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Abstract: In this contribution, the ratcheting behavior and local field distribution of unidirectional
metal matrix composites are investigated under cyclic loading. To that end, we extended the
finite-volume direct averaging micromechanics (FVDAM) theory by incorporating the rule of
nonlinear kinematic hardening. The proposed method enables efficient and accurate simulation of
the ratcheting behavior of unidirectional composites. The local satisfaction of equilibrium equations
of the FVDAM theory facilitates quick and rapid convergence during the plastic iterations. To verify
the proposed theory, a finite-element (FE) based unit cell model is constructed with the same mesh
discretization. The remarkable correlation of the transverse response and local field distribution
generated by the FVDAM and FE techniques demonstrates the effectiveness and accuracy of the
proposed models. The stress discontinuities along the fiber/matrix interface that are generic to the
finite-element theory are absent in the FVDAM prediction. The effects of thermal residual stresses
induced during the consolidation process, as well as fiber orientations, are revealed. The generated
results indicate that the FVDAM is well suited for simulating the elastic-plastic ratcheting behavior
of metal matrix composites, which will provide the conventional finite-element based technique with
an attractive alternative.

Keywords: metal matrix composites; finite-volume theory; homogenization; cyclic plasticity;
ratcheting effect; residual stresses

1. Introduction

Metal matrix composites have become and will continue to be one of the most attractive
alternatives to conventional materials for many applications in engineering such as turbine engine
components, pressure pipelines and vessels. The applications often leave the composites exposed to
complicated cyclic loading, which leads to cyclic deformations including ratcheting and endangers
safety in the operation. For the safety and full use of the metal matrix composites, a constitutive
relation needs to be established to characterize the ratcheting effect of the metal matrix composites.
The properties of composites are usually decided by constituent material properties and microstructure
parameters. These factors make it very difficult to characterize the mechanical behavior. In addition,
during the fabrication of the composites, materials are usually consolidated at a high temperature
which induces the residual stresses when being cooled to room temperature. The residual stresses
may change the material properties and have a great influence on the thermo-mechanical response.
Therefore, the study of the thermal residual effect is critical to the accurate prediction of the ratcheting
effect in the metal matrix composites.
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Ratcheting is a cyclic accumulation of inelastic deformation, which occurs to materials during
cyclic loading with no-zero mean stresses. It has been a critical factor in fatigue life prediction and
structure designs. However, simulating ratcheting is a complicated task since the inelastic deformation
increases with loading cycle. The ratcheting of monotonic homogeneous metal materials is investigated
extensively; one of the most famous cyclic plasticity models is the Armstrong and Frederick model (AF
model) [1]. The terms of dynamic recovery of the AF model enable the calculation of the ratcheting
effect. However, the dynamic recovery terms in this model are too active, which leads to overprediction
of the ratcheting effect. Many researchers have extended the AF model to improve the precision of the
prediction, such as Ohno and Wang [2–4], Tanaka [5], Chaboche [6–8], Abdel-Karim and Ohno [9] and
Kang [10]. Details of these works can be seen in the review papers by Ohno [11], Bari and Hassan[12],
Chaboche [8], Kang [13], Sajjad [14] and Chen [15]. Meanwhile, experimental characterizations of
the cyclic deformations of metal matrix composites have been conducted by researchers, cf., Zhang
et al. [16], Kang et al. [17], Han et al. [18] and Kimmig et al. [19]. Compared with monotonic
homogeneous metal materials, the properties of the metal matrix composites are decided by off-axis
angles, volume fractions and array patterns. Therefore, they must be tested repeatedly for each
variation of the composites, which makes the experimental characterization of composite materials a
more tedious and expensive task.

Numerical modeling of ratcheting of the composites has been investigated by many researchers
during the past decades [20–25]. The classical micromechanics models under the framework of the
Eshelby theory [26] and the Mori–Tanaka model [20,21] were built to simulate the mechanical response
of metal matrix composites. However, classical micromechanics is based on the total deformation
theory and cannot simulate the ratcheting effect of composite materials. Therefore, some researchers
have built the model based on tangent incremental linearization theory [27] to simulate the elastoplastic
response and additive scheme [28] or variational approaches [29] for the viscoplastic response of
composites. Conventionally, the finite-element method (FEM) is the most commonly used method to
simulate the elastoplastic response of the composites. However, care must be taken since the large
modulus contrast near the fiber and matrix interface can produce stress concentrations which requires
a more detailed mesh for FEM to avoid stress discontinuity at the interface.

