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Abstract

Animal tracking is a growing field in ecology and previous work has shown that simple speed filtering of tracking data is not
sufficient and that improvement of tracking location estimates are possible. To date, this has required methods that are
complicated and often time-consuming (state-space models), resulting in limited application of this technique and the
potential for analysis errors due to poor understanding of the fundamental framework behind the approach. We describe
and test an alternative and intuitive approach consisting of bootstrapping random walks biased by forward particles. The
model uses recorded data accuracy estimates, and can assimilate other sources of data such as sea-surface temperature,
bathymetry and/or physical boundaries. We tested our model using ARGOS and geolocation tracks of elephant seals that
also carried GPS tags in addition to PTTs, enabling true validation. Among pinnipeds, elephant seals are extreme divers that
spend little time at the surface, which considerably impact the quality of both ARGOS and light-based geolocation tracks.
Despite such low overall quality tracks, our model provided location estimates within 4.0, 5.5 and 12.0 km of true location
50% of the time, and within 9, 10.5 and 20.0 km 90% of the time, for above, equal or below average elephant seal ARGOS
track qualities, respectively. With geolocation data, 50% of errors were less than 104.8 km (,0.94u), and 90% were less than
199.8 km (,1.80u). Larger errors were due to lack of sea-surface temperature gradients. In addition we show that our model
is flexible enough to solve the obstacle avoidance problem by assimilating high resolution coastline data. This reduced the
number of invalid on-land location by almost an order of magnitude. The method is intuitive, flexible and efficient,
promising extensive utilization in future research.
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Introduction

Monitoring the movement of animals is fundamental for

investigating processes and patterns of animal distribution, habitat

use and selection, habitat connectivity, recruitment, migrations,

and foraging strategies. Movements of freely ranging animals are

typically studied using some form of telemetry due to the

difficulties of visually tracking individual animals in the wild.

However, the various forms of telemetry come with certain

limitations, such as limited spatial accuracy and low and/or

uneven temporal resolution of recorded locations [1–6]. For

example, satellite tracking using the ARGOS system yields

location estimates that are categorized into six different quality

classes (i.e. different errors), with uneven sampling due to the

availability of the satellites overhead coupled with the animals’

behavior and location [6,7].

A variety of approaches have been developed to correct

telemetry data by: 1) reducing spatial errors and 2) correcting

for temporal lags and unevenness between data points. For the first

process, filtering techniques are commonly applied to the data,

based on the previous estimation of a maximum traveling speed of

the animal [6,8,9], and eventually an additional angle filter [10].

Such filters remove unlikely locations, but they also increase the

temporal gap between analyzed locations. For the second process,

interpolation between known locations is performed to provide

equally spaced locations for a given time interval [2]. These

processes are appropriate for large scale studies, but they prevent

us from using some potential positional information from

discarded locations and the known spatial inaccuracy of the data

is ignored [5]. Usually, 30% (+/220%) of ARGOS locations are

discarded by filters (Coyne, pers. com.) but this can reach up to

,50–75% in some instances [1] (this work). However, these

processes have the advantages of being intuitively easy to

understand and generally quite simple to implement.

State-space modeling (or state-space models; SSM) is an

alternative process that uses the error in the data as a source of

information to infer the likelihood of the animal’s position [5,11].

In these models, a mechanistic model of movement is coupled to

the data, and a probability of presence at a certain point is inferred

based on the estimated state of the animal. The process model

predicts the future state of an animal given its current state [12].

Observation errors are included in the probability calculations, as

well as other information if they are available, such as sea-surface

temperature [13]. These models are complicated to both

understand and implement, often forcing ecologists researching

animal movement to team up with statistical modelers for their

development and analysis [12]. More importantly, SSM is not a

uniform framework: state-space models can use ‘‘extended’’ or
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‘‘unscented’’ Kalman filters [13], ‘‘hidden Markov’’ processes

[14], ‘‘particle filters’’ [15], and discussion continues over which

method to use [16]. Even more importantly, SSM are claimed to

be robust [5] and better than classical techniques [12], but to our

knowledge, their performances have never been objectively

tested with tracking data from wild animals because by definition

we only know where an animal is through the imperfect method

used. However, a recent study has attempted to gain insight into

SSM performances [17], and has revealed that like other

methods SSM have some limitations (discussed later in this

work). In addition, though rarely considered, SSM often require

extremely long processing times (S. Jorgensen, H. Bailey, pers.

comm.).

