was detected for 
vascular plants, butterflies, beetles, spiders and earthworms, while species richness decreased linearly with eleva-
tion for grasshoppers and ants (Fig. 2). Species richness of lichens and bryophytes increased with increasing 
elevation. After this result, earthworms were excluded from all further analyses, since aside of very low species 
richness (gamma diversity equaled to only 4 species), on 1,000 and 2,500 m very few individuals were found.

Beta diversity.  Considering all possible pairs of comparisons of all sampled sites, the mean total beta diver-
sity varied from 0.61 (grasshoppers) to 0.79 (lichens and ants). Partitioning total beta diversity and calculating 
portions, we found the highest percentage of turnover for vascular plants and ants (93.4 and 90.3, respectively), 
while nestedness was found to be highest for lichens (31.9%) and bryophytes (28.3%) for the investigated gradi-
ent.

Along elevational turnover (all comparisons starting from the lowest elevation) increased significantly for all 
groups (increase of βsim between 0.09 and 0.23), except for lichens (Table 1, Fig. 3).

Nestedness decreased with increasing elevational distance for five groups (vascular plants, ants, butterflies, 
beetles, and spiders), while grasshoppers, bryophytes and lichens, showed no significant differences (Table 1, 
Fig. 4).

Regarding step-wise beta diversity only bryophytes and lichens had a significantly lower turnover and overall 
beta diversity for higher elevated steps, while all other groups showed no significant differences (Table 1, Fig. 5). 
Nestedness increased significantly with higher elevated steps with respect to grasshoppers and lichens, while 
results on vascular plants are opposed, featuring a significant lower nestedness at higher elevated steps (Table 1, 
Fig. 6). The other groups showed no significant differences. Out of the eight analyzed taxonomic groups, ants 
were the only ones showing a geographical autocorrelation for step-wise pair comparisons.

Discussion.  Our results provide a comprehensive overview of how diversity is organized in a vertical space 
for eight taxonomic groups (earthworms were excluded after first data analyses) comprising animals, plants, 
bryophytes, and lichens sharing the same habitat, namely pastured grasslands.

For the majority of the analyzed groups we detected common patterns, when looking at multi-taxonomic 
species richness and along elevational beta diversity. On the contrary, we found dissimilarities among taxonomic 
groups in the step-wise beta diversity.

With regard to species richness, it has been shown, that scale of spatial extent strongly impacts the shape of 
relationship between elevation and species richness: analyses of complete gradients most often lead to hump-
shaped richness patterns, while omission of parts of the gradient at the upper and/or lower ends tends to favor 
monotonic increase or decrease with elevation54. According to that, with our study we captured the whole 
gradient for five out of our nine taxa, and the documented hump-shaped pattern is in line with previous work 
[e.g.24,25,55]. Apparently, the upper limit of the gradient may be missing for lichens and bryophytes and the lower 
limit for grasshoppers and ants (Fig. 2). Some studies on bryophytes performed in warmer climate zones found 
a hump-shaped relation of richness to elevation56,57. However, in the temperate zone, an increase of richness with 
elevation for lichens and bryophytes was found also by Nascimbene and Marini27 and Spitale28 who explained 
their results with a negative relationship of richness with temperature and associated conditions such as slower 
evaporation rates. Regarding grasshoppers and ants, the decrease of species richness with elevation was detected 
also by Peters et al.29, who attributed positive effects of available land areas on grasshoppers’ richness. Overall, 
Peters et al.29 argue that such unimodal species richness patterns hold only for single taxa analyses [cf.58] while 
when pooling a wider number of taxonomic groups, those patterns shift towards a decline of richness with 
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elevation. We cannot confirm this finding derived from a study on Mt. Kilimanjaro, since our joint analysis 
of nine taxonomic groups still shows a hump-shape pattern (Fig. 2, in line with Viterbi et al.24). However, our 
elevational gradient is influenced by grazing and located in a completely different biogeographic region with 
other (temperate) climatic conditions, which may impact the shape of this relationship. We are also aware that 
particularly for animal groups, seasonality of sampling year or period may influence species recordings and hence 
total species pools of the study site might be larger. For our aim, which is not a species inventory of the sites, a 
snapshot embracing one season is still meaningful.

Beside species richness, which is one of the most frequently used indicators for biodiversity assessments 
for example when determining locally delimited spaces deserving protection, beta diversity is the key to scale 
up to the regional extent. The comparison of compositional differences between sites, further partitioned into 
turnover and nestedness according to Baselga13, allows the understanding of how biodiversity is assembled 
across elevations. As already found for some insect taxa [cf.18], turnover is the dominant component of beta 
diversity for all our studied taxa, which are vascular plants, lichen, mosses, ants, beetles, spiders, butterflies, and 
grasshoppers. According to our hypothesis that turnover will increase with increasing elevational distance, due 
to a diversification of communities, along elevational turnover (and total beta diversity i.e. ß Sorensen) increased 
significantly with increasing elevational distance for seven out of eight analyzed taxa. These results confirm the 
findings of studies focusing on single insect groups (e.g.30 for ants, 20 for dung-beetles, 59 for bees and wasps) 
and support the assumption that a considerable portion of species is restricted to certain zones and does not 
colonize entire gradients30. For along elevation nestedness, we assumed a decrease with elevation, since com-
munities usually adapt to given conditions and probabilities for subsets between different elevations are lower. 
Five out of 8 analyzed support our hypothesis, consequently suggesting a differentiation of communities at some 
point(s), with low occurrences of subsets, as found for dung-beetles20,55. Our results underpin the assumption 
that mechanisms such as environmental filtering and dispersal limitations (reflected by high turnover rates) seem 
to prevail colonization and extinction patterns in community assembly of pastured grassland along temperate 
elevational gradients [cf.59].