The finite-volume direct averaging micromechanics (FVDAM) theory [30] has become an
appealing alternative to the conventional FEM method for simulating composite materials. Many
researchers have developed the theory extensively over the years [31–34]. The viscoelasticity
problem [35–37], damage model [38], the effect of surface energy [39,40], finite deformation [41,42]
and multiphysics behavior [34,43–45] are incorporated with FVDAM.

While the FVDAM theory has been studied extensively, little work has been reported concerning
the cyclic plasticity. The semi-analytical framework, quick convergence and excellent stability
of the FVDAM theory make it particularly suitable for analyzing the cyclic behavior of metal
matrix composites.

Therefore, in this research, the FVDAM is further extended to incorporate the ratcheting plasticity
model, which allows efficient and accurate simulations of the thermo-mechanical cyclic behavior of
the metal matrix composites. The proposed model not only enables the prediction of global ratcheting
effects but also provides local information of the microstructures of the metal matrix composites.
The validation of the model is provided by FEM simulations. The influence of thermal residual stresses,
as well as off-axis angles, is discussed.

The main contributions of this research are listed as follows:

(1) The cyclic plastic constitutive model is implemented successfully into the FVDAM theory
for the first time, giving the FVDAM the ability to simulate the cyclic behavior of the metal
matrix composites.

(2) Not only the homogenized cyclic response of the composites but also the local field distributions
are obtained using the proposed model, since most of the mean-field and nongeometrical models
cannot obtain the local field response.
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(3) The effects of thermal residual stresses induced during the consolidation process, as well as fiber
orientations, are considered, which makes the calculation of the cyclic behavior closer to the
actual working condition.

(4) The effectiveness of the new micromechanical model to accurately simulate both the homogenized
stress–strain curve and local field distribution is verified by an FEM model with the same mesh
discretizations, providing a golden standard for the simulation. The results also show that the
proposed model has a better convergence near the stress concentration region.

This paper is presented as follows: Section 2 gives an introduction of the framework of the
parametric finite volume direct averaging micromechanics (FVDAM). The process of implementing the
Abdel–Karim–Ohno constitutive model into parametric FVDAM theory is demonstrated in Section 3.
Section 4 shows the homogenized and local response simulated by the proposed model and provides
the validation with FEM theory.

2. Finite-Volume Direct Averaging Micromechanics (FVDAM)

The displacement equations of the parametric FVDAM are presented by a multiscale expansion.
The index of the quadrilateral subvolumes are noted as (q). In this case, the study of unidirectional
composites can be seen as a generalized plane strain problem, where fiber direction y1 cannot affect
stress components in other directions. Therefore, a two-dimensional unit cell can be used to analyze
this problem (see Figure 1). The number of vertices (y(m,q)

2 , y(m,q)
3 ) and the numbers of the faces Fm are

numbered counterclockwise. The detailed expressions of unit normal vector n(m,q) = [n(m,q)
2 n(m,q)

3 ] for
the face Fm are:

n(m,q)
2 =

y(m+1,q)
3 − y(m,q)

3
Lm

, n(m,q)
3 =

y(m+1,q)
2 − y(m,q)

2
Lm

(1)

where Lm =

√
(y(m+1,q)

2 − y(m,q)
2 )

2
+ (y(m+1,q)

3 − y(m,q)
3 )

2
.

The qth quadrilateral subvolume is generated by the transformation from the reference coordinates
η − ξ to the actual discretized microstructure (see Figure 2):

y(q)i (η, ξ) =
4

∑
m=1

Nm(η, ξ)y(m,q)
i , i = 2, 3 (2)

where
N1(η, ξ) = (1/4)(1− η)(1− ξ), N2(η, ξ) = (1/4)(1 + η)(1− ξ)

N3(η, ξ) = (1/4)(1 + η)(1 + ξ), N4(η, ξ) = (1/4)(1− η)(1 + ξ)
(3)

Figure 1. Unit cell discretizations.
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y3

y2

Figure 2. Parametric mapping.