The aim of this paper is to propose a simpler, non-state-based

random walk (RW) modeling approach that uses forward particle

sampling as a parsimonious, intuitive, efficient and practical

alternative to correcting and interpolating tracking data.

In developing this new methodology, we imposed several

requirements:

1) As in state-space models, we use estimates of spatial

accuracy as a source of information to infer a probable

animal position for a given time.

2) Contrary to state-space models, we do not speculate on the

unknown state of an animal to infer a subsequent position.

3) The method must output a track with a custom fixed time

interval, thus dealing with the corrective and interpolating

processes in a single step.

4) In many cases, other information independent from the

tracking data can also be used in the modeling process, such

as physical boundaries known to constrain dispersal or

habitat characteristics known to provide more or less

favorable habitat. For example, these can be forest or city

limits in terrestrial environment, or coastlines in the marine

environment. We must have a way to include these sources

of information in the process.

5) Each output estimate of the animal’s position must come

with a valid estimation of confidence.

6) The method must be tested on real data in a way that

performance can be validated.

7) Each step must be intuitively easy to understand, i.e. as

simple as possible. While this is subjective, it will be crucial

in determining both the usefulness and probability that the

method will become accepted and employed by the greater

animal tracking community.

Materials, Methods and Results

Ethics Statement
All procedures used were approved by the UCSC CARC

(IACUC) committee and permitted under NMFS marine mammal

permits #786-1463 and #87-143.

Data Collection
Our focus here is on tracking data collected via the ARGOS

satellite system and archival light-based geolocation telemetry,

which are the two major techniques requiring post-processing of

raw data. The general framework is, however, not restricted to

these tracking techniques and can be adapted to any tracking data.

Few studies have evaluated the performance of a model for

tracking data because the true position of animals (at sea) has until

recently been impossible to determine with better accuracy than

with the actual tracking method used. To validate our method, we

considered several movement pathways from marine animals,

each bringing a possibility of evaluating the accuracy of the

method and/or posing a particular analytical challenge, as

detailed below:

1) Dataset 1

The first data set was composed of 3 Argos tracks of adult

female northern elephant seals, Mirounga angustirostris (Gill,

1866) during their post-breeding migrations. The tags used

were ARGOS-linked GPS tags (SMRU GPS-SRDL, i.e.

ARGOS+GPS). For battery management purposes, the tags

were duty-cycled for the recording of GPS positions (1 day

on, 3 days off) whereas ARGOS transmissions were

continuously obtained. By nature, GPS data are much more

accurate than ARGOS data (estimated unpublished errors:

,5–60 m vs. ,150–10000 m respectively), so we used these

positions as our reference locations. The three tracks had

distinct qualities (Table 1), so we were able to evaluate the

effect of initial data quality on the performance of our model.

For this dataset, the model was run using ARGOS data and

the results were compared to the GPS data.

2) Dataset 2

The second dataset is one ARGOS track from one adult

female northern elephant seal. This animal was equipped

with an ARGOS-only transmitter (SMRU SRDL). Although

no GPS data were available for comparison, this track was

chosen because the animal ventured into coastal waters of

British Colombia (Canada), into a meander of fjords and

islands. Elephant seals do not cross islands and do not haul-

out during their migrations. Therefore, this track must be

constrained by coastlines. We used this knowledge by

assimilating the Global Self-consistent Hierarchical, High-

resolution Shoreline database [18] in our model. This

coastline dataset comes in 5 different resolutions from

‘‘crude’’ to ‘‘full’’. We used the ‘‘high’’ resolution dataset

(Max. error = 200 m). For this dataset, the model was run

using ARGOS data and assimilated coastline data and the

Table 1. Parameters defining the qualities of the 3 elephant
seal ARGOS tracks from dataset 1 (see methods).

Track number #1 #2 #3

Duration (Days) 83.8 68.3 222.2

Number of raw locations 988 652 1042

Number of raw locations per day 11.8 9.5 4.7

ARGOS Class 3 (%) 0.2 0 0.4

ARGOS Class 2 (%) 1.2 0.6 0.7

ARGOS Class 1 (%) 2.9 1.5 2.2

ARGOS Class 0 (%) 11.0 7.4 8.7

ARGOS Class A (%) 29.9 23 22.7

ARGOS Class B (%) 40.4 49.5 53.4

ARGOS Class Z (%) 14.4 17.9 11.8

Percentage of locations removed by speed filter 52.8 64.4 55.0

Number of filtered location per day 5.6 3.4 2.1

Tracks are sorted by decreasing order of quality (based of the number of
location per day). The number of location for the different ARGOS classes is
given as percentages.
doi:10.1371/journal.pone.0004711.t001
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results were visually compared to the distribution of land

masses.

