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Abstract
Background: Routinely collected real world data (RWD) have great utility in aiding the novel coronavirus
disease (COVID-19) pandemic response [1,2]. Here we present the international Observational Health Data
Sciences and Informatics (OHDSI) [3] Characterizing Health Associated Risks, and Your Baseline Disease
In SARS-COV-2 (CHARYBDIS) framework for standardisation and analysis of COVID-19 RWD.

Methods: We conducted a descriptive cohort study using a federated network of data partners in the
United States, Europe (the Netherlands, Spain, the UK, Germany, France and Italy) and Asia (South Korea
and China). The study protocol and analytical package were released on 11th June 2020 and are
iteratively updated via GitHub [4].

Findings: We identi�ed three non-mutually exclusive cohorts of 4,537,153 individuals with a clinical
COVID-19 diagnosis or positive test, 886,193 hospitalized with COVID-19, and 113,627 hospitalized with
COVID-19 requiring intensive services. All comorbidities, symptoms, medications, and outcomes are
described by cohort in aggregate counts, and are available in an interactive website:
https://data.ohdsi.org/Covid19CharacterizationCharybdis/.

Interpretation: CHARYBDIS �ndings provide benchmarks that contribute to our understanding of COVID-
19 progression, management and evolution over time. This can enable timely assessment of real-world
outcomes of preventative and therapeutic options as they are introduced in clinical practice.

Introduction
The World Health Organization (WHO) declared the coronavirus disease 2019 (COVID-19) pandemic on
11 March 2020 after 118,000 reported cases in over 110 countries [5]. By 2021, the number of COVID-19
cases has increased to over 90,000,000 globally, and as we write the death toll has reached 2 million [6].
Thousands of publications have attempted to aid our scienti�c understanding of this public health
emergency [7,8].

Routinely collected real world data (RWD) are a powerful asset for an evolving pandemic response [1,2].
Each data source provides novel information, be it the geographic variability of COVID-19, the impact of
varying government strategies to contain spread or the evolution of treatment protocols. With extensive
heterogeneity in public health strategies and clinical care across the world [9], a large repeated multi-
center study to describe disease across locations, practices, and populations, but that holds data analysis
constant would go far in determining what factors impact observed differences.

RWD networks are vital in helping to understand the magnitude of the problem, and developing possibly
mitigating strategies both globally and locally [10,11]. Here we present the global Observational Health
Data Sciences and Informatics (OHDSI) community response to the COVID-19 pandemic [3]. Founded in
2015, the OHDSI data network enabled a rapid baseline understanding of COVID-19 in emerging hotspots
(United States of America [USA], Spain and South Korea) [12]. Our work evolved into a systematic

https://data.ohdsi.org/Covid19CharacterizationCharybdis/
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framework for analysing and reporting COVID-19 RWD that we call Characterizing Health Associated
Risks, and Your Baseline Disease In SARS-COV-2 (CHARYBDIS).

CHARYBDIS offers multiple insights into COVID-19 clinical presentations, management and progression.
We set out to continually describe baseline demographics, clinical characteristics, treatments received,
and outcomes among individuals diagnosed and hospitalized with COVID-19 in actual practice settings
in nine countries from three continents. Our body of research is a freely available, foundational result set
that can provide  benchmarks in how COVID-19 manifests over time including its inevitable evolution as
we roll-out vaccines and treatments.

Results
All comorbidities, presenting symptoms, medications and outcomes are reported by each cohort in
aggregate counts, and are available in an interactive website:
https://data.ohdsi.org/Covid19CharacterizationCharybdis/.

Patient characteristics

Overall, we identi�ed three non-mutually exclusive cohorts of 4,537,153 individuals with a clinical COVID-
19 diagnosis or positive test, 886,193 hospitalized with COVID-19, and 113,627 hospitalized with COVID-
19 requiring intensive services (Figure 1). Of these, the cohorts including patients with the requirement of
at least of 365 days before index: 3,279,518 with a clinical COVID-19 diagnosis or laboratory positive test,
636,810 hospitalized with COVID-19, and 63,636 hospitalized with COVID-19 requiring intensive services
(Supplementary Tables 3 & 4).

Geographic distribution

The USA data partners contributed 96% of the diagnosed with COVID-19 cohorts, including the single
largest diagnosed cohort from IQVIA Open Claims (n=2,785,812). Europe contributed 4% of the diagnosed
with COVID-19 cohorts, owing the single largest regional diagnosed cohort to SIDIAP-Spain (n=124,305).
Asia contributed less than 1% of diagnosed with COVID-19 cohorts, with the single largest regional
diagnosed cohort contributed from Daegu Catholic University Medical Center (n=599).