The displacement equation in each qth subvolume is generated by using the two-scale expansion
in the slow scale x and fast scale y:

u(q)
i (x, y) = ε̄ijxj + u′(q)i (y) (4)

which produces the local strain–displacement relations in the actual coordinates y2 − y3 with the form:

ε
(q)
ij = ε̄ij + ε

′(q)
ij = ε̄ij +

1
2
(

∂u′(q)i
∂yj

+
∂u′(q)j

∂yi
) (5)

where ε
′(q)
ij are the fluctuating strain components. The second order Legendre expansion is applied to

approximate the u′(q)i (i = 1, 2, 3):

u′(q)i = W(q)
i(00) + ηW(q)

i(10) + ξW(q)
i(01) +

1
2
(3η2 − 1)W(q)

i(20) +
1
2
(3ξ2 − 1)W(q)

i(02) (6)

where W(q)
i(mn) are unknown coefficients which can be expressed by displacement and tractions in the

qth subvolume.
The interfacial displacements and tractions on the pth face are given below:
For face (p = 1, 3):

û(p,q)
i =

1
2

∫ 1

−1
u′(q)i (η,∓1)dη, t̂(p,q)

i =
1
2

∫ 1

−1
t(q)i (η,∓1)dη

For face (p = 2, 4):

û(p,q)
i =

1
2

∫ 1

−1
u′(q)i (±1, ξ)dξ, t̂(p,q)

i =
1
2

∫ 1

−1
t(q)i (±1, ξ)dξ (7)

where t(p,q)
i = σ

(p,q)
ij n(p,q)

j and σ
(p,q)
ij = C(q)

ijkl

(
εkl − ε

pl
kl − εth

kl

)(p,q)
, from Hook’s law.

In the FVDAM theory, the inverse of the volume-averaged Jacobian Ĵ is applied to mapping
the surface-averaged interfacial displacement in the actual coordinates y2 − y3 onto the reference
coordinates η − ξ. The surface-averaged interfacial displacement in η − ξ can be expressed by the
first and second order coefficients in representation of the displacement field; these coefficients can be
written as Wi = [Wi(10),Wi(01),Wi(20),Wi(02)]

T . Therefore, we have:

 ∂̂u′ i
∂y2
∂̂u′ i
∂y3

(i) = Ĵ

 ∂̂u′ i
∂η

∂̂u′ i
∂ξ

(î) = ĴAiWi (8)
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where

A1,3 =

[
1 0 0 0
0 1 0 ±3

]
, A2,4 =

[
1 0 ±3 0
0 1 0 0

]
(9)

By using the surface-averaged subvolume equilibrium equations:

4

∑
p=1

∫
Lp σ(p,q) × n(p,q)dl =

4

∑
p=1

∫
Lp t(p,q)dl =

4

∑
p=1

Lp t̂(p,q) =0 (10)

where Lp represents the length of the pth face, the expressions of Wi in the qth subvolume can be
expressed by û′(q) .

By using the relation between traction and fluctuating displacements in a surface-average sense,
the following equation can be derived:

T̂(q) = K(q)Û′(q) + N(q)C(q) ε̄+Γ(q) + G(q) (11)

where T̂(q) =
[
t̂(1) t̂(2) t̂(3) t̂(4)

](q)T
, Û′(q) =

[
û′(1)û′(2)û′(3)û′(4)

](q)T
, N(q) denotes the unit vectors that

show the orientation of each of the four faces of the qth subvolume, and Γ(q) and G(q) contain vectors
concerning thermal and plastic contributions. Each element in T̂(q) and Û′(q) has three components,

t̂(p,q) =
[
t̂1 t̂2 t̂3

](p,q) and û′(p,q) =
[
û′1û′2û′3

](p,q). The local stiffness matrix K(q) contains 16 submatrices

K(q)
ij and the submatrix K(q)

ij is a 3× 3 matrix derived by the geometric and mechanical properties in
each subvolume.