When looking at similarities of neighboring steps (step-wise diversity), we could not confirm our second 
hypothesis assuming a decrease of total beta diversity and turnover when comparing sample units of higher 

Figure 2.   Relationship of species richness and elevation for 9 taxonomic groups. Cumulative number of species 
per site (n = 12) was calculated for each taxon separately and plotted with a spline-estimated dose–response 
function with upper (green line) and lower (red line) 95 percent confidence bounds. Figure was produced using 
R software (version 3.6.2, R Core Team, https​://www.r-proje​ct.org/).

https://www.r-project.org/
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Figure 3.   Along elevational turnover: the effect of elevational distance on turnover was tested with a linear 
mixed effects model. As fixed effects, we tested the elevational distance, as random effects the elevational 
replicate sites were modelled. The line indicates the response of turnover to elevational distance, grey points 
display turnover values of pair-wise comparisons. Figure was produced using R software (version 3.6.2, R Core 
Team, https​://www.r-proje​ct.org/).

Figure 4.   Along elevation nestedness: the effect of elevational distance on nestedness was tested with a linear 
mixed effects model. As fixed effects, we tested the elevational distance, as random effects the elevational 
replicate sites were modelled. The line indicates the response of nestedness to elevational distance, grey points 
display nestedness values of pair-wise comparisons. Figure was produced using R software (version 3.6.2, R Core 
Team, https​://www.r-proje​ct.org/).
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Figure 5.   Step-wise turnover (pair-wise comparisons) of neighboring steps. 1,015… comparison of steps 1,000 
and 1,500, 1,520… comparison of steps 1,500 and 2,000, 2,025… comparison of steps 2,000 and 2,500. Figure 
was produced using R software (version 3.6.2, R Core Team, https​://www.r-proje​ct.org/).

Figure 6.   Step-wise nestedness (pair-wise comparisons) of neighboring steps. 1,015… comparison of steps 
1,000 and 1,500, 1,520… comparison of steps 1,500 and 2,000, 2,025… comparison of steps 2,000 and 2,500. 
Figure was produced using R software (version 3.6.2, R Core Team, https​://www.r-proje​ct.org/).
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located steps (due to abiotic constraints at mountain-tops promoting community speciation). The 8 analyzed 
groups do not show a congruent directional pattern – so far only two groups significantly decreased turnover 
(lichens and bryophytes) or increased nestedness (lichen and grasshopper) on higher elevated neighboring steps. 
The few other studies which analyzed beta diversity according to Baselga13 among elevational belts came to 
inconsistent findings. Paknia and Sh31 did not find a uniform pattern of beta diversity for moths along elevation, 
while da Silva et al.20 found a clustering of dung beetles into lowland (200–800 m) and highland (1,000–1,300 m) 
communities, driven by the turnover component. For vascular plants turnover was shown to be uneven along 
elevation and to peak between 1,800 and 2,200 m60. We assume that niche-breadth variation of some species61, 
barrier effects of treeline or ecotones60, or mobility of non-sessile groups like butterflies, beetles but also grasshop-
pers might influence turnover of species among neighboring elevational steps. Possibly, the range of our steps 
(500 m) is too large for detection of specifically adapted and hence similar communities at the upper limits of 
our gradient (2,000–2,500 m).

Summarizing along and step-wise diversity results, we conclude there is a significant change of species com-
munities along elevation; however this transition seems not to be detectable between neighboring steps. This 
result could either be a hint for a rather slow transition of communities across the analyzed gradient, or for the 
existence of an elevational threshold that separates communities, which we were not able to identify with our 
approach (such as59).

Conclusion.  When unravelling spatial patterns of beta diversity, we found several studies focusing on 
arthropods in tropical to subtropical latitudes, while our study disentangles to our knowledge for the first time 
diversity of organisms belonging to different systematical classes in a temperate zone. The manifold possibilities 
to compare pairs of dissimilarities (e.g. within, along, step-wise, or complete gradient) and the frequent lack of 
specification of compared pairs present in literature, significantly hamper comparisons across studies and col-
lective findings. However, our results confirm turnover to be the dominant component of beta diversity for all 
investigated taxa along the elevational gradient. Further, we detected a change of species communities for seven 
out of 8 analyzed taxa with increasing elevational distance but were not able to identify thresholds or delimitate 
zonal limits or boundaries of communities along the gradient. From a conservational point of view, this knowl-
edge rather than delineating levels of major diversity losses, supports the idea that action sets or monitoring 
programs targeting at a capacious and preventive protection for species and their environment in mountainous 
regions require the consideration of entire gradients. Including information about specialist, rare or endemic 
species, niche breadth, or species traits into beta diversity assessments would significantly increase the future 
uncovering of spatial patterns of community assemblage.

Data availability
All species recorded during this study are included in Supplementary Information files of this article.
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