Demographic distribution

In the USA, the proportion of diagnosed cases generally decreased with age, with most diagnosed cases
being within the 25 to 60 age group. The proportion of cases hospitalized and intensive services
increased with age, with the highest proportions of cases of hospitalized, or intensive cases in the 60 to
80 year age group (Figure 2).  A slightly higher proportion of women were diagnosed than men but a
greater proportion of men were hospitalized (and where available, required intensive services) than
women in the USA databases. In Europe, databases captured diagnosed or hospitalised cohorts but had
limited information on intensive services. In Europe, databases capturing hospitalized cases (HMAR, HM-
Hospitales, SIDIAP, and SIDIAP-H) showed a similar trend to the USA databases in that there was a higher

https://data.ohdsi.org/Covid19CharacterizationCharybdis/
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proportion of men were hospitalized than women (Supplementary Figure 1). Unlike the USA and European
databases, there was also a higher proportion of women in hospitalized cases in the South Korean
database (HIRA). Age-wise trends in the European and Asian databases were similar to those in the USA
databases, in that the bulk of the diagnosed cases were in the 25 to 60 year age group, whilst the majority
of the hospitalized cases were in the 60 to 80 year age group (Supplementary Figure 1).

Comorbidities

Overall, the proportion of patients with type 2 diabetes mellitus, hypertension, chronic kidney disease, end
stage renal disease, heart disease, malignant neoplasm, obesity, dementia, auto-immune condition,
chronic obstructive pulmonary disease (COPD), and asthma was higher in the hospitalised cohort as
compared to the diagnosed (Tables 1 and 2).  Data on tuberculosis, human immunode�ciency viruses
(HIV), and hepatitis C infections were sparse, and where available the proportions were generally low
(<=1%). In the US databases, the proportion of pregnant women was generally higher in the hospitalised
cohort than in the diagnosed, but not so in two European databases (HM and SIDIAP). The remaining �ve
European and one of the Asian databases had data on pregnant women only in the hospitalised cohort,
the proportion of which was < 2%.

Other analyses
Dyspnea, cough, and fever were the most common symptoms in diagnosed and hospitalized cohorts
(Supplementary Table 5). Where recorded, the proportion of dyspnea and malaise/fatigue was
consistently higher in the hospitalised cohort as compared to the diagnosed.
Anosmia/hyposmia/dysgeusia was present in less than 1% individuals in all but one database and more
common in the diagnosed than the hospitalised cohorts.

We further described a total of 19,222 conditions and 2,973 medications registered during the year prior
to the index date (Supplementary Figure 2). The same information is also described for 30 days prior to
the index date, at index date, or during the �rst 30 days after index date (this can be explored in detail at 
https://data.ohdsi.org/Covid19CharacterizationCharybdis/).

Discussion
Summary of key �ndings

We described characteristics of 4,537,153 individuals with a clinical COVID-19 diagnosis or positive test,
886,193 hospitalized with COVID-19, and 113,627 hospitalized with COVID-19 requiring intensive services
from 9 countries. Up to 22,200 unique aggregate characteristics have been produced across databases,
with all made publicly available in an accompanying website. The cumulative evidence obtained from
different regions and at different points in the pandemic can guide in 1) better patient characterization
and strati�cation, 2) identifying areas of gap in knowledge/evidence, and 3) generating hypotheses for
future research.

https://data.ohdsi.org/Covid19CharacterizationCharybdis/
https://data.ohdsi.org/Covid19CharacterizationCharybdis/
https://data.ohdsi.org/Covid19CharacterizationCharybdis/
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Findings in context

In April 2020, the National COVID Cohort Collaborative (N3C) chose the OMOP CDM as the data model for
centralizing patient-level data to study patterns in COVID-19 patients [20]. This network has over 80
participating institutions and is enabling many US institutions in adoption of common data models in
COVID-19 research. This program has two major differences: 1) data are limited to US only sites and 2)
the centralized data approach requires signi�cant programmatic oversight. In contrast to this and other
notable RWD initiatives, CHARYBDIS uses an existing decentralized network, open to all, with no
requirement to move patient-level data [21]. This enables the opportunity to integrate results from regions
within more restrictive data sharing policies, such as Europe and Asia.

The Consortium for Clinical Characterization of COVID-19 by EHR (4CE), is another multi-site data-sharing
collaborative of 342 hospitals in the US and in Europe, utilizing i2b2 or OMOP data models [22]. Despite
its extensive footprint, 4CE cohorts remain smaller than the scope of CHARYBDIS with only 36,447
patients with COVID-19 as of August 2020 [22]. Even with cohort overlap, our work to date with
CHARYBDIS is substantial spanning 4.5 million COVID-19 patients across three continents.