The global stiffness matrix can then be assembled using the continuity equations:

û′(2,q−1) = û′(4,q), û′(3,q̄−1) = û′(1,q̄)

t̂(2,q−1) + t̂(4,q) = 0, t̂(3,q̄−1) + t̂(1,q̄) = 0
(12)

Then the global system of equations can be formed after applying periodic boundary conditions
and eliminating the singularity of the global stiffness matrices. The resulting systems are
expressed below:

KglobalÛ′ = ∆Cε̄ + Γ + G (13)

where ∆C contains the differences of adjacent local stiffness matrices, Γ and G represent the thermal
effect and plastic information. The fluctuating surface-averaged interfacial displacements Û′ can
be determined by solving Equation (13). The coefficients Wi can be calculated subsequently, which
enables the calculation of local fields in every subvolume.

The results of Û′ can then be used to derive the Hill’s strain concentration matrix A(q) by using
the relation below:

ε̄(q) = A(q) ε̄ +D(q) (14)

where the components of A(q) are derived by applying only one component of macroscopic strain
at a time. D(q) is a vector concerning thermal and plastic contributions, which can be presented by
macroscopic strains ε̄ at each loading step.

The homogenized Hook’s law can be calculated by taking the volume average of the stress field
as below:

σ̄ =
1
V

∫
σ(x)dV =

1
V

Nq

∑
q=1

∫
Vq

σ̄(q)(x)dV(q) =
Nq

∑
q=1

v(q)σ̄(q) (15)

where v(q) = V(q)/V represents the volume fraction.
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The macroscopic constitutive equations for the composite material can be derived using the
localization relations and stress–strain relations in the volume-averaged sense

σ̄ = C∗ ε̄− (σ̄th + σ̄pl) (16)

where C∗ =
Nq

∑
q=1

v(q)C(q)A(q) represents the homogenized stiffness matrix; the volume-averaged

thermal and plastic stresses can be derived below

σ̄th + σ̄pl = −
Nq

∑
q=1

v(q)
[
C(q)D(q) − Γ(q)∆T − σ̄pl(q)

]
(17)

The vector G in Equation (13) denotes plastic contributions, which are an integration of plastic
strains on the surface of each subvolume. The total plastic strain at each material point consists of the
contribution of the previous step and the contribution of current load increment

εpl(q)(η, ξ) = εpl(q)(η, ξ)
∣∣previous+ dεpl(q)(η, ξ) (18)

In order to give the FVDAM model the capability of simulating the ratcheting effect, a cyclic
plastic constitutive relation should be implemented in this model when calculating the plastic strain
increment dεpl(q)(η, ξ) in Equation (18). The detail of the implementation is described in Section 3.

3. Implementation of the Cyclic Plasticity Model

After the discretization in Section 2, the aim of the model becomes the calculation of the plastic
strain incremental of each and every material point in Equation (18). In this paper, we introduce
the Abdel–Karim–Ohno model [9] into the FVDAM theory, since the Abdel–Karim–Ohno model is
a low-order nonlinear constitutive model which makes it easy to implement in the algorithm [46].
We begin with a brief summary of the Abdel–Karim–Ohno model. For the elastoplastic problems, the
small strain ε is assumed to be a combination of elastic deformation εe and plastic deformation εpl and
back stresses α are divided into N parts as shown below:

ε = εe + εpl (19)

α=
N

∑
i=1

αi (20)

Then, by using Hook’s law and the flow rule related to Mises-type yield surface F = 0, the
function of εe and εpl in Equation (19) can be written as follows:

σ = C : εe (21)

ε̇pl = λ̇
∂F
∂σ

(22)

F =

√
3
2
(s− a) : (s− a)−Y (23)

where (:) means inner product calculation, C is the stiffness matrix, λ̇ can be calculated using Ḟ = 0
and F = 0, s and a are deviatoric parts of σ and α. Therefore, in the deviatoric space, a is the center of
the yield surface and Y represents the radius of the yield surface.