3) Dataset 3

The third dataset is a track obtained from one of the three

female elephant seals from Dataset I, but in this case her track

was estimated using the geolocation method. Diurnal patterns

of light levels measured via a time series are used to estimate

one position per day [19]. This method is less accurate than

either the ARGOS or the GPS technique (estimated error

,50–700 km) and can be improved in marine environments

by assimilating remotely-sensed sea-surface temperature grids

[3,13,20]. A Time-Depth Recorder carried by the animal

(TDR, MK9 Wildlife Computers, Redmond, USA) recorded

hydrostatic pressure, water temperature and ambient light

levels. The geolocation algorithm from Wildlife Computers

(Software WC_GPE version 1.02.0005) was used to calculate

geographic positions from the light level time series. The

IKNOS-DIVE program (Tremblay, unpublished) was used to

analyze diving behavior as well as to extract oceanographic

parameters such as sea-surface temperature (SST) for each

recorded dive. Only SST values were considered in this work.

We assimilated the time series of known SST from the animal

with matching daily remote-sensing SST 11 km-grids con-

sisting of a blended product of merged SST information in

order to reduce cloud cover error [21]. This remote-sensing

dataset was produced by the NOAA CoastWatch Program,

the NOAA NESDIS Office of Satellite Data Processing and

Distribution, the NASA’s Goddard Space Flight Center, and

OceanColor Web (details: http://coastwatch.pfel.noaa.gov/

infog/BA_ssta_las.html). The 11 km grain of these data is

fine with respect to the geolocation accuracy (at least by a

factor 10), and therefore they are appropriate for this analysis.

This track was validated using the same GPS track described

in Dataset 1. For this dataset, the model was run using

geolocation data and assimilated sea-surface temperatures,

and the resulting locations were compared to the GPS

positions.

Field methodologies followed standard and approved proce-

dures by the Institutional Animal Care and Use Committee at the

University of California (Santa Cruz) and were described

elsewhere (see [22]). All available ARGOS locations were used

including class Z and secondary locations.

Basic principles of the model
Animal movement is best described as a time series of

movement steps [23]. Each step is characterized by an azimuth

(or bearing) and a distance between two distinct points in time,

which in turn determines a speed value. The distributions of the

azimuth and speed values in a series of steps will determine the

type of movement of the animal, from a straight line to a

Brownian (random) motion. This principle can be used to

generate artificial tracks of known characteristics, by randomly

selecting consecutive azimuth and speed values from distribu-

tions of controlled characteristics [17,24,25]. Similarly, our

model recreates many possible tracks using distributions of speed

and azimuth controlled by the raw data and their associated error

distributions.

The model is illustrated in figures 1 and 2. Each recorded

location (Fig. 1a, 2b) can be considered the geographic average of

many possible positions spread around it, depending on spatial

error characteristics (Fig. 1b, 2c). Each of these possible locations

(or ‘‘particles’’) can then be weighted based on proper character-

istics (i.e. matching recorded SST value or being on land) and/or

external characteristics (i.e. feasibility of speed required to reach a

particle from a given location) (Fig. 1c). We used these particles to

generate the weighted distributions of azimuth and speed from

which random steps were selected (Fig 1d). At each step, a new

distribution of azimuth and speed is computed using the next x

particles in the record, and one value of azimuth and speed is

randomly selected and used to create the next position. If the

spatial error is large, the azimuth and speed distributions widen

and vice-versa (Fig. 1e, 2d). The output of our method is n time

series (i.e. complete tracks), each corresponding to one boot-

strapped track iteration. The ‘‘best track’’ can then be computed

as the geographic average of the bootstrapped tracks. This leads to

the possibility of estimating an error (or confidence) for each step

of the average track using the dispersal of time-matching

alternative positions (Fig. 1f, 2e).

Model implementation, performance and effect of data
quality (ARGOS, dataset 1)

To create the particles, we used estimated errors from our

own static tests of ARGOS data [25] rather than errors given by

the ARGOS system. Although the errors derived from static

tests might not be the same as what would be obtained from

deployed tags, we believed that they were the best estimate

available. Each recorded location was resampled into 50

particles randomly selected using a bivariate normal distribution

of distance (with m= 0 and SD = error). The number of particles

(here 50) was empirically fixed so that they produce a near-

uniform circular distribution of azimuths around each recorded

location.