The “tragic data gap” undermining response to the pandemic [23] is effected by inadequate utilization of
and access to high-quality RWD. Large scale initiatives like CHARYBDIS can offer critical infrastructure
for mobilizing simple descriptive epidemiological studies that are fundamentally important in tracking the
evolution and ultimate management of this pandemic. Our �ndings can help proivde context on where to
direct future funding and carry out additional research. The information generated from CHARYBDIS can
inform the response to the pandemic, including both public health restrictions (non-pharmacological
interventions) and vaccination strategies worldwide. As we continue our research, we are also actively
curating relationships with data partners to drive inpatient-outpatient linkages and understand COVID-19
patient trajectories across care settings.

Study strengths

Our study has several strengths. This study is unique in its approach to characterizing COVID-19 cases
across an international network of healthcare systems with varied policies enacted to combat this
pandemic. This allows better understanding of the implications of the pandemic for different countries
and regions, in the context of an international comparison. Particularly, it provides visibility into the
inherent variability of patient characteristics across healthcare settings. This study is the most
comprehensive federated network of healthcare sites in the world, creating the single largest cohort study
on diagnosed and hospitalized COVID-19 cases to date. The large, diverse sample size allows also for the
identi�cation of populations of great interest, including children and adolescents, pregnant women,
patients with a history of cancer, or patients with HIV, who were also infected with COVID-19, and who will
be the focus of in-depth future investigations.

Study limitations
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We recognize there are limitations in our approach. First, this study is descriptive in nature and was not
designed for causal inference. The observed differences between groups (e.g. diagnosed versus
hospitalized) should therefore not be interpreted as causal effects. Answering causal questions is
especially di�cult in COVID-19 because of the varying processes by which patients were screened, tested,
admitted, and treated; the critical importance of knowing the exact timing of treatments and outcomes in
severe cases; and the lack of appropriate comparison groups. Simple multivariable models by themselves
will not su�ciently address bias for multiple questions and were purposely not applied here. This study
was carried out using data recorded in routine clinical practice and based on electronic health records
(EHRs) and/or claims data. The analysed data are therefore expected to be incomplete in some respects
and may have erroneous entries, leading to potential misclassi�cation. We have selectively reported
database-speci�c outcomes to minimise the impact of incompleteness. Additionally, the under-reporting
of symptoms observed in these data is a key �nding of this study, and should be taken into consideration
in previous and future similar reports from 'real world' cohorts. Differential reporting in different
databases is likely a function of differential coding practice as well as of variability in disease severity,
with milder/less symptomatic cases more likely presenting in outpatient and primary care EHR, and more
severe ones in hospital databases. Finally, the current result submissions are prejudiced to data in the
initial wave of COVID-19 cases and may not be representative of the data during subsequent waves. We
currently lack data partners in low to middle income countries and are actively building collaborations in
these areas. As data are accumulated over time, future updates of the results will provide the opportunity
to study more recent cohorts of COVID-19 patients, who seem to have a better prognosis overall
compared to those diagnosed in the �rst half of the year.

Conclusions
We present the foundation for an epidemiological framework to perform large scale characterization of
the presentation, management, and outcomes of COVID-19 as observed in actual practice settings
worldwide. We have characterized the natural history of over 4.5 million COVID-19 patients from the USA,
6 European countries and 2 Asian countries. This work allows deep phenotyping of COVID-19, serving as
a repeatable, reproducible method to capture the evolving natural history of this novel coronavirus and
can be extended to future pandemics. Leveraging our global federated network to corroborate single
center �ndings can provide context to national database �ndings in the presence of regional variability in
COVID-19 policies. This effort provides critical infrastructure for mobilizing descriptive studies that are
fundamentally important in tracking the evolution and ultimate management of this pandemic.

Methods
Study design, setting and data sources

We conducted a descriptive cohort study using a federated network of data partners in the USA, Europe
(the Netherlands, Spain, the UK, Germany, France and Italy) and Asia (South Korea and China). We
required each data partner to map their source system to the Observational Medical Outcomes
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Partnership (OMOP) common data model (CDM) [13–15]. The use of a CDM ensured shared conventions,
including consistent representation of clinical terms across coding systems. We deployed a common
data quality tool for repeated assessment and monitoring the adherence to conventions across the
network [16,17]. We ensured reproducibility by using the same package of analytical code for all
contributing data partners [18].