Normally, a and Y will move and expand during the inelastic deformation. In this paper, we
consider kinematic hardening, where the radius of the yield surface Y is constant and the center
of the yield surface a moves. Since a is the deviatoric part of α, a can also be decomposed into N
different parts:
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a=
N

∑
i=1

ai (24)

The evolution of a is described as below:

ȧi = ζi

[
2
3

ri ε̇
pl − µiai ṗ− H( fi)

〈
λ̇i
〉

ai

]
(25)

λ̇i=ε̇p :
ai
ri
− µi ṗ (26)

where ζi is a material parameter, µi is the weighing coefficient ranging from 0 to 1, µi = 1 corresponds
to the AF model, µi = 0 corresponds to the first version of the Ohno–Wang model, ri can be
determined by the unidirectional tensile test and 〈〉 denotes Macaulay’s brackets (i.e., 〈x〉 = x if
x ≥ 0, 〈x〉 = 0 if x < 0). fi = 3/2(ai : ai) − ri

2 represents a critical surface. p stands for the
accumulated plastic strain, where:

ṗ =

√
2
3

ε̇pl : ε̇pl (27)

For numerical implementation, the constitutive equations (Equations (19)–(25)) should be
discretized over time t. The problem can then be described as follows: Knowing the variables
of every point in the qth subvolume in the reference coordinates (i.e., σ(q)(η, ξ), ai

(q)(η, ξ), ε(q)(η, ξ),
εpl(q)(η, ξ), p(q)(η, ξ), Y(q)(η, ξ)) at tn and giving the strain increment dε(q)(η, ξ), try to find the plastic
strain increment dεpl(q)(η, ξ) at tn+1, which can be solved by applying the backward Euler method
and the return mapping method [46].

After the plastic strain increment dεpl(q)(η, ξ) is calculated, Equation (18) can be solved and
vector G in Equation (13) can be derived, which allows the updating of D(q) in Equation (14) and the
follow-up calculation of the homogenized and local response of the composites under cyclic loading.

The whole algorithm is illustrated in Figure 3. The outer loop controls the macroscopic loading
path. We start with a thermal cooling process (∆T = −550 ◦C), which has been discreted into n parts
[∆t, ..., n∆t = ∆T]. Then, we apply the macroscopic mechanical loading, which has been discreted into
m parts [∆ε, ..., m∆ε].

The inner loop demonstrates the process of obtaining the local and homogenized response of the
composite material under thermal and cyclic mechanical loading. The effective thermal expansion
constants are used to generate thermal residual stresses σ̄th of the composites to simulate the cooling
process. After thermal loading, cyclic mechanical loading is applied and the cyclic plasticity constitutive
equation is implemented to calculate cyclic plastic strain εpl in the qth subvolume. When the plastic
strain in all subvolumes meets the requirement of convergence, the local response can be obtained.
Then the homogenized response can be updated using the volume-averaging method.

During the calculation of the plastic strain in the qth subvolume, we applied the Newton–Raphson
method, the convergence of which is quadratic [47]. The convergence criterion is written in terms of
the accumulated plastic strain increment ∆p(q)i+1 as follows:∣∣∣1− ∆p(q)i+1(k− 1)/∆p(q)i+1(k)

∣∣∣ < 10−4, k = 1, 2, 3, ... (28)

where k denotes the number of local iterations and i represents the loading step.
The numerical successive method we use is similar to the one proposed by Kaboyashi and

Ohno [46]. The detailed demonstration of convergence can also be found in [46].
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Figure 3. Flow chart.

4. Validation and Numerical Results

4.1. Unidirectional Transverse Loading

In order to verify the effectiveness of the FVDAM theory to accurately predict both the
homogenized stress–strain curve and local field distribution, a finite-element unit cell model is built
with the same mesh discretizations, providing a golden standard for the FVDAM simulation.

In this paper, we simulated the strain-controlled unidirecional loading experiment, which means
we control the macroscopic ε̄22. However, other components of ε̄ are not zero. As in the unidirectional
experiment, we only load on direction 2 and other directions are not constrained on the material.
Therefore, knowing ε̄22 and the global stiffness matrix, other components of ε̄ can be calculated using
Hook’s law.