With this dataset, particles were weighted according to a

probability distribution of the local speeds estimated from the four

prior and four following recorded points. From these locations, all

combinations of speed were calculated, and only the likely ones

(below a maximum speed threshold set by the user are kept, here

12.6 km/h in accordance with previous study [22]. A normal

distribution with mean and standard deviation corresponding to

these speeds was then used for weighting. Therefore, particles

involving speeds often used by the animal (locally to each point)

will have a relatively higher chance of being selected.

One characteristic of tracking data (including ARGOS) is that

the error of recorded location is probabilistic. That is any location

has a low probability of being very wrong, independently of its

given error (i.e. errors are strongly non-gaussian [5]). This is why

some presumably good ARGOS locations (with quality class of 1

for example) are sometimes found kilometers away from any

reasonable position [1]. This implies that the model cannot blindly

trust the accuracy of each point. In order to account for this, the

azimuth and speed distributions used at each step were derived

from the next 5063 particles instead of being derived from the

next 50 particles (arbitrarily). This process has a slight smoothing

effect and helps the model overcome the problem of individual

mistrust of recorded locations.

In our simulations, we generated random walks with steps every

30 minutes, which is close to the average duration of a dive in

elephant seals [22].

Track quality is not easily defined because it is a combination of

location quality and frequency in relation to the animal’s speed,

and it can be variable within a track record. In our case, reported

location qualities were roughly similar in the three tracks (Table 1).

Location frequency in recently obtained data in elephant seals are

around three post-filtered locations per day on average [2,26].

Therefore, the track qualities of track 1, 2 and 3 were above, equal

and below average respectively (Table 1). This gives us the

possibility of testing the effect of track quality on the accuracy of

Modeling Animal Movement Data
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the model. In order to do so, we extracted all model locations that

were within 2 minutes of a recorded GPS location. This yielded

41, 24 and 31 pairs of locations for the 3 tracks respectively. Fifty

percent of the errors (i.e. distances between GPS locations and

corresponding model-estimated locations) were below 4.0, 5.5 and

12.0 km and ninety percent of errors were less than 9.0, 10.5 and

20.0 km in track number 1, 2 and 3 respectively. Logically, errors

increased with decreasing track quality (Fig. 3a).

In order to evaluate the difference between our model and

classical methods, we applied a speed filter at 12.6 km/h on the

raw data [22]. Filtered tracks were then interpolated every

30 minutes using a Bézier curve with mu = 0.1 [2]. A Bézier curve

interpolant does not introduce additional error compared to linear

interpolation, and it was shown to be a more realistic

representation of movement in a fluid environment [2]. This

interpolated track was compared to the GPS locations in the same

Figure 1. Description of the steps for the forward particle filtering model. Based on the raw data (A) and knowledge about their inaccuracy,
the first step consists of generating a number of possible locations for each recorded point (B). The distribution of these particles follows a known or
estimated error distribution for each point. Based on the likelihood of the speed required to get from a point to a given particle or any other known
information if relevant, a weight is assigned to each particle (C). From a starting position, some forward particles will serve as attractors for
constructing random walks. These forward particles define a distribution of speed and azimuth from which one random step is selected (D). The
repetition of this process generates one random walk. This process is bootstrapped in order to generate many possible random walks (E). From this
set of random walks, an average track is calculated. For each position of the average track, an error can be estimated from all of the corresponding
locations of the set of random walks (F).
doi:10.1371/journal.pone.0004711.g001

Modeling Animal Movement Data

PLoS ONE | www.plosone.org 4 March 2009 | Volume 4 | Issue 3 | e4711



way. Fifty percent of the errors were below 5.0, 13.0 and 19.5 km,

and ninety percent of errors were less than 20.0, 20.5 and 41.0 km

in track numbers 1, 2 and 3 respectively. Results confirm that the

speed filter+interpolation method is also sensitive to the track

quality [2] and show that our model reduced the positional errors

by about 39% for the 50 percentile and about 52% for the 90

percentile.