The study protocol and analytical package were released on 11 June 2020 and iterative updates have
continued to be released via GitHub: https://github.com/ohdsi-
studies/Covid19CharacterizationCharybdis [4]. As of February 2021, 26 databases have contributed to
the CHARYBDIS study (Supplementary Table 1). Contributing institutes ranged from major academic
medical centers to small community hospitals from across three continents. While most data were
captured from March to June 2020, a subset of data partners submitted updates through October 2020.
Two sites report data through December 2020. Additional updates are expected as data partners refresh
their OMOP CDM data. Prior to performing these analyses, all the data partners obtained Institutional
Review Board (IRB) or equivalent governance approval. Each data partner executed the study package
locally on their OMOP CDM. Only aggregate results from each database were publicly shared. Minimum
cell sizes were determined by institutional protocols. All data partners consented to the external sharing
of the result set on data.ohdsi.org.

Study population and follow-up

We focused on three non-mutually exclusive COVID-19 cohorts: i) diagnosed with COVID-19 (a positive
SARS-CoV-2 laboratory test or clinical diagnosis of COVID-19 - earliest event served as the index date); ii)
hospitalized with COVID-19 and; iii) hospitalized with COVID-19 and requiring intensive services. The
codes used to identify cohorts and more detail on the de�nitions of the above cohorts can be found in
Supplementary Table 2. These cohorts were generated both with a requirement of at least 365 days of
data availability prior to the index date, and without any requirement for prior observation time.
Datamarts created speci�cally for COVID-19 tracking may be unable to support extensive lookback
periods and thus, we used multiple de�nitions to ensure inclusiveness in our approach. Cohorts were
followed from their cohort-speci�c index date to the earliest of death, end of the observation period, and
up to 30 days post-index.

Strati�cations

Each cohort was analyzed by the overall study population and strati�ed by additional available
characteristics including: follow-up time; socio-demographics, baseline comorbidities, pregnancy status
(yes/no), and �u-like symptom episodes (yes/no). Detailed de�nitions of each strati�cation are available
in Supplementary Table 2.

Baseline characteristics, symptoms, medication use and outcomes of interest

https://github.com/ohdsi-studies/Covid19CharacterizationCharybdis
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Information on socio-demographics was identi�ed at or before baseline (index date). All conditions,
symptoms and medications were identi�ed and described at four different time intervals (1 year prior, 30
days prior, at index and up to 30 days after index). The de�nition of each symptom and outcome is
provided in Supplementary Table 2.

Statistical analysis

We built this analysis using Health Analytics Data-to-Evidence Suite (HADES), a set of open source R
packages for large scale analytics [19]. Proportions, standard deviations (SD), and standardized mean
differences (SMD) within each subgroup were tabulated as pre-speci�ed in our study protocol. This
analysis was descriptive in nature with no causal inference intended. Only cohorts or strati�ed sub-
cohorts with a minimum sample size of 140 subjects were characterized. This cut-off was deemed
necessary to estimate with su�cient precision the prevalence of a previous condition or 30-day risk of an
outcome affecting >=10% of the study population. SMDs were plotted in Manhattan-style plots, a type of
scatter plot designed to visualize large data with a distribution of higher-magnitude values. Scatter plots
were also created to compare the described conditions, symptoms and demographics of patients
diagnosed (Y axis) to those hospitalized (X axis) with COVID-19.
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Figure 1

COVID-19 cases across the OHDSI COVID-19 network. Note: The designations employed and the
presentation of the material on this map do not imply the expression of any opinion whatsoever on the
part of Research Square concerning the legal status of any country, territory, city or area or of its
authorities, or concerning the delimitation of its frontiers or boundaries. This map has been provided by
the authors.
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Figure 2

Distribution of diagnosed, hospitalized and requiring intensive services COVID-19 cases by age and sex
across the OHDSI COVID-19 network in the United States NB: In each subplot, the x-axis represents what
proportion of all women (left) and all men (right) fall in each age category. No prior observation period
required in the cohorts shown in this �gure. Cohorts must be >=140 people to be reported in this analysis.
Abbreviations: diag: diagnosed; hosp: hospitalized; i.s.: hospitalized and requiring intensive services.
Abbreviations: CU-AMC-HDC: U of Colorado Anschuz Medical Campus Health Data Compass; CUIMC:
Columbia University Irving Medical Center; IQVIAHospitalCDM: IQVIA Hospital Charge Data Master; OHSU:
Oregon Health and Science University; OPTUM-EHR: Optum© de-identi�ed Electronic Health Record
Dataset; OPTUM-SES: Optum® De-Identi�ed Clinformatics® Data Mart Database – Socio-Economic
Status (SES); STARR-OMOP: Stanford Medicine Research Data Repository; TRDW: Tufts MC Research
Data Warehouse; UWM-CRD: UW Medicine COVID Research Dataset; VA-OMOP: Department of Veterans
Affairs
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