To simulate the response of the composite materials with thermal residual stresses, a square
unit cell with a fiber was built. The volume fraction of fiber is 0.3. The material properties are
listed in Tables 1 and 2. The large modulus contrast and the strong fiber–fiber interaction at this
volume fraction produce highly localized stress fields, which are very demanding for the accuracy
of the method. We first compare the local stress distributions within the composite microstructure
after a cool down temperature of ∆T = −550 ◦C simulated by the FVDAM and FEM analyses

(see Figure 4). The thermal expansion constants α∗ = C∗−1∑
Nq
q=1 ν(q)(A(q))

T
Γ(q) are obtained using the

results of Levin [48]. Because the composites are not constrained during the consolidation process, the
macroscopic stresses in Equation (16) are taken as zeros. To generate the smooth thermal stress fields,
the unit cells were discretized into 96× 96 subvolumes/elements in both approaches. We note that the
thermal residual stresses of the present material systems generated by both approaches are in good
agreement, illustrating the excellent predictive capability of the FVDAM theory.
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Table 1. Material and thermal properties for fiber and matrix.

Matrix Fiber

E/GPa 215 400
ν 0.33 0.25
α/10−6 ◦C−1 8 4.86
Y/MPa 220 ∞ (elastic)

Table 2. Kinematic hardening parameters.

ζ(1) = 2000 ζ(2) = 500 ζ(3) = 200 ζ(4) = 50
r(1) = 50 r(2) = 50 r(3) = 50 r(4) = 100
µ = 0, 0.15, 1

(a) σ22 (MPa)

(b) σ23 (MPa)

Figure 4. Comparison of selected local stress distributions after thermal cooldown temperature of
∆T = −550 ◦C: FEM (left); FVDAM (right).

To illustrate the effect of thermal residual stresses, Figure 5 compares the transverse
thermo-mechanical tensile response of the composite with different values of µ = 0, 0.15, 1.
The temperature changes are prescribed as ∆T = −550 ◦C. The stress–strain response generated
without thermal residual stress effects (∆T = 0 ◦C) are included in the figures for comparison.
For verification purposes, the corresponding FEM results under the same loading conditions are
enclosed in the figures as well. As observed, the correlations between the two methods are in good
agreement. The thermal residual stresses provide a slight enhancement in homogenized stresses in the
elastic-plastic region while the elastic response almost remains the same. A close look at the figures
also indicates that the initiation of plasticity in the macroscopic response occurs earlier (or at a lower
stress state) due to the significant tensile stresses induced by the thermal cooling process prior to the
mechanical loading.
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(a) µ = 0

(b) µ = 0.15

(c) µ = 1

Figure 5. Comparison of the transverse thermo-mechanical tensile response with different µ.

The local field distributions considering thermal effects for µ = 0.15 at the applied strain of
ε̄22 = 1% are shown in Figure 6. The results of FVDAM correlates well with the FEM prediction and
no apparent difference is observed.
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(a) ε
pl
e f f (%)

(b) σ22 (MPa)

(c) σ23 (MPa)

Figure 6. Local field distributions (µ = 0.15) after ∆T = −550 ◦C cooldown followed by the applied
strain ε̄22 = 1%: FEM (left); FVDAM (right).

The FEM’s prediction, however, shows small discontinuities in the transverse normal stress field
in the localized region near the fiber/matrix interface (see Figure 6b), which is not observed in the
FVDAM results. This is because the large modulus contrast produces the large stress concentration
and deformation gradient at the fiber/matrix interface. The FEM analysis requires a more detailed
mesh discretization in the affected region to avoid stress discontinuity. The FVDAM theory, on the
contrary, satisfies the equilibrium equations in each subvolume at large, which allows the excellent
convergency in the region of large stress concentration.

To make the small discontinuities in Figure 6b more visible, we took the transverse normal
stress σ22 field and enlarged the region of the large stress concentration area (see Figure 7a). Small
discontinuities appear in the FEM’s prediction, which are not observed in the FVDAM results.

Then, In order to get a clearer picture of the problem, we take 2 points from the transverse normal
stress σ22 field, where point A (−0.4, 0.5) is in the region of discontinuity and point B (0, 0.9) is in a
more smooth region as shown in Figure 6b (right). Then we trace the loading from ε̄22 = 0 to ε̄22 = 1%
using the FEM and the FVDAM; the results are demonstrated in Figure 7b. As shown in the figure, the
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results of point B have great agreement using these two methods, which reveals the effectiveness of
the proposed model. At point A, the result of the FEM is divergent while the result using the FVDAM
theory keeps an excellent convergence.