Consistent with relatively low error locations, instantaneous

speeds calculated from our model were positively related to the

speed recorded with GPS for all locations that were less than

2 minutes apart (R = 0.638, P,0.001, N = 97). Such correlation at

a small time scale is remarkable given the relative scarcity of

ARGOS data. Smoothing the pattern of speed by taking into

account the previous and subsequent 3 points in the record (using

a moving average) permits to look at speed at a slightly coarser

scale and shows further improvement of the fit, yielding a quasi

one to one relationship (Fig. 4).

For each average location estimated with the model (i.e. each

averaged step) we calculated the 99% confidence radius using the

30 location alternatives. This radius defines a circle that can be

used as a standard measure of spatial dispersion. We showed that

75.6, 66.7, and 39.7% of the GPS positions fell within the circle in

the 3 tracks respectively. By doubling the radius size, we found that

92.7, 91.7 and 87.1% of the GPS locations fell in the circle

footprint. We therefore suggest that twice the 99% confidence

radius calculated on the model output can be used as a valid

estimate for the ‘‘real’’ 90% confidence error for each step.

However, we found that the footprint made by the successive 99%

confidence radii was usually larger than the footprint made by the

random walks (Fig. 2e). This apparent contradiction was due to the

fact that errors were larger along the animal path and smaller

laterally (data not shown) suggesting that fitting an ellipse to the

points could be a better (but more complicated) way to describe

errors.

Figure 2. Illustration of the various steps of the forward particle sampling random walk model on one ARGOS track of a northen
elephant seal from Año Nuevo, California, USA. Panel A shows the whole track as obtained using a classical speed filter and the location of the
inset panels (black rectangle). From the recorded raw data (B) a set of particles is generated (gray dots in C). Using these particles a number of
random walks is computed (D), which allow the calculation of an average track (green line in E) and associated error footprint (gray area in E: the
accumulation of all error circles for every steps in the model). Red circles in panel E are the location of highly accurate GPS location obtained on a
duty cycle fashion for this track.
doi:10.1371/journal.pone.0004711.g002
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The 99% confidence radius was positively related to the actual

distance between the model average location and the correspond-

ing GPS location (Radius = 6.0+0.336Distance, n = 87, R = 0.491,

P,0.001, Fig. 3b).

We ran a sensitivity analysis to assess how many random walks

were necessary to obtain a reliable and stable track estimate.

Convergence was reached when the average standard deviations

of latitude and longitude became stable, indicating that any

additional track would not change the location or spatial extent of

the track. This was achieved using between 15 and 20 track

iterations (Fig. 5), thus the optimal ratio of computing time to track

quality is achieved with about 20 iterations. The computing time

required to run 20 random walks with one step every half an hour

for one day (960 step calculations) required about 45 seconds of

computing time, using Matlab and a laptop computer with a

2.16 Ghz dual core processor. This is about 20 times longer than

‘‘classical’’ speed filtering, but this is still a reasonable amount of

time.

Coastline integration (Argos, dataset 2)
With Dataset 2 we confronted the problem of obstacle

avoidance. In our case the seal obviously cannot cross over land,

presenting a problem common in tracking studies involving coastal

marine species. Solving the obstacle contouring problem in a

bootstrapping context requires taking into account the compro-

mise between a satisfactory result and the computing time needed

to obtain it. Here, we added several intermediate particles to the

track data in order to re-route the path when it cut through the

obstacles. The geographic average of these added particles

belonged to the convex Hull of the coastline polygon crossed,

and were selected to achieve the shortest possible path. When

several polygons were crossed, the various combinations of convex

hull points were processed through Dijkstra’s algorithm in order to

find the shortest path between the different combinations of

possible paths [27]. Each selected convex hull point was treated as

a tracking point with an error arbitrarily fixed as the error of

ARGOS class quality 0. Then, after re-sampling, all particles that

were on land were removed (i.e. their weight = 0). With this

process, some randomly generated steps can fall on land because

they were not individually forced into being at sea. While this

could be done, it would require considerably more computing

time. However, in dataset 2, the average track from our model

yields only 2.4% locations on land, whereas the speed filter+-
interpolation method yielded 22.6% invalid, on land locations. It is

important to note that our example is an exceptionally

complicated case because the spatial structure of the obstacles is

Figure 3. Distribution of errors (i.e. distance between the
locations obtained with the model and the corresponding GPS
locations) in relation to the initial number of recorded
locations in the track (panel A). Box plot depicts the 25th and
75th percentile around the median with whiskers extending to the last
non-outlier value. Outliers are observations (dots) that lay over 1.5 times
the inter-quartile range from the start or end of the 25th–75th percentile
box. Panel B shows the relationship between the model estimate of
confidence (99% confidence radius of the modeled positions) and the
actual error. The relationship was only calculated using points within
the 95% confidence ellipse.
doi:10.1371/journal.pone.0004711.g003

Figure 4. Relationship between the smoothed speed obtained
with the GPS tags and the smoothed speed obtained with the
model for the 97 locations that were within 2 minutes apart.
Smoothing was done using a moving average including the previous
and next 3 points.
doi:10.1371/journal.pone.0004711.g004
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both very dense and within or below the accuracy of our tracking

method (Fig. 6).

Model applied to geolocation data with Sea Surface
Temperature integration (dataset 3)

Due to differences in the characteristics of light-based geoloca-

tion, we treated these data differently. In particular, errors from

geolocation data are much higher latitudinally than longitudinally.

The geolocation solver produced estimates of errors with some

south and north boundaries for each location. We randomly

generated particles so that they lay in the ellipse delimited by these

boundaries. Because geolocation errors are much larger than for

ARGOS data, we generated 500 particles per record instead of 50

with ARGOS data (empirically). The frequency of geolocation

data provide one location per day, and SST correction applies to

these locations [3,13,20]. However, SST at the animal is often

recorded at a much finer temporal scale. For example, the time-

depth recorder carried by the seal produced a measure of SST for

every dive (i.e. about every 20 minutes). In order to take advantage

of more of the SST data recorded, we added to the raw data a set

of particles every 4.8 hours. This allowed us to use five times more

information from the SST data (564.8 = 24 h). These particles

were added in an elliptic footprint centered at an interpolated

position between recorded locations and with a semi-minor axis

(longitudinally) of ,111 km (1u) and a semi-major axis (latitudi-

nally) of ,889 km (8u), based on published range estimates of

accuracy for light-based geolocation data [13,20].

Fifty percent of the distances between modeled locations and

the corresponding GPS locations (n = 41, locations less than

2 minutes apart) were less than 104.8 km (,0.94u) and 90% were

less than 199.8 km (,1.80u). The average error was

108.4666.8 km (0.9860.60u). Careful examination of the track

revealed that larger errors occurred at the end of the track, at

locations where SST gradients were weak, and therefore SST

correction had little effect (Fig. 7).

Discussion

Bootstrapping random walks generated using forward particles

in tracking data is an intuitive, relatively fast and efficient way of

handling the caveats associated with current tracking techniques.

To our knowledge, this is the first time that a track improvement

model technique has been directly validated with animals for

which ‘‘true’’ positions are known. Although we have illustrated

our approach using ARGOS and geolocation data, the technique

is applicable for any remotely sensed movement data for which an

estimate of accuracy can be made.

When selecting a method, one must define an acceptable

tradeoff between performance and the complexity or computation

time required. In the case of tracking data, deciding on acceptable

performances also depends on what is usually expected with the

type of tracking methodology used For example, methods can be

referred to as ‘‘ARGOS’’ or ‘‘Geolocation’’ to imply common

knowledge accuracy, but both methods may give track records of

very different qualities depending on the type of animal tracked

and the type of tracking device used, etc. For example, diving

animals may provide decreased ARGOS and geolocation track

qualities compared to non-diving animals [2,28]. Further, the type

of scientific questions posed may also change the definition of

‘‘acceptable performance’’. For example, long term tracking of

animal migration over large scales can be accomplished with the

lower accuracy geolocation method [29,30]. Relevant to our

model, the question is to know whether the gain from our method

compared to classical methods is worth the effort.

Spatial accuracy with ARGOS data
In elephant seals, very long dive durations and very short

surface intervals between dives leaves few opportunities for the

ARGOS tag to transmit signals to overhead satellites, which

produces the poorest ARGOS track qualities [2]. Nevertheless, we

showed that our model reduced spatial errors by 40–50%

compared to classic speed filter+interpolation methods, with a

vast majority of latent (i.e. estimated but not directly recorded)

locations being within 10 km of true position. One important

consequence is that the overall shape of the track was greatly

improved, with removal of sudden zigzags that typically remain

with speed filters. Recent GPS tracking of elephant seals confirms

that these zigzags are not realistic (Costa, unpublished). Therefore,

any analysis involving track shape such as the search for Levy

flights [31,32] or ARS patterns [24,25] would likely be

considerably enhanced by our method since spatial errors reduce

the ability to discern biological signals [33]. The relationship

Figure 5. Averages of standard deviations of latitude and
longitude estimates obtained with an increasing number of
random walks (Number of iterations of the model).
doi:10.1371/journal.pone.0004711.g005
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between the error distribution and the raw track quality suggests

that our model may provide even better accuracy with tracks of

higher quality. This relationship is logical and proves that the

amount of data available directly affects the accuracy of the model.