A

B

A

B

(a)

(b)

Figure 7. Comparison of the convergence using the finite-element method (FEM) and the finite-volume
direct averaging micromechanics (FVDAM). (a) Comparison of the transverse thermo-mechanical
tensile local field in the large stress concentration area: FEM (left); FVDAM (right); (b) Comparison of
the transverse thermo-mechanical tensile response of the composite at point A (left) and point B (right).

It is worth noting that the FVDAM and FEM are two different methods that share certain
similarities. The formulation of local/global stiffness matrices and the procedure of discretizing
unit cells are similar. However, the local stiffness matrices in FVDAM satisfy the equilibrium equations
in each subvolume at large. The closed form expressions between tractions and displacements are
readily available, hence the continuity conditions of both displacements and tractions are applied
directly. On the contrary, the FEM method is based on the minimization of global potential and satisfies
the continuity conditions of the node displacements solely.

4.2. Cyclic Loading

We further investigated the cyclic behavior of the unidirectional composite materials under
unidirectional strain loading. Figure 8 shows the applied transverse strain ε̄22 which varies between
1% and 2% as a function of the incremental number. To demonstrate the thermal effect, the temperature
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changes of ∆T = − 550 ◦C and ∆T = 0 ◦C were applied to the composite material system prior to
the mechanical loading.

Figure 8. Cyclic loading history.

Figure 9 illustrates the validity of the FVDAM for predicting the cyclic response of the
unidirectional composite materials. As shown in the figure, the FVDAM predictions are in good
agreement with the FEM results. The ratcheting effect relies heavily on the plastic parameter µ. In the
case of µ = 0 where the constitutive model degrades to the first version of the Ohno–Wang model, the
ratcheting behavior is negligible. The maximum and the minimum stresses σ̄22 at the ε̄22 = 1% and
ε̄22 = 2% strain in the cyclic curve stay on two horizontally parallel lines, indicating no ratcheting effect
in this case. In the case of µ = 0.15, the ratcheting behavior becomes obvious. The peak and trough
stresses decrease gradually with the increase of the cyclic number. Increasing the plastic parameter
will further accentuate the differences in the composite transverse response due to the ratcheting effect.
In the case of µ = 1 where the constitutive model degrades to the AF model, the ratcheting effect
becomes the most significant.

The influence of the thermal residual stresses on the cyclic response of the present material system
is negligible under the transverse loading case. This is consistent with expectations because a similar
response was found in [49] and Pindera and Bansal [50] for the transverse response of a unidirectional
metal matrix composite. The effect of residual stresses, which is pronounced under the off-axis loading,
will be discussed in the next section.
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0 0

(a) µ = 0

0 0

(b) µ = 0.15

0 0

(c) µ = 1

Figure 9. Comparison of the cyclic response of the unidirectional composite materials generated by
FEM and FVDAM.

4.3. Off-Axis Loading

We end this paper by illustrating the cyclic response under off-axis loading. In order to establish
the stress–strain relations in the global coordinate systems, we rotate the principal coordinates (1, 2, 3)
around the ‘3’ axis by θ degrees. As shown in Figure 10a, axis ‘1’ is parallel to the fiber, axis ‘2’ is
perpendicular to the fiber in-plane direction and axis ‘3’ is perpendicular to the fiber out-of-plane
direction. According to the coordinate transformation relations in the theory of elasticity, the stresses
σ̄θ = [σ̄xx, σ̄yy, σ̄zz, σ̄yz, σ̄xz, σ̄xy]T in the global coordinates (x, y, z) are related to the stresses σ̄ =

[σ̄11, σ̄22, σ̄33, σ̄23, σ̄13, σ̄12]
T in the principal coordinates (1, 2, 3) (see Figure 10b) through:
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(29)

Similarly, the strain ε̄θ = [ε̄xx, ε̄yy, ε̄zz, 2ε̄yz, 2ε̄xz, 2ε̄xy]T in the global coordinates (x, y, z) can be
transformed to stress ε̄ = [ε̄11, ε̄22, ε̄33, 2ε̄23, 2ε̄13, 2ε̄12]

T in the principal coordinates (1, 2, 3):

ε̄11
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=



cos2θ sin2θ 0 0 0 sin2θ
2

sin2θ cos2θ 0 0 0 − sin2θ
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(30)

Therefore, the stress–strain relation in the global coordinates can be written as:

σ̄θ = C̄∗ ε̄θ − (σ̄pl + σ̄th)θ (31)

where C̄∗ = T−1
1 C∗T2 is the stiffness matrix in the global coordinates and (σ̄pl + σ̄th)θ = T−1

1 (σ̄pl +

σ̄th) are the thermo-plastic stresses in the global coordinates. Once the applied strain ε̄θ is obtained,
the strain components ε̄ in the principal coordinate system can be calculated using ε̄ = T2ε̄θ . The
stress–strain relations in the global coordinates can be determined after solving Equations (13), (16)
and (31).

(a)

12σ
21σ

(b)

Figure 10. The relation between the principal coordinates and global coordinates.
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The cyclic stress–strain response of the composite materials with different off-axis angles (θ = 0◦,
15◦, 30◦, 45◦, 60◦ and 75◦) are illustrated in Figure 11. It is revealed that the cyclic response of the
unidirectional composites is sensitive to the off-axis angle. The composite response is the stiffest in
the case of 0◦ since the loading direction is along the fiber direction. With the increase of the off-axis
angle, the overall stresses in the global coordinate system decrease first then increase. The thermal
residual stresses have a more pronounced effect under the small off-axis loading angle cases but to a
lesser extent under the moderate and large off-axis loading angle cases. The ratcheting effects are more
obvious under the off-axis loading cases due to the significant out-of-plane shear-coupling.

(a) θ=0◦ (b) θ = 15◦

(c) θ = 30◦ (d) θ = 45◦

(e) θ = 60◦ (f) θ = 75◦

Figure 11. The cyclic stress–strain response with consideration of the thermal effect for the composite
materials with different fiber orientations.
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5. Discussions

The existing micromechanics models for simulating the elastic-plastic response of the metal matrix
composite materials are often under the framework of the Eshelby and the Mori-Tanaka theory. Most
of these approaches, however, are not capable of simulating the distributions and evolutions of locals
in the composites. Conventionally, the finite-element micromechanics model is the prevailing way
and a golden standard for simulating both local fields and homogenized stress–strain responses of
composite materials. Arbitrary microstructures can be easily addressed by the finite-element technique
through the readily available commercial packages. The cyclic behavior, as well as other physical
effects, can be simulated using the user programmable feature. A major shortcoming of the finite
element theory is that the construction of local/global system of equations is under the framework
of the variational principle. Hence, the simulation of composite materials often requires a detailed
mesh near the interface due to the large modulus contrast between constituent materials. Compared
with the FEM, the FVDAM is a semi-analytical method which provides an accuracy comparable to the
FEM but with better efficiency. What is more, for the fatigue life prediction of the composite materials
subjected to cyclic loading, since the proposed model can successfully calculate the local fields of the
composites, the simulation of damage evolution and ultimately failure could be a worthwhile pursuit.

6. Summaries and Conclusions

The FVDAM model is extended by incorporating the cyclic plasticity model with the nonlinear
kinematic hardening rule originally proposed by Abdel-Karim and Ohno, which enables efficient and
accurate simulation of elastoplastic ratcheting behavior and local field distributions of the metal matrix
composite materials. Comparisons of the results generated by the FVDAM and the finite-element
method not only demonstrate the accuracy of the FVDAM theory but the effectiveness and efficiency.
The generated results also indicate that the FVDAM has better convergence and stability than the FEM
theory since the FVDAM eliminates the stress discontinuities in the vicinity of the interface which are
observed in the FE simulations.

The FVDAM is used to investigate the influence of the thermal residual stress and
fiber-orientations on the ratcheting behavior of metal matrix composites. The numerical simulations
show that the thermal residual stresses provide a slight enhancement in homogenized stresses.
However, the influence of the thermal residual stresses on the cyclic response of the present material
system is negligible under the transverse loading case. Ratcheting effects are more obvious under the
off-axis loading cases due to the significant out-of-plane shear-coupling. Last but not least, the thermal
residual stresses have a more pronounced effect under the lower off-axis loading cases.
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