This is because if more locations are available the model has more

occasions to adjust speed along the track and therefore to use a

more accurate speed distribution for generating the random walk.

Although we could not quantify precisely the improvement that we

obtained by assimilating coastline data, visual inspection clearly

showed significant improvement as well (Fig. 6).

Our approach is based on calculating a location from a cloud of

weighted particles which can be manipulated as needed. This

yields great flexibility, allowing us to apply corrections based on

known constraints or data available. For example, if gaps in the

data exist, some particles may be added in a wide footprint within

the gap, thus allowing the random walks to disperse and increasing

uncertainty (i.e. decreasing confidence) where data are absent.

Spatial accuracy with geolocation data
We showed that Sea Surface Temperature (SST) data can be

assimilated into our model. To our knowledge, this is the first study

reporting sub-degree average accuracy with SST-corrected

geolocation data. The few studies that had assessed the accuracy

of the SST-corrected geolocation method reported accuracies of

1.82u61.54u (mean6SD) in albatrosses [3], and 1.28u60.38u
(mean6SD of means) in 4 species of fish [20]. It is important to

note that these accuracies were calculated for recorded locations

(i.e. in theory the best estimates) whereas our estimation of

accuracy was made for latent locations. However, variance in

errors is typically high because of the high variability in the quality

of the light measurement and therefore comparison between

studies is only vaguely informative. The take home message

however is that using our model, sub-degree accuracy is achievable

with latent locations if some SST gradient exists.

Interestingly, one study assimilated both SST and bathymetry in

order to correct geolocation tracks of gray seals (Halichoerus grypus),

and produced average errors of 0.85u60.07u [28] which is slightly

better than our estimates. The elephant seal that we use as an

example ventured in very deep and unreachable ocean waters, and

therefore, bathymetry could not possibly have improved our track.

However, our method permits easy assimilation of bathymetry, by

simply altering the weights attributed to each particle based on the

comparison between known depth reached by the animal and the

ocean bathymetry. This process is also not exclusive to SST or to

any other parameter. Finally, a recently published algorithm [34]

aimed at estimated positions based on light levels alone suggests

that the raw data to input to our model could be substantially

improved in the future, which in turn suggests that output from

our model could be even further improved.

Confidence estimates of locations
Analyzing animals’ behavior in relation to environmental

characteristics may enable estimation of a confidence metric for

each position, which is rarely available with recorded ARGOS data

Figure 6. Result of the forward particle filter model applied in one northern elephant seal ARGOS track with implementation of a
coast avoidance algorithm (yellow line). Black line represents the track from the raw ARGOS data. Darker polygons represent land masses and
light grey background represents water. Note that only the part of the track that was within the islands (British Colombia, North East Pacific, Canada)
is shown.
doi:10.1371/journal.pone.0004711.g006
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(ARGOS location of class A,B and Z for example) and not obtainable

with the speed filter+interpolation methods. This confidence metric

is essential for interpreting the behavior of the animal at an

appropriate scale. For example, if the confidence radius is 10 km, it is

probably inappropriate to interpret movements shorter than this

distance. Similarly, the environment characteristics at a given

location may be gathered within the location error footprint rather

than under each average location, potentially reducing noise in the

data and improving habitat model confidence and determination.

In this paper we used a circle to estimate confidence, but this

could be done differently. For example, if the errors are

systematically biased towards one direction (for example latitudi-

nally as in the case of geolocation data), it would be straightforward

to determine another metric based on the output from the random

walks. For example, the standard deviation in latitude and

longitude, or the maximum distance between the various positions

and their average could be used as well. More complex methods

such as the determination of an ellipse (as mentioned earlier) could

be used to account for particular spatial structure that might occur

in the error footprint. For example, this could allow us to

discriminate between the error vectors occurring along the animal

path to the error vectors occurring laterally to the animal path.

Overall, this shows that our approach is not sealed to one scheme,

but instead, it is very open to user input and experimentation.

Forward particle random walk model versus state-space
model

For most applications a biased random walk approach like ours

seems to be an excellent compromise between complexity,

computation time, ease of implementation and effectiveness,

especially when compared to state-space models (SSM). Some

SSM users and developers have themselves considered the

approach as a technically difficult statistical framework [12,35].

Contrary to state-space models, we did not have to infer animal

state, transition equation, measurement equation and switching

model, nor did we rely upon Bayesian statistics (which is

complicated for most users), and yet, we obtained very satisfactory

results while preserving the possibility to use information from

other sources of data, such as coastlines or SST. Other parameters,

such as ocean depth, could be coupled with the animal diving

depth in the same way. It is important to note that our approach

cannot repeat earlier track patterns in a gap; indeed, SSM may

artificially create patterns where data are sparse [17], which may

be problematic for subsequent analysis.

A recent attempt to assess SSM accuracy was made using

artificial tracks, and reported mean absolute errors to be at best

one to two times larger than what we recorded in this study [17]. It

is however unclear how our approach would compare to a state-

space model approach because, to our knowledge, no state-space

model application on animal movement data has been truly

validated (compared to GPS locations). A direct comparison is

therefore not strictly possible. What is certain is that the

complexity and associated computing time is considerably reduced

using our approach. A switching state-space model [36] would

probably increase the computing time by a factor of 5 (Bailey, pers.

comm.), which would amount for at least 5, 3 and 15 hours of

computing to run our track numbers 1, 2 and 3 from our first

dataset, respectively.

Figure 7. Result of the forward particle filter model applied to geolocation data in one northern elephant seal track (red line). The
black line and dots represent the light-based geolocation data and the blue line and crosses represent the result of the model applied to the ARGOS
data instead of the geolocation data (used here as reference since it is much more accurate – see results for details). The background colors and color
bar code for the sea-surface temperature (uC) grid at the day matching the position of the large red circle. At this time and place, the SST gradient
was weak, so the SST correction had little effect, thus the larger deviation of the modeled track to the reference track. Note that the GPS data were
not represented because of the coarse scale of the plot and the duty cycling of the GPS data.
doi:10.1371/journal.pone.0004711.g007
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State-space models have the ability to produce an estimate of

the animal’s behavioral mode, and this can be seen as a major

advantage over our method. The behavioral mode is usually

characterized by a certain bearing (or turn) variability and a certain

speed [14,36]. It is indeed important to be able to distinguish

between behavioral phases, and we believe that simple time-series

analysis or other first passage time [24] or fractal landscape analysis

[25] may accomplish this equally well. A priori there is no reason why

track correction and delineation of behavioral mode must occur in

the same step. In fact, it might even be simpler and more useful for

researchers to compare and use several methodologies to identify

behavioral states. However, this is not the topic of this work and this

may require more investigations.

State-space models were presented as a way to use all available

information in the tracking data without the need for filtering

processes to be performed [37]. A recent study using state-space

models suggested that pre-filtering of ARGOS data improves the

model performance [16], and this seems to be confirmed by

another recent study which used a classical speed filter prior to

using the state-space model [38]. None of this is required with our

approach, and at the opposite, we even used ARGOS secondary

locations in addition to recorded primary locations in our model,

in order to truly use the maximum information available.

Finally, it is important to note that the advantages or

inconvenient of using a method or another might also depend

on one’s initial goals. By fitting a mechanistic model to the data,

state-space models are by construction more predictive than our

approach. This possibility might be of interest for comparing

different mechanistic models of individual movement and

therefore to explore the effects of different behavioral processes

on the dispersal of individuals. This cannot be done directly with

our approach, but as a second step, by comparing the output of

our method to the output obtained under a given theoretical

framework.

Our model uses particles, but it differs from particle sampling

filters by the fact that particles are not generated using prior

behavioral information [15], but instead, they are generated based

on the recorded data.

Conclusion
Previous work has shown that simple filtering is wasteful and

inefficient and that additional, valuable behavioral information

can be extracted from tracking data. To date, this has required

methods that are both complicated and time-consuming, resulting

in limited application and the potential for analysis errors due to

poor understanding. The particle filter model outlined here

attempts to improve the quality of tracking data while operating

by a framework that is both accessible and efficient. This method

improves the accuracy of positions and assigns an estimate of

spatial error, facilitating subsequent post-hoc behavioral analyses.

In order to share this method with the research community, we

will establish a dedicated website to provide source codes,

examples, and a manual. The package will be known as the

IKNOS-WALK program.
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